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Abstract: The objective of this work is to study finite element methods for approximating the solution
of convection equations on surfaces embedded in R3. We propose the discontinuous Galerkin
(DG) isogeometric analysis (IgA) formulation to solve convection problems on implicitly defined
surfaces. Three numerical experiments shows that the numerical scheme converges with the optimal
convergence order.
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1. Introduction

Surface partial differential equations (SPDEs) arise in natural sciences and applied
areas, such as minimal surface equation, Willmore flow, transport of surfactants along
interfaces in multiphase fluids [1], and lipid interactions in cell membranes [2]. In this
paper, we consider the DG-IgA methods for the following model problem:

∇Γ · (βu) + γu = f , (1)

where ∇Γ· = divΓ denotes the surface divergence, Γ is a smooth two-dimensional surface
without boundary embedded in R3. β = (b1, b2, b3) is the advective velocity with bi ∈
W1

∞(Γ), γ ∈ L∞(Γ) is reaction coefficient. We call this model problem the convection
equation on surface Γ. The problem (1) has a unique solution u ∈ H(div, Γ) satisfying∫

Γ udσ = 0, where dσ is surface measure. Moreover, for source term f ∈ L2(Γ) we have∫
Γ f dσ = 0.

To ensure the existence and uniqueness of a solution u ∈ H1(Γ) to the model problem
(1.1), we adopt the following hypothesis: There exists a positive constant γ0 such that

γ(x) +
1
2
∇Γ · β(x) = (c0(x))2 ≥ γ0, f or all x ∈ Γ. (2)

Finite element methods of SPDEs have been extensively developed. G. Dziuk [3]
first used the finite element method for solving the surface elliptic problem. A. Bonito
and J. E. Pasciak [4] designed and analyzed multigrid algorithms for the Laplace-Beltrami
operator on a smooth and closed surface. DG methods for solving the first-order hyperbolic
problems were defined in [5–8]. Since DG methods have well-known stability and local
conservation in numerical application of partial differential equation problems [9,10] and
capture solution blow-ups, it is natural to extend the DG approximation to PDEs on
surfaces or manifolds. Ref. [11] extended the discontinuous Galerkin (DG) methods to the
first-order hyperbolic and advection-dominated problems on surfaces.

Mathematics 2021, 9, 497. https://doi.org/10.3390/math9050497 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0329-2390
https://doi.org/10.3390/math9050497
https://doi.org/10.3390/math9050497
https://doi.org/10.3390/math9050497
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9050497
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/5/497?type=check_update&version=2


Mathematics 2021, 9, 497 2 of 12

IgA has been introduced in [12] as a new tool for solving numerically PDEs with
the complicated geometric domains, in particular, surfaces. DG-IgA methods have been
applied for approximating solutions of elliptic problems on surfaces [13,14]. Ref. [15]
developed DG-IgA numerical schemes for solving problems on segmentations with gaps.
Ref. [16] studied NURBS-based isogeometric analysis for the computation of flows about
rotating components. In [17], a new stabilized symmetric Nitsche method was proposed
for enforcement of Dirichlet boundary conditions for elliptic problems in Cut-IgA. The
remainder of the paper is organized as follows: First, we introduce some preliminaries
about IgA and discrete NURBS finite space V(h). Then we derive the DG-IgA scheme of
convection problem (1.1). Finally, we present three numerical experiments to illustrate the
discrete formulation.

2. Model Problem and Discretization
2.1. Differential Operators on Surfaces

Let us consider a two-dimensional surface Γ ⊂ R3 defined in the physical space R3.
Assume that the surface is characterized by a geometrical mapping from a parameter space
Γ̂ ⊂ R2. Let X ∈ C2(Γ̂,R3) be a local parameterization of θ ∈ Γ̂, where the vector-valued
independent variable θ = (θ1, θ2) is called parametric coordinate. Indeed, X defines the
geometrical mapping as follows:

X : Γ̂→ Γ ⊂ R3, θ → X(θ).

To define surface gradient, we introduce the Jacobi matrix J(θ) = (Jij)3×2 as

J(θ) =
[

∂X
∂θ1

,
∂X
∂θ2

]
.

So, the metric tensor G(θ) = (gij)2×2 is represented by

gij(θ) = J(θ)T J(θ) =
∂X(θ)

∂θi

∂X(θ)

∂θj
, i, j = 1, 2. (3)

The inverse of G(θ) is denoted by G−1(θ) = (gij)2×2. The tangential or surface
gradient is given by

∇Γu(X(θ)) = G−1(θ)
du(X(θ))

dθ
.

So, we can deduce the tangential or surface divergence. For υ is a C1 vector field on Γ,
we have

∇Γ · υ =
1√
|G|

(
∂

∂θ1
,

∂

∂θ2

)
(
√
|G|G−1 JTυ). (4)

Remark that the vector field υ may not be tangential to surface Γ. However, the
2-dimensional vector G−1 JTυ is the projection of υ in parametric coordinate θ, which is a
tangent vector field of Γ. So, the definition of surface divergence is well-posed.

Let L2(Γ) denote the usual L2−space on the surface Γ with norm

‖ f ‖L2(Γ) =

(∫
Γ

f 2dσ

) 1
2
.

Furthermore, we use standard notations Wm
p (Γ) and Hm(Γ) for Sobolev spaces on Γ

with norm and semi-norm
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‖ f ‖p
Wm

p (Γ) =
m

∑
k=0
‖ f ‖p

Wk
p(Γ)

and ‖ f ‖Wm
p (Γ) = ‖Dm

Γ f ‖Lp(Γ),

‖ f ‖2
Hm(Γ) =

m

∑
k=0
‖ f ‖2

Hk(Γ) and ‖ f ‖Hk(Γ) = ‖D
k
Γ f ‖L2(Γ).

To present the weak form of problem (1), we introduce the Stokes theorem on surface
Γ. Let υ be a C1 vector field on surface Γ, q ∈ C1(Γ), then the following identity holds:∫

Γ
(υ · ∇Γq + q∇Γ · υ)dσ =

∫
∂Γ

q υ · nds.

2.2. Isogeometric Analysis

To apply the IgA methodology of the problem (1), the domain Γ is partitioned into
some closed sub-patches such that

Γ =
N⋃

i=1

Γi with Γi ∩ Γj = ∅, i f i 6= j.

We denote the set of sub-patches as S(Γ) = {Γi}N
i=1.

Without loss of generality, we simply assume a parametric domain D̂ of unit length,
i.e., D̂ = [0, 1]2. For each patch Γi, we associate the knot vectors V i on D̂, which defines
a partition T̂ i

h,D̂
= {K̂m}Mi

m=1, where K̂m are 2-dimensional closed elements. We refer to

T̂ i
h,D̂

as the parametric mesh of patch Γi and denote T̂h =
⋃N

i=1 T̂ i
h,D̂

. Any patch Γi can be
represented by a parametrization map as follows

Φi : D̂ → Γi, Φi(x̂) =
Ni

∑
j=1

C(i)
j B̂(i)

j (x̂) = x ∈ Γi,

where C(i)
j are the control points and B̂(i)

j are B-spline basis functions or NURBS of degree

k [18], Ni denotes the number of basis functions B̂(i)
j on patch Γi.

We obtain the partition Th,Γi
= {Km}Mi

m=1 of the patch Γi, whose vertices are the images
of the vertices of the corresponding parametric partition T̂ i

h,D̂
by the map Φi. Now we can

construct the partition of the domain Γ, denoted by Th as follows,

Th(Γ) =
N⋃

i=1

Th,Γi
.

The set of all the edges of partition Th is denoted by E as follows,

E =
⋃

K1,K2∈Th

(∂K1 ∩ ∂K2).

We denote the faces of all patches as F defined by

F =
⋃

i
{e ∈ E : e ⊂ ∂Γi}.

Let hK and he denote the size of element K ∈ Th and the length of the face e ∈ E
respectively. hΓi = max

K∈Γi
{hK} is the mesh size of patch Γi. The global mesh size of partition

Th is defined as
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h = max
1≤i≤N

{hΓi}.

We assume that the shape of the elements is regular and quasi-uniform, i.e., he ∼ h
and hK ∼ hΓi .

Next, we define the broken space on the physical domain Γ associated with Th by
using the introduced push-forward function Ψi(x) = Φ−1

i (x) = x̂, for any û ∈ Hs(D̂),

u(x) = û(Ψi(x)), x ∈ Γi.

Now we can define the broken Sobolev space Hk(Th):

Hk(Th) = {v ∈ L2(Γ) : v|Γi ∈ Hk(Γi), i = 1, 2, · · ·, N}.

To apply DG method to problem (1), we introduce the jump [uh] of uh on Fij. For
uh ∈ H1(Th), using the notation ui

h = uh|Γi , we define

[uh] = ui
h · ni + uj

h · nj, on Fij,

where ni denotes the unit normal vector of Γi on Fij pointing exterior to Γj.

2.3. DG-IgA Discretization

Next, we introduce the finite element space associated with the partition Th. In general,
the basis function B(i)

j (x) of IgA on the patch Γi are pushed forward from the basis function

B̂(i)
j (x̂) of the parametric domain D̂ by considering a composition with Ψi = Φ−1

i , i.e., for

any basis function B̂(i)
j ,

B(i)
j (x) = B̂(i)

j (Ψi(x)).

The DG finite element space Vh is defined by

Vh =
{

uh ∈ L2(Th) : uh|Γi ⊂ Span
{

B(i)
j , j = 1, · · · , Ni, i = 1, · · · , N

}}
.

The DG-IgA approximation is formulated as follows: Find uh ∈ Vh such that

ah(uh, vh) = F(vh), ∀vh ∈ Vh, (5)

where

ah(uh, vh) = ∑
K∈Th

∫
K
(−β · ∇Γvh + γvh)uhdσ + ∑

e∈E

∫
e
{uh}[βvh]ds +

∫
e

ηe

2
[uh][vh]ds,

F(vh) = ∑
K∈Th

∫
K

f vhdσ.

where ηe is the stability parameter, defined as

ηe =


1
2
(|β(i) · ni|+ |β(j) · nj|), β(i) = β(j),

|β · n|, otherwise,

for e = ∂Ki ∩ ∂Kj.
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The bilinear map ah(uh, vh) can be modified. Indeed, by using the continuity of β and
the function of Vh in each patch, i.e., [vh]|∂K\∂Γi

= 0 and [βvh]|∂K\∂Γi
= 0 for any vh ∈ Vh,

we have

∑
e∈E

∫
e
[βvh]{uh}ds +

∫
e

ηe

2
[uh][vh]ds

= ∑
Fij∈F

∫
Fij

[βvh]{uh}ds +
∫

Fij

ηe

2
[uh][vh]ds.

Similarly, we can define the outflow faces F+. So, the bilinear map ah(uh, vh) can be
modified as follows

ah(uh, vh) = ∑
K∈Th

∫
K
(−β · ∇Γvh + γvh)uhdσ + ∑

Fij∈F

∫
Fij

[βvh]{uh}ds +
∫

Fij

ηe

2
[uh][vh]ds.

We can derive the discrete coercivity, stability and consistency of above numerical
scheme with a similar technique in [19]. Due to the discontinuity of β, it needs a few skills
to prove the discrete coercivity. So there exists a unique discrete solution uh ∈ Vh satisfying
DG-IgA scheme (5). Here we briefly show the a priori error result without detailed proof.
We introduce the dual or adjoint weak form: Find ω ∈ Hs(Th) such that

∑
K∈Th

(ω,∇ · (βv) + γv)K − ∑
Fij∈F

([βv], {Πhω})Fij + ∑
Fij∈F

(
ηe

2
[v], [ω])Fij = (uh −Πhu, v),

for all v ∈ V(h). With the above adjoint weak form, inverse inequality and the approxima-
tion of the interpolant operator, we can prove the following result.

Theorem 1. Let u and uh denote the solutions of (1) and (5), respectively. Assume that u|K ∈
Hk+1(K), ω ∈ Hk+1(K), ∀K ∈ Th. Then we have

‖u− uh‖L2(Γ) ≤ Chk+1‖u‖Hk+1(Γ).

3. Numerical Experiments

In this section, we present some numerical experiments of convection problems on
surface. Numerical examples are presented for a sphere and a quarter of a cylinder.

3.1. Numerical Experiment 1

We first consider the model problem (1) on the unit sphere

∇Γ · (βu) + γu = f , in Γ

subject to the compatibility condition
∫

Γ f dσ = 0, where β = [1, 1, 1]T and γ = 1. We select
the source function f such that the exact solution is u = sin(θ) sin(φ), where (φ, θ) are the
spherical coordinates.

We divide the unit sphere Γ into 6 patches. For each patch, the knot vector is taken
as [0, 0, 0, 1, 1, 1]× [0, 0, 0, 1, 1, 1] to represent the geometry of each patch. We generate the
mesh by refining the parameter element of each patch, whose mesh size is denoted by h.
We show the patches and the uniform meshes of the sphere for h = 1/4 in Figure 1(Left).
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Figure 1. Sphere Case. (Left): The patches and meshes; (Right): Numerical solution.

The numerical L2 errors and convergence results are given in Table 1 for k = 1, 2
and 3, respectively. In Figure 2, we present the convergence histories of L2 errors. These
results show that the IgA-DG method yields O(hk+1) convergent solution. We present the
numerical solution of convection problem (1) on the sphere in Figure 1(Right).

Table 1. Errors and convergence order of sphere case for k = 1, 2 and 3.

Degree k Mesh Size h Error Convergence Order

1 1/2 9.934 × 10−2 —
1/4 1.926 × 10−2 2.366
1/8 4.561 × 10−3 2.078

1/16 1.128 × 10−3 2.016
1/32 2.813 × 10−4 2.004

2 1/2 1.580 × 10−2 —
1/4 1.656 × 10−3 3.255
1/8 1.799 × 10−4 3.202

1/16 2.202 × 10−5 3.031
1/32 2.748 × 10−6 3.002

3 1/2 2.840 × 10−3 —
1/4 3.006 × 10−4 3.240
1/8 1.210 × 10−5 4.635

1/16 6.826 × 10−7 4.148
1/32 4.150 × 10−8 4.040

3.2. Numerical Experiment 2

Here we continue to consider the model problem on the surface of torus

∇Γ · (βu) + γu = f , in Γ,

subject to the compatibility condition
∫

Γ f dσ = 0, where β = [1, 1, 1]T and γ = 1. The torus
is the surface

Γ = {(x, y) ∈ (−3, 3)2, z ∈ (−1, 1) : r2 = z2 + (
√

x2 + y2 − R2)}
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with r = 1 and R = 2. We take coordinates (φ, θ) as

φ = arctan
( y

x

)
, θ = arctan

(
z√

x2 + y2 − R

)
,

and select the source function f such that the exact solution is u = sin(θ) sin(3φ).

10-210-1100

h
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10-4

10-3

10-2

10-1

100
L

2
- 

E
rr

or

k=1
k=2
k=3

Figure 2. Error convergence result for sphere case.

We divide the torus into 8 patches. For each patch, we take the knot vector as
[0, 0, 0, 1/2, 1/2, 1, 1, 1]× [0, 0, 0, 1, 1, 1] to give the geometrical representation. We plot the
patches and the uniform meshes of the torus for h = 1/4 in Figure 3(Left).
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Figure 3. Torus Case. (Left): The patches and meshes; (Right): Numerical solution.

The numerical L2 errors and convergence rates of this problem for k = 1, 2 and
3 are shown in Table 2. Table 3 indicate that the rates are also O(hk+1) for L2 norm.
Figure 4 shows the convergence history of errors. Finally, we plot the numerical solution
of convection problem (1) on torus in Figure 3(Right).
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Table 2. Errors and convergence orders for the torus for k = 1, 2 and 3.

Degree k Mesh Size h Error Convergence Order

1 1/2 2.2825 × 100 —
1/4 3.5096 × 10−1 2.7013
1/8 7.2088 × 10−2 2.2835

1/16 1.7199 × 10−2 2.0674
1/32 4.2620 × 10−3 2.0127

2 1/2 9.4780 × 10−1 —
1/4 1.2046 × 10−1 2.9760
1/8 9.5761 × 10−3 3.6530

1/16 1.1486 × 10−3 3.0595
1/32 1.4448 × 10−5 2.9910

3 1/2 0.3400 × 10−1 —
1/4 5.4673 × 10−2 2.6368
1/8 9.7914 × 10−4 5.8032

1/16 4.6835 × 10−5 4.3859
1/32 2.7729 × 10−6 4.0781

10-210-1100

h

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

L
2
-E

rr
or

k=1
k=2
k=3

Figure 4. Error convergence result for torus case.

3.3. Numerical Experiment 3

Next, we solve on the surface of a square of the cylinder the model problem

∇Γ · (βu) + γu = f , in Γ,

u = g, on Γ−,

where γ = 1. The domain Γ is the surface of a quarter of the cylinder, shown in Figure 5. In
contrast to the case of sphere, this problem needs the boundary condition Γ− determined
by β. Then, writing (r = 1, θ, z) to denote the system of cylindrical coordinate, we impose
an appropriate boundary condition g for u and source function f so that the exact solution
is u = sin(zθ).

We consider the model problem on the surface of a square of the cylinder with
continuous and discontinuous coefficient β.

(1) We take continuous coefficient as β = [−1, 1, 1]T . We divide the cylinder into 9
patches. For each patch, we take the knot vector as [0, 0, 0, 1, 1, 1]× [0, 0, 1, 1] to give the
geometrical representation. Similarly, we plot the patches and the uniform meshes of the
cylinder for h = 1/4 in Figure 5(Left).
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Figure 5. Cylinder Case. (Left): The patches and meshes; (Right): Numerical solution.

Table 3. Errors and convergence order of cylinder case for k = 1, 2 and 3.

Degree k Mesh Size h Error Convergence Order

1 1/2 7.832 × 10−3 —
1/4 1.912 × 10−3 2.0344
1/8 4.748 × 10−4 2.0097

1/16 1.185 × 10−4 2.0023
1/32 2.962 × 10−5 2.0004

2 1/2 4.5649 × 10−4 —
1/4 5.7310 × 10−5 2.9937
1/8 7.2113 × 10−6 2.9905

1/16 9.0619 × 10−7 2.9924
1/32 1.1364 × 10−7 2.9954

3 1/2 1.7089 × 10−5 —
1/4 1.5120 × 10−6 3.4986
1/8 1.0073 × 10−7 3.9079

1/16 6.4755 × 10−9 3.9594
1/32 4.1048 × 10−10 3.9796

We present numerical L2 errors and convergence rates of this problem for k = 1, 2 and
3 in Table 3. Table 3 indicate that the rates are also O(hk+1) for L2 norm. Figure 6 shows
the convergence history of errors. Finally, we plot the numerical solution of convection
problem (1) on cylinder in Figure 5(Right).
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Figure 6. Error convergence result for cylinder case.

(2) We consider the discontinuous advective velocity β as

β(1) = β(4) = [−1; 1; 1],

β(2) = β(3) = [−2; 4; 3],

where the index (i) is the patch number. Observe that the source function is discontinuous
across the patches according to the choice of β.

According to the discontinuity of β, we divide the cylinder into 4 patches. For
each patch, we take the knot vector as [0, 0, 0, 1, 1, 1]× [0, 0, 1, 1] to give the geometrical
representation. Similarly, we plot the patches and the uniform meshes of the cylinder for
h = 1/4 in Figure 7(Left), where patch 1 and patch 4 are painted blue, and patch 2, 3 are
painted yellow.
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Figure 7. Cylinder Case. (Left): The patches and meshes; (Right): Numerical solution.

The numerical L2 errors and convergence rates of this problem for k = 1, 2 and
3 are shown in Table 4. Table 4 indicate that the rates are also O(hk+1) for L2 norm.
Figure 8 shows the convergence history of errors. Finally, we plot the numerical solution
of convection problem (1) on cylinder in Figure 7(Right).
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Table 4. Errors and convergence orders for the cylinder for k = 1, 2 and 3.

Degree k Mesh Size h Error Convergence Order

1 1/2 1.774 × 10−2 —
1/4 4.277 × 10−3 2.0531
1/8 1.063 × 10−3 2.0085
1/16 2.656 × 10−4 2.0006
1/32 6.640 × 10−5 2.0002

2 1/2 1.7036 × 10−3 —
1/4 1.9959 × 10−4 3.0935
1/8 2.4770 × 10−5 3.0104

1/16 3.1024 × 10−6 2.9971
1/32 3.8885 × 10−7 2.9961

3 1/2 1.0065 × 10−4 —
1/4 8.1947 × 10−6 3.6186
1/8 5.3064 × 10−7 3.9489

1/16 3.3827 × 10−8 3.9715
1/32 2.1381 × 10−9 3.9838

10-210-1100

h

10-10

10-8

10-6

10-4

10-2

100

L
2
-E

rr
or

k=1
k=2
k=3

Figure 8. Error convergence result for cylinder case.

4. Conclusions

In this paper, we present the new penalty discontinuous Galerkin (DG) isogeometric
analysis(IgA) methods to solve convection problems with continuous or discontinuous
coefficient on implicitly defined surfaces. For further purpose, it is worthy studying the
stability and error analysis of this method and more practical problems on surfaces.
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