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Abstract: Cox processes, also called doubly stochastic Poisson processes, are used for describing phe-
nomena for which overdispersion exists, as well as Poisson properties conditional on environmental
effects. In this paper, we consider situations where spatial count data are not available for the whole
study area but only for sampling units within identified strata. Moreover, we introduce a model of
spatial dependency for environmental effects based on a Gaussian copula and gamma-distributed
margins. The strength of dependency between spatial effects is related with the distance between
stratum centers. Sampling properties are presented taking into account the spatial random field
of covariates. Likelihood and Bayesian inference approaches are proposed to estimate the effect
parameters and the covariate link function parameters. These techniques are illustrated using Black
Leaf Streak Disease (BLSD) data collected in Martinique island.

Keywords: point process; Cox process; counting measure; overdispersion; stratified sampling; spatial
copula; spatial sampling; likelihood; mixture distribution; negative multinomial

1. Introduction

Statistical Inference with spatial data requires to take into consideration a strong
possibility of spatial dependency. In case of observations corresponding to the realization
of a point process, the available data can be either point spatial locations or counts of
points in spatial units [1,2]. These authors developed the mathematical theory of point
processes which are used in many areas for describing event occurrences, like earthquakes,
accidents, pest infestations, disease appearances, neuronal spikes, and many other situa-
tions [3–7]. Thus, a wide range of scientific applications can be cited, for example: ecology,
epidemiology, geology, forestry, neurophysiology. De Oliveira [8] described a class of
models for geostatistical count data generalizing the class proposed by Diggle et al., in
1998 [9]. Diggle [10] discussed about different spatial and spatio-temporal point process
models, along with marked and multivariate counting processes. Wakefield [11] presented
a critical review of spatial count data analysis methods for either disease mapping or spatial
regression. He emphasizes the importance of the nature of variability in spatial risk and
the fact that models must account for both spatial and non-spatial variability. Ickstadt
and Wolpert [12] introduced a class of Bayesian hierarchical spatial models taking into
account dependence on unobserved or unreported covariates. Examples and illustrations
of state-of-the art developments in statistics for spatial data are presented in Cressie [13]
with focus on lattice data, geostatistical data and point patterns. Sain and Cressie [14]
emphasize that incorporating general forms of correlation is important in building spatial
models for lattice data. Our goal is to consider Gamma-distributed effects which are
spatially correlated. Given this constraint of marginal Gamma distributions, joint laws
allowing such marginal properties, along with spatial dependence, are rare. This is the
reason why we use the copula theory which allows both marginal laws and spatial depen-
dence or spatial effects [15]. A spatial copula as defined in Durocher et al. [16] provide a
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full probabilistic model. Conversely, a covariance function describes only the covariance
between marginal distributions except in the case of a multivariate Gaussian distribution
which is fully specified by its expectation and covariance matrix.

In this paper, we consider count observations from a doubly stochastic Poisson process
also called Cox process [8,17–20] on a measured space (X ,B, ν) and driven by a random
measure Λ such that there exists a positive random field λ(.) verifying:

∀B ∈ B, Λ(B) =
∫

B
λ(x)ν(dx). (1)

λ(.) is the process intensity with respect to the reference measure ν. Its state space is X
and Λ(.) denotes its intensity measure. For example, ν can be the Lebesgue measure or a
counting measure for individuals at risks.

The idea behind the model based on a Cox process is that environmental heterogeneity
can generate overdispersion but also dependency. The counting measure N associated
with such a Cox process verifies:

∀B ∈ B, N(B) ∼ P(Λ(B)) | Λ, (2)

which means that, conditionally to Λ, the count N(B) follows the Poisson distribution with
parameter Λ(B).

A well known result on doubly stochastic Poisson process is that stochasticity on Λ
generates overdispersion: for any element B of B such that E(Λ(B)) > 0 and Var(Λ(B)) > 0,
the dispersion index is

Var(N(B))
E(N(B))

=
E(Λ(B)) + Var(Λ(B))

E(Λ(B))
= 1 +

Var(Λ(B))
E(Λ(B))

> 1.

If Λ(B) is not a proper random variable or in other terms if Var(Λ(B)) = 0, then
the dispersion index is equal to unity, what corresponds to a standard Poisson process.
It is worth pointing out that modeling a Cox process is equivalent to modeling either
its intensity λ(.) or its driving measure Λ(.). For example, Wolpert and Ickstadt [21]
constructed λ as a linear combination of location-specific attributes and a kernel mixture
measure associated with an independent-increment infinitely divisible random measure.

The general model studied in this paper is as follows. We assume that X has a finite
n-partition

(
Xj
)

j∈J and:

λ(x) = ∑
j∈J

Aj fθ

(
Z(x)

)
1Xj(x), (3)

where Aj is a positive random variable, and 1Xj stands for the indicator function of Xj. We
denote by Z(x) the random vector of q covariates at point x and by fθ the positive link
function defined on Z(X ) and parameterized by θ. Therefore, Z is a random field taking
values in a q-dimensional space and can not be observed entirely in practice. However we
assume that for a given sampling unit, we have relevant summaries providing information
on the Cox process. The unknown parameter θ belongs to Rq′ with q′ ≥ q and has to be
estimated from observations of the Cox process and its q covariate summaries. Our aim is to
present tools for statistical inference with data from the counting measure associated with a
Cox process which intensity function given by equation (3), along with partial observations
of its spatial covariates. This inference is on θ and also about the PAj parameters.

It should be noted that we consider count data derived from a stratified sampling
procedure [22], whereas, in the literature, for each stratum Xj, complete observations
are available for the count measure and for the covariates [11], particularly for disease
mapping [23]. We are, therefore, interested in a situation encountered in practice where
the observations in each stratum are partial and carried out across sampling units. Fur-
thermore, the spatial effects (Aj)j∈J are not necessarily mutually independent. Such a
spatial correlation can be modeled by means of copula functions: Xue-Kun Song [24]
presented a class of multivariate dispersion models based on multivariate Gaussian copula,
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Masarotto [25] identified Gaussian copula models for marginal regression analysis, Krup-
skii and Genton [26] proposed copula models for spatial data repeatedly observed in time,
and Lee [27] developed a copula-based model for multisite precipitation occurrences.

In Section 2, distributional properties of the counting measure N are presented. A
set of sampling units is considered in Section 3 with general features met in practice: the
units are disjoint and entirely included in one of the partition elements Xj. Firstly, the
expressions of the likelihood conditional on the covariate field Z and the effect Aj are
provided. Following Wakefield [11], spatially correlated log-normal effects are considered.
This leads to observed counts in sampling units following the multivariate Poisson-log
normal distribution [28]. Secondly, we show that the joint distribution of counts in the
sampling units for each Xj is negative multinomial when the effects are gamma-distributed,
and also that correlated gamma-distributed effects lead to dependent negative multinomial
counts. Spatial correlations between effects are taken into account by means of Gaussian
copula associated with Gamma distributed margins. In Section 4, the focus is on estimating
the model parameters. In some situations, closed-form estimators may be obtained, but
it is generally not the case. Likelihood inference can be performed when the effects are
independent. Otherwise, a Markov chain Monte Carlo (MCMC) procedure is proposed
in order to perform Bayesian inference [29]. An illustration is provided in Section 5 from
BLSD data collected in Martinique Island within a network coordinated by the DAAL
(Direction de l’Alimentation, de l’Agriculture et de la Forêt) and the FREDON Martinique
(Fédération REgionale de Défense contre les Organismes Nuisibles de la Martinique).

2. Distributional Properties

In this section, we present the distributional properties associated with the count-
ing measure N. These properties conditional on covariate vector Z give an idea of the
dependency between the different spatial zones considered.

For any B in B, let us write

Sν(B, θ, Z) =
∫

B
fθ

(
Z(x)

)
ν(dx). (4)

Here, the random measure Sν(B, θ, Z) depends on Z only through its restricted ran-
dom field ZB = (Z(x))x∈B on B.

The following proposition gives the expected number of points conditional on Z and
(Aj)j∈J :

Proposition 1. Let N be the counting measure associated with the point process in which intensity
is given by Equation (3); then,

∀B ∈ B, E(N(B)|(Aj)j∈J , Z) = ∑
j∈J

AjSν(B ∩ Xj, θ, Z). (5)

Proof of Proposition 1. For any element B of B, we have

E(N(B)|(Aj)j∈J , Z) = Λ(B) =
∫

B
λ(x)ν(dx) =

∫
B

∑
j∈J

Aj fθ

(
Z(x)

)
1Xj(x)ν(dx)

= ∑
j∈J

Aj

∫
B∩Xj

fθ

(
Z(x)

)
ν(dx) = ∑

j∈J
AjSν(B ∩ Xj, θ, Z),

which shows (5).

We have the following results about count correlation:
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Proposition 2. Consider the counting measure N associated with the point process defined by
equation (3). For any (B1, B2) in B2, the following equality holds:

Cov(N(B1), N(B2)|Z) = ∑
(j,j′)∈J2

Cov(Aj, Aj′ |Z)Sν(B1 ∩ Xj, θ, Z)Sν(B2 ∩ Xj′ , θ, Z).

Proof of Proposition 2. From the covariance decomposition formula, we get

Cov(N(B1), N(B2)|Z) = Cov
(

E(N(B1)|(Aj)j∈J , Z), E(N(B2)|(Aj)j∈J , Z)
)
+ E

(
Cov(N(B1), N(B2)|(Aj)j∈J , Z)

)
.

Since N is a Cox process, the second term of the right-hand side of the above equation is
equal to zero so that Equation (5) leads to

Cov(N(B1), N(B2)|Z) = Cov
(
∑
j∈J

Aj

∫
B1∩Xj

fθ

(
Z(x)ν(dx), ∑

j′∈J
Aj′

∫
B2∩Xj′

fθ

(
Z(x)ν(dx)

)
,

and also to the final result.

Corollary 1. Consider the counting measure N associated with the point process defined by
Equation (3) and assume the Aj are independent conditionally to Z. For any couple (B1, B2) in B2,

Cov(N(B1), N(B2)|Z) = ∑
j∈J

Var(Aj|Z)Sν(B1 ∩ Xj, θ, Z)Sν(B2 ∩ Xj, θ, Z).

Proof of Corollary 1. From Proposition 2 and conditional independence, whenever any
distinct j, j′ in J, we get Cov(Aj, Aj′ |Z) = 0, and the final result follows.

Corollary 2. Consider the counting measure N associated with the point process defined by
Equation (3) and assume the spatial effect variables (Aj)j∈J are mutually independent. Let B1 and
B2 be two elements of B. If ∃(j, j′) ∈ J2, with j 6= j′, and B1 ⊂ Xj, B2 ⊂ Xj′ , then

Cov(N(B1), N(B2)|Z) = 0.

Proof of Corollary 2. From corollary 1, the result is straightforward.

Corollary 3. Let B1 and B2 be two elements of B. If there exists j in J, such that B1, B2 ⊂ Xj, then

Cov(N(B1), N(B2)|Z) = Var(Aj|Z)Sν(B1 ∩ Xj)Sν(B2 ∩ Xj).

Proof of Corollary 3. Both B1 and B2 are subsets of Xj. Therefore, Proposition 2 give us
the final result.

It is worth noticing that, in the case where Aj is a non-degenerate random variable
conditional on Z, then Var(Aj|Z) > 0, which implies that Cov(N(B1), N(B2)|Z) > 0.

3. Sampling Theory Results

In this section, we consider a set S of sampling units such that:
(C1) S = {Bij ∈ B, i ∈ [[1, nj]], j ∈ J},
(C2) ∀j ∈ J, Bij ⊂ Xj,
(C3) ∀(i, i′) ∈ [[1, nj]]

2, i 6= i′ ⇒ Bij ∩ Bi′ j = ∅.
Condition (C3) means that there is no overlapping sampling units. When these three
conditions are verified, we have the following results about the likelihood from the model
defined by Equation (3).
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Proposition 3. Let S be a sample verifying conditions (C1), (C2), and (C3). For the model
defined by Equation (3), if the joint distribution of (Aj)j∈J admits a probability density function g
parameterized by β, then the conditional likelihood on Aj = aj for S with respect to the counting

measure N and (θ, β) denoted by L
(
(θ, β); (N(B))B∈S , (aj)j∈J

)
is equal to

(
∏
j∈J

nj

∏
i=1

(ajSν(Bij, θ, Z))N(Bij)

N(Bij)!
exp(−ajSν(Bij, θ, Z))

)
g
(
(aj)j∈J

)
. (6)

It is worth noticing that this likelihood is conditional on Z.

Proof of Proposition 3. Since condition (C2) is verified, then Bij ⊂ Xj. Therefore, con-
ditionally to Aj and Z, the count N(Bij) is distributed according to the Poisson law
P(AjSν(Bij, θ, Z)). Furthermore, the N(Bij) are independent conditionally to the Aj.

The likelihood given in Proposition 3 is useful for Bayesian approach when prior
information on (Aj)j∈J are available, as well as sampling algorithms for augmented data.
In practice, the Aj are not observed. Consequently, the likelihood techniques are based on
count observations only. The following corollary provides such a likelihood:

Corollary 4. Let S be a sample verifying conditions (C1), (C2), and (C3), if the joint distribution of
(Aj, j ∈ J) admits a probability density function g parameterized by β, then the unconditional like-

lihood for S with respect to the counting measure N and (θ, β) denoted by L
(
(θ, β); (N(B))B∈S

)
is equal to

∫
Rn
+

(
∏
j∈J

nj

∏
i=1

(ajSν(Bij, θ, Z))N(Bij)

N(Bij)!
exp(−ajSν(Bij, θ, Z))

)
g
(
(aj)j∈J

)
da1 · · · dan. (7)

Proof of Corollary 4. The result is straightforward from Proposition 3.

Many distributions can be used for the joint probability law of (Aj, j ∈ J) which has
to be considered as a mixing distribution in the framework of Poisson mixtures [30]. In the
case where this joint probability law is a multivariate log-normal distribution LN (µ, Σ)
with µ ∈ Rn and Σ a square matrix or order n, then the probability density function g is
such that:

g
(
(aj)j∈J

)
=

exp

(
−1

2

(
(ln(a)− µ)tΣ−1(ln(a)− µ)

))
(2π)n/2(detΣ)1/2 ∏

j∈J
aj

, (8)

where ln(a) = (ln(aj))j∈J and n is the cardinality of J.
Following Wakefield [11], for any j in J, we can write Aj = exp(Uj + Vj), where the

Vj are independent identically distributed according to N (0, σ2
v ) corresponding to non

spatial contribution to overdispersion. On the other hand, the Uj are spatial contribu-
tions associated with a distance d on X such that (Uj)j∈J follows a multivariate normal

distribution with Cov(Uj, Uk) = σ2
uρd(Cj ,Ck), where Cj and Ck are the centroids of Xj and

Xk, respectively. Consequently, Cor(Uj, Uk) = ρd(Cj ,Ck) so that parameter ρ stands for the
correlation between Uj and Uk if d(Cj, Ck) = 1. We assume that ρ ∈]0, 1[. Therefore, in
Equation (8), µ is the null vector of Rn, and matrix Σ has each diagonal element equal to
σ2

u + σ2
v , whereas element on line j and column k equal to σ2

uρd(Cj ,Ck). In the case where
the mixture distribution is a multivariate log-normal distribution, Equations (7) and (8)
provide tools for statistical analysis of counts in sampling units similarly to Aitchison and
Ho [28].
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An other choice of law for the effect Aj is the Gamma distribution with two parameters
mj and γj, where mj is its expectation, and γj the shape parameter. Equation (9) gives
its density function. It is worth noticing that several parameterizations can be met in the
literature. We have the following theorem:

Theorem 1. Let the random measure Sν(Bij, θ, Z) be as in Equation (4). For any element j of J,
and (Bij)i∈[[1,nj ]]

elements of B verifying conditions (C2) and (C3), if we assume that Aj follows a
Gamma distribution Γ(mj, γj) with density function fAj given by:

fAj(x) =
xγj−1

Γ(γj)

( γj

mj

)γj
exp

(
−x

γj

mj

)
, (9)

then:

(i)
(

N(Bij)
)

i∈[[1,nj ]]
follows a multinomial negative distribution,

(ii) ∀i ∈ [[1, nj]],
E(N(Bij)|Z) = mjSν(Bij, θ, Z)

and

Var(N(Bij)|Z) = E(N(Bij)|Z)
(

1 +
E(N(Bij)|Z)

γj

)
.

(iii) For two distinct elements i and i′ of [[1, nj]], the following equality holds:

Cov(N(Bij, N(Bi′ j)|Z) =
m2

j

γj
Sν(Bij, θ, Z)Sν(Bi′ j, θ, Z).

Proof of Theorem 1. (i) Using the probability generating function of
(

N(Bij)
)

i∈[[1,nj ]]
,

along with the moment generating function of Aj, leads us to the result.
In fact, for any j in J, if we write Nj =

(
N(Bij)

)
i∈[[1,nj ]]

, then the probability generating

function of Nj conditionally to Aj and Z at any point (s1, . . . , snj) of [0, 1]nj is:

GNj |Aj ,Z(s1, . . . , snj) = E

( nj

∏
i=1

s
Nij
i |Aj, Z

)
= exp

(
−Aj

nj

∑
i=1

(1− si)Sν(Bij, θ, Z)

)
.

Therefore, the probability generating function of Nj conditional on Z is such that:

GNj |Z(s1, . . . , snj) = E
(
GNj |Aj ,Z(s1, . . . , snj)

)
= E

(
exp

(
−Aj

nj

∑
i=1

(1− si)Sν(Bij, θ, Z)
))

= MAj

(
−

nj

∑
i=1

(1− si)Sν(Bij, θ, Z)

)
,

where MAj stands for the moment generating function of Aj.
Since Aj ∼ Γ(mj, γj), then

GNj |Z(s1, . . . , snj) =
(

1 +
mj

γj

nj

∑
i=1

(1− si)Sν(Bij, θ, Z)
)−γj

,

so that Nj conditional on Z follows a multinomial negative distribution with parameters(
mj
(
Sν(Bij, θ, Z)

)
i∈[[1,nj ]]

, γj

)
.
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(ii) and (iii) The first derivative of GNj |Z with respect to si at point 1 gives us E(N(Bij)|Z).
The second derivatives of GNj |Z provide in a similar manner the second moments associated
with Nj.

Proposition 4. Let S be a sample verifying conditions (C1), (C2), and (C3). Assume the random
variables Aj, j ∈ J, are mutually independent and distributed according to Γ(mj, γj) as defined

by Equation (9). Writing β = (mj, γj)j∈J , then the likelihood L
(
(θ, β); (N(B))B∈S

)
for S with

respect to the counting measure N and (θ, β) is equal to

n

∏
j=1

Γ(Y+j + γj)

Γ(γj)

(
γj

mjSν+(B•j, θ, Z) + γj

)γj( mj

mjSν+(B•j, θ, Z) + γj

)Y+j nj

∏
i=1

Sν(Bij, θ, Z)Yij

Yij!
, (10)

with Yij = N(Bij), Y+j =

nj

∑
i=1

Yij and Sν+(B•j, θ, Z) =
nj

∑
i=1

Sν(Bij, θ, Z).

Proof of Proposition 4. Let Yij be a random variable on probability space (Ω,F ,P). Let
yij be an element of Yij(Ω). Since the Aj are independent,

P
(⋂

j∈J

nj⋂
i=1

(
Yij = yij

)
|Z
)
= ∏

j∈J
P
( nj⋂

i=1

(
Yij = yij

)
|Z
)

.

Moreover, each random variable Aj, j ∈ J, follows a Gamma distribution. From (i) in

Theorem 1,
(

N(Bij)
)

i∈[[1,nj ]]
follows a multinomial negative distribution, and we get

L
(
(θ, β); (N(B))B∈S

)
=

∏
j∈J

Γ(y+j + γj)

Γ(γj)

(
γj

mjSν+(B•j, θ, Z) + γj

)γj( mj

mjSν+(B•j, θ, Z) + γj

)y+j nj

∏
i=1

Sν(Bij, θ, Z)yij

yij!

with y+j = ∑
i

yij.

In Proposition 4, we assume that the Aj are independent. Nevertheless, we can
consider the case where (Aj)j∈J follows a multivariate Gamma distribution. We can refer
to Kotz et al. [31] (Chapter 48) for an overview of multivariate Gamma distributions. We
can also refer to Rahayu et al. [32] for statistical applications with multivariate Gamma
distributions. In such a case of dependent univariate Gamma distributions, the result in
Theorem 1 still holds so that we now have dependent negative multinomial counts. Thus,
Equations (6) and (7) provide the conditional and unconditional likelihoods provided that
we know the joint density function g of the Aj. The following proposition provides a joint
gamma distribution for the effects (Aj)j∈J taking into account their spatial correlation.

Proposition 5. Let S be a sample verifying conditions (C1), (C2), and (C3). For the model
defined by Equation (3), if (Aj)j∈J follows a multivariate gamma distribution with joint density g
parameterized by (β, ρ) and spatial correlation given by a copula density c, then the conditional
likelihood on Aj = aj, for S with respect to the counting measure N and (θ, β, ρ) is

L
(
(θ, β, ρ); (N(B))B∈S , (aj)j∈J

)
=(

∏j∈J ∏
nj

i=1
(ajSν(Bij, θ, Z))N(Bij)

N(Bij)!
exp(−ajSν(Bij, θ, Z))

)
c
((

FAj (aj)
)

j∈J

)
∏j∈J fAj (aj),

(11)

where FAj is the cumulative distribution function of Aj, and fAj is given by Equation (9). ρ stands
for the copula density parameter.
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Proof of Proposition 5. The joint density g is the product of the marginal densities mul-

tiplied by the copula density c. Consequently, g
(
(aj)j∈J

)
= c
((

FAj(aj)
)

j∈J

)
∏
j∈J

fAj(aj).

Proposition 3 leads to the final result.

In the case where the copula density is constant equal to 1, the Aj are independent
and expression (10) holds. In the sequel, we will use a multivariate gaussian copula [24] so
that the correlation cor(Aj, Aj′) between two effects Aj and Aj′ depends on the distance
d(Cj, Cj′) between centroids:

∀u ∈ [0, 1]n, c(u) = |W|−
1
2 exp

(
−1

2
(u∗)t(W−1 − In)u∗

)
, (12)

where
u∗ = (φ−1(u1), · · · , φ−1(un)),
φ−1 is the inverse of the standard normal probability distribution function, and
W =

(
ρ

d(Cj ,Cj′ )
)
(j,j′)∈J2

with ρ ∈ [0, 1].

The greater ρ is, the higher the dependency between effects is. The greater the distance
is between Cj and Cj′ , the lower is the dependency between effects Aj and Aj′ .

Note that Lee [27] has shown that, in the case of a bivariate Gaussian copula with
gamma margins, cor(Aj, Aj′) cannot be resolved analytically but numerically.

4. Statistical Inference on the Model Parameters

In this section, we consider again a set S of sampling units verifying conditions C1,
C2 and C3 as defined in Section 3, and effects distributed according to the gamma law.
We first focus on the case where the effects Aj, j ∈ J, are independent and use likelihood
techniques to estimate the model parameters. Then, the case of dependent Aj is considered
within a Bayesian framework.

4.1. Case of Independent Effects

When the effects Aj are independent, the unconditional likelihood given by Equation (10)
can be used to estimate the model parameters.

Proposition 6. Let S be a sample verifying conditions (C1), (C2), and (C3). Assume the Aj are
independent and distributed according to Γ(mj, γj) as defined by Equation (9). If θ is known, the
maximum likelihood estimator for β = (mj, γj)j∈J is such that:

m̂j =
y+j

Sν+(B•j, θ, Z)

with y+j = ∑
i

yij and Sν+(B•j, θ, Z) =
nj

∑
i=1

Sν(Bij, θ, Z).

The estimator γ̂j is obtained numerically from the following equation:
y+j−1

∑
k=0

1
γ̂j + k

+ log

(
γ̂j

y+j + γ̂j

)
= 0.

Proof of Proposition 6. The first order derivative of the log-likelihood

log
(
L
(
(θ, β); (N(B))B∈S

))
given by Equation (10) with respect to parameter mj is as follows:

∂ logL
(
(θ, β); (N(B))B∈S

)
∂mj

=
γjy+j −mjγjSν+(B•j, θ, Z)
mj(mjSν+(B•j, θ, Z) + γj)

.
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Solving the equation
∂ logL

(
(θ, β); (N(B))B∈S

)
∂mj

= 0 for mj gives:

m̂j =
y+j

Sν+(B•j, θ, Z)
,

with y+j = ∑
i

yij and Sν+(B•j, θ, Z) =
nj

∑
i=1

Sν(Bij, θ, Z).

The first order derivative of the log-likelihood log
(
L
(
(θ, β); (N(B))B∈S

))
with respect to

parameter γj is:

∂ logL
(
(θ, β); (N(B))B∈S

)
∂γj

=
y+j−1

∑
k=0

1
γj + k

+ log
( γj

mjSν+(B•j, θ, Z) + γj

)
+

mjSν+(B•j, θ, Z)− y+j

mjSν+(B•j, θ, Z) + γj
.

By replacing mj and γj with their maximum likelihood estimators, respectively, m̂j and γ̂j,
we get the final equation:

y+j−1

∑
k=0

1
γ̂j + k

+ log

(
γ̂j

y+j + γ̂j

)
= 0.

It is worth noticing that the maximum likelihood of γj does not depend on θ. The
following corollary gives us the maximum likelihood estimators when θ is unknown.

Corollary 5. Under conditions (C1), (C2), and (C3), if the Aj are independent and gamma-
distributed, the maximum likelihood estimators for (θ, β), where β = (mj, γj)j∈J , are such that:

m̂j =
y+j

Sν+(B•j, θ̂, Z)
,

with Sν+(B•j, θ̂, Z) =
nj

∑
i=1

Sν(Bij, θ̂, Z) and θ̂ obtained from the following q equations:

∑
j∈J

nj

∑
i=1

(
yij

Sν(Bij, θ̂, Z)
− m̂j

)
∂Sν(Bij, θ̂, Z)

∂θl
= 0, l = 1, · · · , q.

γ̂j is obtained numerically from the same equation given in Proposition 6.

Proof of Corollary 5. This is a straightforward consequence of Proposition 6.

Corollary 6. Under conditions (C1), (C2), and (C3), and regularity conditions, if the Aj are
independent and gamma-distributed, then the covariance matrix of (β̂, θ̂) is estimated by:

M(β̂, θ̂) =

Hmm 0 Hmθ

0 Hγγ 0
Hθm 0 Hθθ

−1

,

where

Hmm = diag

[
E
( γ̂jSν+(B•j, θ̂, Z)

y+j + γ̂j

)]
j∈J

, Hγγ = diag

[
E
(y+j−1

∑
k=0

1
(γ̂j + k)2 −

y+j

γ̂j(y+j + γ̂j)2

)]
j∈J

,

Hθθ =

[
E
(
−

∂2 logL
(
(β̂, θ̂); (N(B))B∈S

)
∂θl∂θs

)]
l,s

and Hmθ =

[
E
(
−

∂2 logL
(
(θ̂, β̂); (N(B))B∈S

)
∂mj∂θl

)]
j,l

.
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Proof of Corollary 6. Differentiating twice the negative log-likelihood function with re-
spect to the model parameters, we get the Fisher information as the expectation of this
Hessian matrix. By replacing β = (mj, γj)j∈J and θ with their maximum likelihood estima-
tors, respectively, β̂ and θ̂ in the second order derivatives, we get the final results.

4.2. Case of Dependent Effects

When the Aj are dependent, the unconditional likelihood in Equation (7) is analytically
intractable. Since the Aj are not observed, the conditional likelihood given by Equation (11)
cannot be used directly for likelihood-based methods but rather within a Bayesian frame-
work. For example, Lee [33] described implementations of spatial hierarchical models via
simulation techniques. In fact, such MCMC methods provide tools for making inference
about missing data and model parameters [29,34]. These MCMC techniques allow samples
from the posterior distribution of (β, θ, ρ, (Aj)j∈J) to be drawn and then the calculation of
any statistic based on the parameters and unobserved effects. This posterior distribution is
proportional to

L
(
(θ, β, ρ); (N(B))B∈S , (aj)j∈J

)
× π(θ)π(β)π(ρ), (13)

where π(θ), π(β), and π(ρ) are the prior distributions for θ, β, and ρ.
Therefore, we propose a hybrid Gibbs-Metropolis-Hasting algorithm based on an

acyclic directed graph (Figure 1) which provides posterior distribution samples for θ, β,
and ρ. An example of such MCMC applications was presented in Valmy and Vaillant [35].

(
d(Cj, Cj′)

)
, ρ β = (mj, γj)j∈J

↓ ↓
Gaussian Gamma

copula margins
↘ ↙

(aj)
↓

Λρ,β,θ ← θ , Z
↓(

N(Bij)
)

Figure 1. Acyclic directed graph of the hierarchical model defined by Proposition 5.

5. Analysis of BLSD Data

We performed our analysis on a dataset from Martinique consisting of spatial counts
of the BLSD, a major foliar disease of bananas. Preliminary results show that four strata
could be considered on the basis of the average annual rainfall (Figure 2).
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Figure 2. Average annual precipitation in Martinique (from Météo France).

On the other hand, because of sampling cost and effort, data could not be collected
over the whole island (Figure 3). The proportion of Cavendish plots was the only covariate
considered in this analysis. In fact, Cavendish banana is the most susceptible cultivar to
BLSD and is mainly grown for export.

Figure 3. Available set of sampling units: black units are observed, grey units are not observed, white
units are uncolonizable: high mountain and volcano (from Landry et al. (2021) [34]).

Table 1 summarizes some information on the number of positive cases with BLSD
observed in each sampling unit. The overdispersion is very significant in each stratum.

Samples from the parameter’s posterior distribution obtained by performing the
MCMC procedure provide the estimates given in Table 2. From the 95% confidence intervals,
we can deduce that the parameters ρ, (mj, γj)j∈{1,2,3,4} are significantly different from zero
at the 5% level. Only θ is not significantly different from zero which means that the
proportion of Cavendish plot is not correlated to the number of positive cases. The mj

distributions are significantly different from each other (p-value < 2.2× 10−16) and this
is also the case for the γj distributions. The posterior distribution of ρ spreads over [0.03,
0.96] with a mode at 0.49 which implies a significant spatial dependency between strata.
Note that the lower bound of the 95% posterior confidence interval for γ4 is equal to
exp(0.07) = 1.0725. Therefore, parameter γ4 is most likely greater than 1: the spatial effect
in stratum 4 is significant.
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Table 1. Test of dispersion for the number of positive cases. nj, x̄j, s2
j , Îdj are, respectively, the number

of sampling units, the mean number of positive cases, the variance of the positive case number, the
estimated index of dispersion in stratum j. The pvalue corresponds to the test of overdispersion.

Stratum j nj x̄j s2
j Îdj p-Value

1 150 1.21 2.80 2.32 0.0× 100

2 60 1.90 4.50 2.37 1.7× 10−8

3 70 1.13 4.72 4.18 0.0× 100

4 60 0.32 0.90 2.84 2.6× 10−12

Table 2. Markov chain Monte Carlo (MCMC) posterior distribution results.

Parameter Posterior Mean Posterior 95% Posterior
Standard Deviation Confidence Interval

ρ 0.486 0.28 [0.03, 0.96]
θ 5.21 5.21 [−3.70, 11.32]

log(m1) 1.94 1.19 [−0.26, 3.63]
log(m2) 1.57 0.61 [0.26, 2.70]
log(m3) 1.29 0.53 [−0.07, 2.08]
log(m4) 4.29 1.47 [0.59, 5.69]
log(γ1) −0.93 0.92 [−2.56, 0.70]
log(γ2) −0.67 0.74 [−1.97, 0.65]
log(γ3) 1.67 1.56 [−0.55, 4.48]
log(γ4) 5.86 3.40 [0.07, 11.14]

6. Conclusions

We propose a model for spatial count data obtained from a stratified sampling in
presence of overdispersion with spatial dependency built from a gaussian copula. Stratum
random effects and spatial covariates can be considered and statistical inference can be
performed within a Bayesian framework. Posterior samples of the model parameters are
obtained by means of a hybrid Gibbs-Metropolis-Hasting algorithm. There are potential
applications in various scientific fields, such as epidemiology and ecology. An illustration is
given from data of Black Leaf Streak Disease (BLSD) on banana in Martinique. Differences
from one stratum to another are significant, as well as their spatial dependency. A non-
significant influence of proportion of Cavendish plots on the number of positive cases
is found.
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