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Abstract: The smoothness of functions f in the space Lp(R) with 1 < p < ∞ is studied through the
local convergence of the continuous wavelet transform of f . Additionally, we study the smoothness
of functions in Lp(R) by means of the local convergence of the semi-discrete wavelet transform.
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1. Introduction

In order to study the local regularity of functions in L2(R) by means of the local
convergence of the continuous wavelet transform (CWT), we apply its inversion formula,
which is usually considered in the weak sense [1]. The same concept is applied for the case
of CWT with rotations in L2(Rn) [2]. Concerning distributions u with compact support,
the regular points of u can be found again by using the convergence of the CWT by means
of the L2 −machinery, [3].

When we move to the space Lp(Rn), the inversion formula for the CWT is obtained
with norm convergence in Lp(Rn), where 1 ≤ p < ∞, [4,5]. For a.e. convergence in
Lp(Rn), 1 < p < ∞, see [6]. For the convergence at every Lebesgue point x for functions
in Lp(Rn), 1 ≤ p < ∞, see [7], and for the convergence on the entire Lebesgue set of
f ∈ Lp(R), 1 ≤ p < ∞, see [8]. Moreover, in [9,10], the continuous wavelet transform
Lh : Lp(R) → Lp(R, L2((0, ∞), da

a )) := Wp, 1 < p < ∞ with respect to a wavelet h ∈
L1(R) ∩ L2(R) is a bounded linear operator and

‖Lh f ‖Wp :=

(∫
R

[∫ ∞

0
|(Lh f )(a, b)|2 da

a

] p
2

db

) 1
p

≤ Ap‖ f ‖p,

where Ap depends on p and h.
For the discrete wavelet transform, wavelets become an unconditional bases for Lp(R),

1 < p < ∞. Thus, there is a characterization for functions in Lp(R) using only absolute
values of the wavelet coefficients of f , [11].

In this paper, we extend the results of local regularity of functions f ∈ L2(R) to the
space Lp(R), 1 < p < ∞, by means of the local convergence of the CWT. To study the
regularity of functions in Lp(R), 1 < p < ∞ via the CWT, we give the necessary conditions
to define the CWT for f in Lp(R) with respect to an admissible function h in L1(R) ∩ L2(R).

Finally, we introduce the semi-discrete wavelet transform (SDWT) to show that there is
a relationship between the local regularity of functions in Lp(R) and the local convergence
of the SDWT. That is, if the dilation parameter takes only discrete values, namely a := am,
where a is fixed and a > 1 with m ∈ Z, and the translation parameter b is any value in R,
we get the SDWT. With respect to the reconstruction formula in the semi-discrete case, we
will consider two functions, h1 and h2, instead of one h, one for the decomposition and the
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other one for the inversion formula, in such a way that the admissibility condition will
depend on h1 and h2 [12,13].

This research led us to establish a relationship between the local existence of the limit
of derivatives for the CWT and SDWT, and the derivatives of functions in Lp(R).

Some experiments are included to illustrate our results. In particular, we study
the sigmoidal function, widely used in artificial neural networks, since its derivatives
can be expressed in terms of itself and Stirling numbers of second order, that allow us
to implement computer experiments to show graphical representations of the wavelet
transform behaviour.

The reported results become relevant in research areas such as analytical chemistry,
where wavelet functions can be used for derivative calculation through CWT [14,15],
neural networks with wavelets to extract features from data [16], and to propose novel
architectures [17], image processing with wavelets, where all their derivatives are admis-
sible functions, such as the Beta function [18], computer vision via Shearlet Networks
that take advantage of sparse representations of shearlets in biometric applications [19],
and its convergence properties [20,21], as well as differential equations for numerical
solutions [22], among other areas. Indeed, one of the projections of the results shown in
this paper can be applied, for example, to study the regularity of weak solutions under
elliptic partial differential operators.

2. Notations and Definitions

In this section, we give the definition for an admissible function. We also define
the continuous wavelet transform for functions in Lp(R), where 1 < p < ∞ with re-
spect to an admissible function, and we give the inversion formula for the continuous
wavelet transform.

Definition 1. For h in L1(R) ∩ L2(R), the dilation operator Ja and the translation
operator Tb are defined respectively, as:

(1) (Jah)(x) = a−1h(a−1x), where a > 0 and x ∈ R,
(2) (Tbh)(x) = h(x− b), where x, b ∈ R.

Notice that Jah and Tbh are also in L1(R) ∩ L2(R). In fact, ‖Jah‖1 = ‖h‖1.
The admissibility condition is now given.

Definition 2. The function h in L1(R) ∩ L2(R) is admissible (wavelet) if

0 < Ch :=
∫
R+

|ĥ(w)|2
w

dw < ∞, (1)

where ĥ is the Fourier transform of h, and where R+ = (0, ∞).

Remark 1. Following (1), note that if h ∈ C∞
0 (R), then h(n) is admissible if and only if

Ch(n) = (2π)2n
∫
R+

w2n−1|ĥ(w)|2dw < ∞. (2)

Given the admissibility condition, we extend the continuous wavelet transform on
L2(R, dx) to Lp(R, dx), where 1 < p < ∞, and interpret its images as elements of the space
Wp, as above. For this, we give the following definition.

Definition 3. Consider a measurable set X with measure µ and a Banach space B with norm ‖ · ‖B.
The space Lp((X, dµ); (B, ‖ · ‖B)) consists of those elements, F : X → B, F is strongly measurable
and such that ∫

X
‖F(x)‖p

Bdµ(x) < ∞.
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According to Definition 3, if X = R is a measurable space with measure db and
B = L2(R+, da

a ) is a normed space with norm ‖ · ‖2, then

Wp := Lp
(
(R, db); L2(R+,

da
a
)

)
consists of those elements F(·, b) ∈ L2(R+, da

a ) such that∫
R
‖F(·, b)‖p

L2(R+ , da
a )

db < ∞.

In this case,

‖F‖Wp :=
(∫

R
‖F(·, b)‖p

L2(R+ , da
a )

db
) 1

p
=

(∫
R

(∫
R+
|F(a, b)|2 da

a

) p
2

db

) 1
p

. (3)

Thus, by using the space Wp, we give the definition of the continuous wavelet trans-
form for functions in Lp(R) with respect to an admissible function in L1(R) ∩ L2(R).

Definition 4. Let f be in Lp(R) with 1 < p < ∞. Consider a > 0 and b ∈ R. Let h be an
admissible function in L1(R) ∩ L2(R). The continuous wavelet transform of f with respect to h is
defined as the map

Lh : Lp(R, dx)→Wp

so that

(Lh f )(a, b) =
∫
R

f (x)Tb Jah(x)dx =
∫
R

f (x)
1
a

h
(

x− b
a

)
dx. (4)

Note that the continuous wavelet transform can be written as

(Lh f )(a, b) =
[
(Jah)∼ ∗ f

]
(b), (5)

where ∗means convolution and h∼ means h∼(x) = h(−x).

Remark 2. According to (5), and since Jah ∈ L1(R) and f ∈ Lp(R), it follows from Young’s
Inequality that (Jah)∼ ∗ f ∈ Lp(R) and ‖(Jah)∼ ∗ f ‖p ≤ ‖h‖1‖ f ‖p. That is,

‖(Lh f )(a, ·)‖p ≤ ‖h‖1‖ f ‖p.

Additionally, note that from (3),

‖Lh f ‖Wp =

(∫
R
‖Lh f (·, b)‖p

L2(R+ , da
a )

db
) 1

p
=

(∫
R

(∫
R+
|(Lh f )(a, b)|2 da

a

) p
2

db

) 1
p

,

where
‖Lh f ‖Wp ≤ Ap ‖ f ‖p,

and where the constant Ap depends only on p and h. Thus, the continuous wavelet transform is a
bounded linear operator, [10].

The inversion formula of the continuous wavelet transform for f in Lp(R) with
1 < p < ∞ is now given.

Lemma 1. Consider f ∈ Lp(R) with 1 < p < ∞, and h ∈ L1(R) ∩ L2(R) admissible with real
values. Then,

f (x) =
1

Ch

∫
R+

∫
R
(Lh f )(a, b)h

(
x− b

a

)
db

da
a2 . (6)
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The equality holds in the Lp sense, and the integrals on the right-hand side have to be
taken in the sense of distributions.

Proof. See [10].

3. Convergence of the Continuous Wavelet Transform in Lp(R)
First, we give a result about the derivative of the continuous wavelet transform with

respect to the translation parameter b ∈ R.

Lemma 2. If f ∈ Lp(R) with 1 < p < ∞ and if h ∈ C∞
0 (R) is admissible, then for any integer

n > 0, h(n) is admissible. Moreover,

∂n

∂bn (Lh f )(a, b) =
(−1)n

an (Lh(n) f )(a, b). (7)

Proof. From (5), and since f ∈ Lp(R) and h ∈ C∞
0 (R), then (Jah)∼ ∗ f ∈ C∞(R), and

∂n

∂bn

[
(Jah)∼ ∗ f

]
(b) =

[
∂n

∂bn (Jah)∼ ∗ f
]
(b) =

(−1)n

an

[
(Jah(n))∼ ∗ f

]
(b). (8)

This proves Lemma 2.

Then, we have the following result.

Lemma 3. Suppose that h ∈ C∞
0 (R) is a non-zero function where ĥ(0) = 0. Consider f in Lp(R),

1 < p < ∞. If f is of class C∞ in a neighborhood of x = b0 in R, then for each non-negative integer
n, we have the existence of lim

(a,b)→(0,b1)
(Wn

h f )(a, b) for each b1 in a neighborhood of b0 ∈ R, where

(Wn
h f )(a, b) :=

1
a

∂n

∂bn (Lh f )(a, b). (9)

Proof. Suppose f is C∞ in a neighborhood of x = b0 containing [b0 − ε, b0 + ε], where
ε > 0. Take b1 in (b0 − ε/2, b0 + ε/2) and choose b in (b0 − ε/2, b0 + ε/2).

Now since h ∈ C∞
0 (R), there is L > 0 such that supp h ⊂ [−L, L]. Then, for a ∈

(0, ε/2L), we have [b− aL, b + aL] ⊂ [b0 − ε, b0 + ε]. Hence, f is C∞ in [b− aL, b + aL].
Following Lemma 2, and since f ∈ Lp(R), it follows from (4) that,

(Wn
h f )(a, b) =

1
a
(−1)n

an

∫ b+aL

b−aL
f (x)

1
a

h(n)
(

x− b
a

)
dx =

1
a

∫ L

−L
f (n)(b + ay) h(y) dy. (10)

Since f is C∞ at points in the region of integration, then for y in [−L, L],

f (n)(b + ay) = f (n)(b) + ay f (n+1)(b) +
∫ b+ay

b
(b + ay− t) f (n+2)(t) dt.

Hence,

(Wn
h f )(a, b) =

1
a

f (n)(b)
∫ L

−L
h(y) dy + f (n+1)(b)

∫ L

−L
y h(y) dy + R(a, b),

where

R(a, b) =
1
a

∫ L

−L

(∫ b+ay

b
(b + ay− t) f (n+2)(t) dt

)
h(y) dy.

Now, set M = supx∈[b0−ε,b0+ε]| f (n+2)(x)|. Then,

|R(a, b)| ≤ 1
2

aM
∫ L

−L
y2|h(y)| dy.
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Thus, R(a, b)→ 0 as (a, b)→ (0, b1) for any b1 in (b0 − ε/2, b0 + ε/2).
Then, since ĥ(0) = 0 and since f (n+1) is continuous near b1, we have

(Wn
h f )(a, b)→ f (n+1)(b1)

∫ L

−L
y h(y) dy as (a, b)→ (0, b1). (11)

4. Main Result 1

Now, let us prove the converse of Lemma 3, which is our first main result.

Theorem 1. Suppose h ∈ C∞
0 (R) satisfies condition (1). Consider f in Lp(R) with 1 < p < ∞.

If, for each non-negative integer n, the limit of (Wn
h f )(a, b) exists as (a, b)→ (0, b1) for each b1

in an open neighborhood of x = b0 ∈ R, then f is of class C∞ in an open neighborhood of b0 ∈ R.

Proof. Suppose that for each non-negative integer n,

Fn
h (b1):= lim

(a,b)→(0,b1)
(Wn

h f )(a, b)

exists for each b1 in an open neighborhood containing the closed interval
[b0 − B, b0 + B], where B > 0.

Now, for fixed x in [b0 − B, b0 + B] and y ∈ R, let

(In
h f )(a, x, y) =

{
h(−y) (Wn

h f )(a, x + ay) if a > 0
h(−y) Fn

h (x) if a = 0.

Note that for x in [b0 − B, b0 + B], the function In
h f is well-defined for all a ≥ 0 and all

y in R. Furthermore, for fixed y ∈ R and a 6= 0, the function In
h f is infinitely differentiable

in the variable x by virtue of the definition ofWn
h f .

Then we have the following Lemma (see Appendix A for the proof).

Lemma 4. For x in (b0 − B, b0 + B), let

w(x) =
∫ ∞

0

∫
R
(I0

h f )(a, x, y)dyda,

and let
(In

h f )(x) =
∫ ∞

0

∫
R
(In

h f )(a, x, y)dyda.

Then for each non-negative integer n,

dn

dxn w(x) = (In
h f )(x). (12)

That is, the function w is of class C∞ on (b0 − B, b0 + B).

Back to the proof of Theorem 1, for any x in R and λ > 0, define

uλ(x) :=
∫ λ

1
λ

∫
R

h(−y)
1
a
(Lh f )(a, x + ay)dyda.

Then from Lemma 4, for x ∈ (b0 − B, b0 + B),

lim
λ→∞

uλ(x) = w(x).

That is, uλ → w pointwise on (b0 − B, b0 + B) as λ→ ∞.



Mathematics 2021, 9, 522 6 of 15

On the other hand, by (6), we have uλ → Ch f in the Lp sense as λ → ∞. Then,
f = (Ch)

−1w almost everywhere on (b0 − B, b0 + B).
Finally, since from (12) the function w is C∞ on (b0 − B, b0 + B), it follows that f is of

class C∞ on (b0 − B, b0 + B).

5. The Semi-Discrete Wavelet Transform

In this section, we define the semi-discrete wavelet transform (SDWT) of functions
f ∈ Lp(R), and we will prove the local convergence of the SDWT of f via the local
regularity of f . For this purpose, we will use the reconstruction formula given in [12]. Thus,
we will define the corresponding dilation operator for discrete values.

Definition 5. For a function h ∈ L1(R) ∩ L2(R), and for fixed a > 1, the dilation operator Jam is
now given by

(Jam h)(x) =
1

am h
( x

am

)
, where m ∈ Z, and x ∈ R. (13)

Thus, we have the following definition for the semi-discrete wavelet transform for
functions in Lp(R).

Definition 6. Suppose that h in L1(R)∩ L2(R) is an admissible function. Then, the semi-discrete
wavelet transform for a function f in Lp(R) with respect to h is defined as:

(Lh f )(am, b) =
(
(Jam h)∼ ∗ f

)
(b) =

∫
R

f (x)
1

am h
(

x− b
am

)
dx, (14)

where a > 1 is fixed, m ∈ Z, and b ∈ R.

See [12] for Remark 3 with N any natural number. In this paper, N = 1.

Remark 3. In order to get a reconstruction formula for the semi-discrete wavelet transform in
Lp(R), a function h ∈ L2(R) must satisfy the following condition: Given an Unconditional
Martingale Difference (UMD) space X with Fourier type r ∈ (1, 2] and l := [1/r] + 1, for all
α ∈ {0, 1} with |α| ≤ l and a > 1, the distributional derivatives Dα ĥ are represented by measurable
functions, and

Sup1≤|ω|<a

(
∑

m∈Z
a2m|α||(Dα ĥ)(amω)|2

)1/2

< ∞. (15)

Remark 4 (Reconstruction formula, see [12]). Suppose that h1, h2 ∈ L1(R) ∩ L2(R) are
admissible and satisfy the condition (15) with

∞

∑
m=−∞

ĥ2(amω)ĥ1(amω) = 1 (16)

for almost all ω ∈ R \ {0}. Then for any f ∈ Lp(R), 1 < p < ∞,

f =
1

2π

∞

∑
m=−∞

(Jam h2) ∗ (Jam h∼1 ) ∗ f , (17)

where the equality holds in the Lp sense. In this paper, Formulas (15)–(17) based on [12] have been
adapted to match with our nomenclature on the wavelet transform definition.

Then we have the following result concerning the continuity of the semi-discrete
wavelet transform.



Mathematics 2021, 9, 522 7 of 15

Note 1. From Definition 6, if f ∈ Lp(R) and h in C0(R) is admissible, then (Lh f )(am, b) is
continuous at (am1 , b1) for all (m1, b1) ∈ Z×R.

6. Main Result 2

Now we give our second main result. That is, we will prove the existence of the limit
of (Wn

h1
f )(am, b) := 1

am
∂n

∂bn (Lh1 f )(am, b) as (am, b) → (0, b1) for any b1 in a neighborhood
of some point x = b0 under the hypothesis that f is of class C∞ in a neighborhood of x = b0,
and where h1 is admissible in C∞

0 (R). Note that am → 0 if and only if m→ −∞. Thus, we
have the following result.

Theorem 2. Suppose h1, h2 ∈ C∞
0 (R) are admissible functions that satisfy the condition (16).

Consider f ∈ Lp(R), 1 < p < ∞. Then f is C∞ in a neighborhood of x = b0 if, and only if for
each non-negative integer n,

lim
(m,b)→(−∞,b1)

(Wn
h1

f )(am, b) exists for each b1 in a neighborhood of x = b0.

Proof. First, suppose f is C∞ in a neighborhood of x = b0. Then by Lemma 3, it follows
that for each non-negative integer n,

lim
(m,b)→(−∞,b1)

(Wn
h1

f )(am, b) exists for each b1 in a neighborhood of x = b0.

This completes the proof of the first part of Theorem 2.
For the second part, we will use similar arguments to the ones given in the proof of

Theorem 1. Suppose then that for each non-negative integer n,

lim
(m,b)→(−∞,b1)

(Wn
h1

f )(am, b) := Sn
h1
(b1)

exists for each b1 in an open neighborhood containing the closed interval
[b0 − B, b0 + B], B > 0.

Then we have the following Lemma (see Appendix A for the proof).

Lemma 5. For any x in (b0 − B, b0 + B), let

v(x) :=
∞

∑
m=−∞

((Jam h2) ∗ (Jam h∼1 ) ∗ f )(x),

and let

vn(x) =
∞

∑
m=−∞

((Jam h2) ∗
∂n

∂xn (Jam h∼1 ) ∗ f )(x).

Then for any non-negative integer n, we have

dn

dxn v(x) = vn(x).

That is, the function v is of class C∞ on (b0 − B, b0 + B).

Now, back to the proof of Theorem 2, for an integer M ≥ 0 and any x in (b0 − B, b0 + B),
define

VM(x) :=
M

∑
m=−M

((Jam h2) ∗ (Jam h∼1 ) ∗ f )(x). (18)

Then by Lemma 5, for any x ∈ (b0 − B, b0 + B),

lim
M→∞

VM(x) = v(x).
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That is , VM → v pointwise as M→ ∞.
On the other hand, from the reconstruction formula given in (17),

f (x) =
1

2π

∞

∑
m=−∞

((Jam h2) ∗ (Jam h∼1 ∗ f )(x),

hence, we have VM → (2π) f as M→ ∞ for almost every x in (b0 − B, b0 + B).
That is, f = (2π)−1v pointwise almost everywhere. Thus, by Lemma 5, the function f

is of class C∞ on (b0 − B
2 , b0 +

B
2 ).

This completes the proof of Theorem 2.

7. Examples

Example 1. First we give an example for Lemma 3. Let Q > 1 be a constant and consider the
logistic function

f (x) =

{
1

1+e−x , x ∈ [−Q, Q]

0, otherwise.

Then f ∈ Lp(R), 1 < p < ∞ and f is of class C∞(R) in any neighborhood of x = b0 with
b0 ∈ (−Q, Q). As an admissible function consider the Haar function h(x). Then supp h = [0, 1],
and hence h ∈ L1(R).

Then from (10),

(Wn
h f )(a, b) =

1
a

∫ 1

0
f (n)(b + ay) h(y) dy

=
1
a

∫ 1
2

0
f (n)(b + ay) dy− 1

a

∫ 1

1
2

f (n)(b + ay) dy

=
1
a2

[
f (n−1)(b + ay)

] 1
2

0
− 1

a2

[
f (n−1)(b + ay)

]1

1
2

=
2 f (n−1)(b + a

2 )− f (n−1)(b)− f (n−1)(b + a)
a2 .

By using the Taylor series with integral remainder

f (n−1)(b + at) = f (n−1)(b) + at f (n)(b) +
1
2

a2t2 f (n+1)(b)+

1
2

∫ b+at

b
(b + at− ξ) f (n+2)(ξ)dξ,

and then taking t = 1
2 and t = 1, we have

2 f (n−1)(b + a
2 )− f (n−1)(b)− f (n−1)(b + a)

a2 → −1
4

f (n+1)(b1) as (a, b)→ (0, b1).

This result matches with (11) and shows that for any positive integer n and any b1 in a
neighborhood of x = b0, a limit of (Wn

h f )(a, b) exists as (a, b)→ (0, b1). Note that despite
h(x) having no derivatives, the result is consistent with Lemma 3. This example suggests
that the results could apply with other wavelets that are not smooth.

According to [23], we can express f (n+1)(x) as a function of f (x). In this case,

lim
(a,b)→(0,b1)

(Wn
h f )(a, b) = −1

4

n+2

∑
k=1

(−1)k−1(k− 1)! S(n + 2, k)[ f (b1)]
k, (19)

where S(n + 2, k) are the Stirling numbers of the second kind.
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In fact, logistic function is widely used in the context of artificial neural networks [24–26]
because of its mathematical properties. Figures 1–5 show the (n + 1)−th derivatives of
f (x) and the n−th derivatives of (−Wh f )(a, b) for n = 0, 1, 2, 6, and 7. We are plotting
(−Wh f )(a, b) to illustrate that graphs in 2D and 3D match. Left sides show 2D plots with
the same behaviour as the 3D plots of the right sides given the regularity of this function,
as is indicated by Lemma 3.
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Table 1 shows some values of (Wn
h f )(a, b) for points b1 = {0, 2, 4, 8} as a→ 0 and for

n = 0, 1, 2, . . . , 8. The limit values are consistent (negative values) with those of Figures 1–5.
For example, for n = 0 and b1 = 0 in Table 1, the value is−0.0625, and the graph of Figure 1
shows a maximum at this point, and moreover, it can be appreciated a consistent behaviour
in Figure 1 as a→ 0.

For n = 1 and b1 = 0, (Wn
h f )(a, b) → 0, and this is consistent with Figure 2. For

n = 2 and b1 moving from 0 to 8, the value of (Wn
h f )(a, b) tends to zero, and the graph

of Figure 3 also shows a vanishing behaviour. As n increases, f (n)(x) and (Wn
h f )(a, b)

have more oscillations (see Figures 4 and 5) but they always keep the regularity, as stated
by Lemma 3.

Table 1. lim(a,b)→(0,b1)(W
n
h f )(a, b) for logistic function.

b1

n 0 2 4 8

0 −0.0625 −0.02624 −0.00441 −0.00008
1 0 0.01999 0.00425 0.00008
2 0.03125 -0.00971 −0.00394 −0.00008
3 0 −0.00519 0.00335 0.00008
4 −0.0625 0.02170 −0.00224 −0.00008
5 0 −0.02660 0.00022 0.00008
6 0.265625 −0.01200 0.00321 −0.00008
7 0 0.13528 −0.00847 0.00007
8 −1.93750 −0.28892 0.01458 −0.00006

Example 2. Now we give an example for Theorem 2 in the case b0 = 0. Let h1 = (1− x2)exp−
x2
2 .

Consider f (x) = |x| if |x| ≤ 1 and f (x) = 0 otherwise. Then, supp f = [−1, 1] and therefore,
f ∈ Lp(R), 1 < p < ∞. Take a > 1, b ∈ R and m ∈ Z.
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Then from (7), (9) and (10),

(Wn
h1

f )(am, b) =
1

am
∂n

∂bn (Lh f )(am, b) =
1

am
(−1)n

(am)n (Lh(n) f )(am, b)

=
1

am
(−1)n

(am)n

∫ b+aL

b−aL
f (x)

1
am h(n)(

x− b
am )dx.

We have, for n = 1,

h(1)1 (x) = (−3x + x3)e−
x2
2

and since h1 is a wavelet with real values,

(W1
h1

f )(am, b) =
−1
a2m

∫ b+am L

b−am L
|x|h(1)( x− b

am )dx.

With a change of variable, y = x−b
am , then x = b + amy, and consequently,

(W1
h1

f )(am, b) =
−1
a2m

∫ L

−L
|b + amy|h(1)(y)dy

=
−1
a2m

[∫ − b
am

−L
(−b− amy)h(1)(y)dy +

∫ L

− b
am
(b + amy)h(1)(y)dy

]

=
−2b
a2m

[
(1− L2)e−

L2
2 − e−

b2

2a2m

]
.

We analyze (W1
h f )(am, b) involving the limit for b→ 0 and am → 0 (i.e. m→ −∞).

Note that, for b = 0,
lim

m→−∞
(W1

h1
f )(am, 0) = 0

while, for b = a2m

lim
m→−∞

(W1
h1

f )(am, am) = −2((1− L2)e−
L2
2 − 1),

consequently, this limit does not exist, and f is not C∞.
Note that in Example 2, we have used a function h1 that does not have compact

support (but it has a fast decay) and the result is consistent with Theorem 2, so the example
shows that the results could apply with wavelets with no compact support.

In Figure 6 we show a plot for f (x) in the left side, and a 3D plot in the right side for
W (1)

h1
f )(am, b) where it is possible to see how the graph loses smoothness and produces

“two peaks” close to b = 0 while am → 0.
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Appendix A. Proof of Lemma 4 and Lemma 5

Proof of Lemma 4. (1) First, we prove that the function In
h f is continuous on R+ × [b0 −

B, b0 + B]×R.
Let (a1, x1, y1) be any point in R+ × [b0 − B, b0 + B]× R. Note that if a1 > 0, then

from (8) and (9), the function In
h f is continuous at (a1, x1, y1).

Now, if a tends to 0, then

lim
(a,x,y)→(0,x1,y1)

(In
h f )(a, x, y) = lim

(a,x,y)→(0,x1,y1)
h(−y)(Wn

h f )(a, x + ay).

Now, since

|(a, x + ay)− (0, x1)|2 = a2 + (x− x1 + ay)2 ≤ a2 + 2
[
(x− x1)

2 + a2y2
]

= a2(1 + 2y2) + 2(x− x1)
2 → 0 as (a, x, y)→ (0, x1, y1),

it follows that

lim
(a,x,y)→(0,x1,y1)

(In
h f )(a, x, y) = h(−y1) lim

(a,x,y)→(0,x1,y1)
(Wn

h f )(a, x + ay)

= h(−y1) lim
(a,b)→(0,x1)

(Wn
h f )(a, b) = h(−y1)Fn

h (x1).

(2) Second, we prove that for fixed x in [b0− B, b0 + B], the function In
h f is in L1(R+ ×R).

Note that for a > 0,

(In
h f )(a, x, y) = h(−y)(Wn

h f )(a, x + ay)

= h(−y)
1
a

∂n

∂xn (Lh f )(a, x + ay)

= h(−y)
1
a
(−1)n

an

(
Lh(n) f

)
(a, x + ay).

(A1)

Now, since h ∈ C∞
0 (R), then h ∈ Lq(R) for any 1 ≤ q < ∞. So, choose q so that

1
p + 1

q = 1. Thus, since f ∈ Lp(R), we have from Hölder’s inequality,

|(In
h f )(a, x, y)| ≤ |h(−y)| a−2−n+ 1

q ‖ f ‖p ‖h(n)‖q. (A2)

Now, let

(Gn
h f )(a, y) =

{∣∣(In
h f )(a, x, y)

∣∣ if 0 < a ≤ 1

|h(−y)| a−2−n+ 1
q ‖ f ‖p ‖h(n)‖q if a > 1.

Then
∣∣(In

h f )(a, x, y)
∣∣ ≤ (Gn

h f )(a, y) for all (a, y) ∈ R+ ×R.
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Hence,∫
R+

∫
R
|(Gn

h f )(a, y)|dyda

=
∫ 1

0

∫
R
|(Gn

h f )(a, y)|dyda +
∫ ∞

1

∫
R
|(Gn

h f )(a, y)|dyda

=
∫ 1

0

∫
R
|(In

h f )(a, x, y)|dyda +
∫ ∞

1

∫
R
|h(−y)| |a|−2−n+ 1

q ‖ f ‖p ‖h(n)‖q dyda.

Suppose now that supp h ⊂ [−d, d] for some d > 0. Then

∫ ∞

0

∫
R
|(Gn

h f )(a, y)|dyda =
∫ 1

0

∫ d

−d
|(In

h f )(a, x, y)|dyda

+ ‖ f ‖p ‖h(n)‖q

(∫ d

−d
|h(−y)|dy

)(∫ ∞

1
a−2−n+ 1

q da
)

.
(A3)

Since the function In
h f (·, x, ·) is continuous on [0, 1] × [−d, d], and∫ ∞

1
a−2−n+ 1

q da < ∞ for any non-negative integer n and 1 ≤ q < ∞, it follows that

Gn
h f ∈ L1(R+ ×R). Hence, (In

h f )(·, x, ·) ∈ L1(R+ ×R).
(3) Finally, note that for n = 0, a > 0 and x ∈ (b0 − B, b0 + B), we have from (A1),

∂

∂x
(I0

h f )(a, x, y) = (I1
h f )(a, x, y).

Hence, since (I0
h f )(·, x, ·) ∈ L1(R+ × R), ∂

∂x (I
0
h f )(a, x, y) exists and∣∣(I1

h f )(a, x, y)
∣∣ ≤ (G1

h f )(a, y) for all (a, y), where (G1
h f )(a, y) is integrable,

it follows that
d

dx

∫
R+

∫
R
(I0

h f )(a, x, y)dyda exists, and

d
dx

∫
R+

∫
R
(I0

h f )(a, x, y)dyda =
∫
R+

∫
R

∂

∂x
(I0

h f )(a, x, y)dyda.

That is,
d

dx
w(x) = (I1

h f )(x).

By using the same argument we get,

dn

dxn w(x) =
d

dx

∫
R+

∫
R
(In−1

h f )(a, x, y)dyda = (In
h f )(x),

for any non-negative integer n. This completes the proof of Lemma 4.

Proof of Lemma 5. (1) Since f ∈ Lp(R), and h1 ∈ C∞
0 (R),

(Wn
h1 f )(am, b) =

1
am (

∂n

∂bn (Jam h∼1 ) ∗ f )(b)

then (Wn
h1 f )(am, b) in C∞ for any b in R. Furthermore, the limit

lim
(m,b)→(−∞,b1)

(Wn
h1 f )(am, b) = Sn

h1
(b1),

exists for any b in [b0 − B, bo + B].
The function (Wn

h1 f )(am, b) converges uniformly to Sn
h1
(b) in [b0 − B, bo + B] and

(Wn
h1 f )(am, b) is a bounded function for m < 0. Consequently, it is uniformly bounded.
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So, there exist Cn
W > 0 such that

|(Wn
h1 f )(am, b)| < Cn

W ,

for b in [b0 − B, bo + B] and any m < 0.
(2) Next we prove that for x in [b0 − B, b0 + B], the series

∞

∑
m=−∞

((Jam h2) ∗
∂n

∂xn (Jam h∼1 ) ∗ f )(x)

converges uniformly. For this purpose, they are divided into three parts, as follows,

∞

∑
m=−∞

|((Jam h2) ∗
∂n

∂xn (Jam h∼1 ) ∗ f )| =(
−M−1

∑
m=−∞

+
−M

∑
m=−M

+
∞

∑
m=M+1

)
|((Jam h2) ∗

∂n

∂xn (Jam h∼1 ) ∗ f )|.
(A4)

First consider m a negative integer.
Since supp h2 ⊂ [−d, d], then supp h2(

x−·
am ) ⊂ [x− amd, x + amd]. Let M > 0 be such

that for m < −M, [x− amd, x + amd] ⊂ [b0 − B, b0 + B], then amd ≤ B
2 .

((Jam h2) ∗
∂n

∂bn (Jam h∼1 ) ∗ f )(x) =
∫ ∞

−∞
h2(

x− b
am )

1
am

∂n

∂bn (Jam(h∼1 ) ∗ f )(b)db

=
∫ ∞

−∞
h2(

x− b
am )Wn

h1
(am, b)db

For m < −M we have the following estimation,

∣∣∣∣∫ ∞

−∞

am

am h2(
x− b

am )Wn
h1
(am, b)db

∣∣∣∣ ≤ Cn
W am

∫ ∞

−∞

1
am |h2(

x− b
am )|db = Cn

W am‖h2‖1.

This gives the uniform convergence of the series for m < −M.
Now, if m is a positive integer,

((Jam h2) ∗
∂n

∂bn (Jam h∼1 ) ∗ f )(x) =
∫ ∞

−∞

1
am h2(

x− b
am )

(−1)n

amn

[
(Jam h(n)1 )∼ ∗ f

]
(b)db

From Remark 2 and Young’s inequality it follows that,∣∣∣∣∫ ∞

−∞

1
am h2(

x− b
am )

(−1)n

amn

[
(Jam h(n)1 )∼ ∗ f

]
(b)db

∣∣∣∣ ≤ 1
amn ‖h2‖1 ‖h

(n)
1 ‖1 ‖ f ‖p

It gives the uniform convergence of the series for m > M.
Consequently, the series (A4) converge uniformly and absolutely.
(3) Finally, since the series (A4) converge uniformly, then it is possible to derivate

term by term. Hence,

d
dx

∞

∑
m=−∞

((Jam h2) ∗ (Jam h∼1 ) ∗ f )(x) =
∞

∑
m=−∞

((Jam h2) ∗
∂

∂x
(Jam h∼1 ) ∗ f )(x)

That is,

d
dx

v(x) =
∞

∑
m=−∞

((Jam h2) ∗
∂

∂x
(Jam h∼1 ) ∗ f )(x) = v1(x).
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Hence, for any non-negative integer n,

dn

dxn v(x) =
∞

∑
m=−∞

((Jam h2) ∗
∂n

∂xn (Jam h∼1 ) ∗ f )(x) = vn(x).

This proves Lemma 5.
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