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Abstract: After the recent establishment of the Sustainable Development Goals and the Agenda 2030,
the sustainable design of products in general and infrastructures in particular emerge as a challenging
field for the development and application of multicriteria decision-making tools. Sustainability-
related decision problems usually involve, by definition, a wide variety in number and nature
of conflicting criteria, thus pushing the limits of conventional multicriteria decision-making tools
practices. The greater the number of criteria and the more complex the relations existing between
them in a decisional problem, the less accurate and certain are the judgments required by usual
methods, such as the analytic hierarchy process (AHP). The present paper proposes a neutrosophic
AHP completion methodology to reduce the number of judgments required to be emitted by the
decision maker. This increases the consistency of their responses, while accounting for uncertainties
associated to the fuzziness of human thinking. The method is applied to a sustainable-design problem,
resulting in weight estimations that allow for a reduction of up to 22% of the conventionally required
comparisons, with an average accuracy below 10% between estimates and the weights resulting from
a conventionally completed AHP matrix, and a root mean standard error below 15%.

Keywords: multicriteria decision-making tools; analytic hierarchy process; DEMATEL; neutrosophic
logic; fuzzy decision making; sustainable design

1. Introduction

Optimal decision-making has been an active field of scientific research since the 1970s.
Ever since then, efforts have been made to develop a variety of mathematical multicriteria
decision-making tools (MCDM) tools that cover a wide range of decisional problems.
One of the most recent decision-making challenges is the sustainable design of products.
The Sustainable Development Goals adopted by the United Nations in 2015 advocate
for a profound shift in the conventional design practices. Based on the functionality and
economic performance of the products, current practices usually fall short in addressing
social and environmental impacts along the product’s life cycle. In particular and given
the vast recognized effects that the construction sector has both on the environment and
on the society [1], efforts have been made during the last years to optimize the response
of construction-related products, such as bridges, buildings, and other infrastructures,
on the different dimensions of sustainability. Studies have been conducted that aim to
optimize the economic costs of both the construction [2,3] and the maintenance [4,5] of
different types of infrastructures. Regarding the environmental impacts of structures,
there has been increasing interest in reducing particular environmental effects, such as
their carbon footprint [6,7] or their embodied energy [8], as well as in improving their
overall environmental performance along with their life cycle on the basis of score-based
standardized methods [9,10]. Only recently have studies been published on the analysis of
social life-cycle impacts of infrastructures [11,12].
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Although being an essential requirement, the separate assessment of the individual
sustainability dimensions is still not sufficient for the sustainable design of a product, as
it must only be addressed by assuming a holistic perspective, taking into consideration
each and every of its dimensions simultaneously [13]. Given the different nature of the
economic, environmental, and social criteria involved in finding the most sustainable
solution to a design problem, the sustainable design of products emerges as a major field
for the application of MCDM tools. Among the most popular MCDM methods is the
so-called analytic hierarchy process (AHP), defined by Saaty [14]. The AHP method is
conceived to aid the decision maker in structuring complex problems where multiple and
conflicting criteria are involved. The method is based on determining, for each pair of
criteria, how much more relevant one criterion is with respect to the other in order to make
the final decision. AHP has been widely applied in assessing design problems in a variety
of fields, such as energy management [15], transport management [16], or maintenance of
infrastructures [17], among many others.

The need for a holistic approach to address sustainable-design problems relies on
the complex and often intricate relations existing between the different criteria involved
in the final decision [18]. However, Zadeh [19] posed that our ability to emit precise and
meaningful statements decreases to the same extent that the complexity of the problem to
be addressed increases. Consequently, given that AHP bases the assessment results on the
subjective judgments emitted by the decision maker, the use of this method for assessing
sustainable-design problems presents two major limitations that need to be resolved.

On the one hand, the use of AHP as defined by Saaty has been the object of severe
criticism, as it presumes the judgments emitted by the decision maker to be certain. That
assumption is not consistent with the rather diffuse nature of human thinking [20], in which
vagueness increases with the complexity of the problem to be addressed. In such contexts,
the fuzzy sets theory [21] has emerged as a powerful tool to mathematically model the
vagueness associated to human reasoning. In contrast to classical sets theory, where the
membership of an element in a set is always expressed in binary terms, the fuzzy logic
allows one to handle with partial membership grades. A continuous membership function
is a defined value in the real unit interval. Thus defined, the fuzzy sets theory establishes a
practical baseline for modeling the non-probabilistic uncertainties of human thinking and
has been therefore widely applied in decision-making problems in recent years [22–24].

In an attempt to further enhance the proven, but limited advantages of the fuzzy sets
theory for modeling vague cognitive processes, other sets theories have been introduced
over recent times. Among them, the neutrosophic sets theory introduced by Smaran-
dache [25] constitutes the most advanced generalization of the fuzzy sets theory existing
to date. Neutrosophic logic is based on the definition of three independent membership
functions that represent the truth, the indeterminacy, and the falsehood of a statement. In
doing so, the neutrosophic sets theory allows one to model not only imprecise statements,
but also to deal successfully with paradoxes or statements that are inconsistent or based
on incomplete information. From a practical point of view, only in very recent years the
neutrosophic sets theory has reached a sufficient level of development to be applied in the
resolution of real scientific and engineering problems. In recent times, the neutrosophic
logic has been successfully applied to solve decision-making problems related to a vari-
ety of fields, such as investment strategies [26], supplier selection [27], or the design of
bridges [13], among others.

In addition, besides the aforementioned limitation, the accuracy of the AHP method
for weight estimation is also hindered by the size of the comparison matrix to be filled by the
decision maker. In fact, this is not a limitation of the method itself but of the human capacity
to process a huge amount of information. This was recognized by Saaty himself [28], who
established seven as the maximum number of criteria that a person is able to evaluate with
a certain consistency using his method. This is indeed a serious limitation when it comes
to addressing the sustainable performance of a product, as sustainable assessments tend to
rely on more than seven criteria. In recent times, research has been conducted on deriving
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AHP criteria weights from incomplete comparison matrices. Incomplete matrices allow
one to reduce the number of comparisons needed by the classical AHP, namely n(n − 1)/2
(n being the number of criteria), to a more affordable number of judgments. This has also
the advantage that the decision maker is not obliged to complete all entries of the matrix if
they lack the knowledge to fill some of them.

Many of the matrix completion methods are based on the idea first suggested by
Harker [29] of repairing the incomplete comparison matrix by maximizing its resulting
consistency. Completion methods based on the consistency optimization have been devel-
oped from a classical perspective [30,31] as well as from the fuzzy logic [32]. Zhou [33]
criticized the results derived from the use of such maximizing methods to be ideal and
nonrealistic. To overcome that problem, Zhou suggested a DEMATEL-based completion
method to restore AHP comparison matrices to their original state (whether it is consistent
or not) and not to their ideal one. This method allows for the completion of AHP matrices
maintaining the original consistency derived from the decision maker by analyzing the
indirect relations existing between two criteria to derive the unknown entries.

The present paper aims to bridge the abovementioned existing gaps of the classical
AHP method when coping with decision problems that involve a great amount of complexly
related criteria, such as sustainable-design problems. Herein, a neutrosophic extension of
the DEMATEL-based AHP matrix completion method is proposed to reduce the number
of required comparisons to be made by the decision maker, while including in the decision
problem the implicit nonprobabilistic information derived from the judgments emitted by
him/her.

The rest of the paper is divided into the following sections: Section 2 presents relevant
materials and methods: Section 2.1 introduces the classical AHP method, Section 2.2
describes the criteria weight derivation out of a neutrosophic AHP comparison matrix, and
Section 2.3 presents a method for the completion of incomplete comparison matrices in
a neutrosophic environment. Section 3 describes a sustainable-design decision problem
as a case study for the application of the proposed neutrosophic completion technique.
In Section 4, the obtained results are presented. Finally, in Section 5, conclusions on the
performance of the proposed technique are drawn.

2. Materials and Methods
2.1. Preliminaries on Classical AHP Method

The classical AHP method, as defined by Saaty [14], allows one to derive the weights
between alternatives or criteria involved in a decision-making process. The method requires
an expert to complete a comparison matrix, where each element aij represents how much
more relevant alternative i is with respect to alternative j for making the final decision
according to expert’s knowledge of the problem. The matrix is filled with numerical values
from the so-called Saaty’s fundamental scale, which allows for the conversion of semantic
values into real numbers. The fundamental scale is a discrete set of integers that ranges
from 1 to 9, with 1 meaning that both alternatives are equally relevant, and 9 that the first
alternative is extremely more important than the second one.

Built this way, the classical AHP comparison matrix A = {aij} results in a square and
reciprocal matrix, i.e., aij = 1/aji ∀i,j ∈ {1,...,n}, where n is the number of alternatives or
criteria to be compared. It should be noted as well that aii = 1 ∀i ∈ {1,...,n}. The weights
of each alternative are then obtained as the elements of the eigenvector associated to the
greatest eigenvalue λmax of the comparison matrix A.

AHP method provides meaningful results if the comparison matrix is filled consis-
tently. Saaty [14] proposed a mathematical way to evaluate the consistency of the matrix
through the consistency index CI, defined as:

CI = (λmax − n)/(n − 1) (1)
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2.2. Analytic Hierarchy Process in a Neutrosophic Environment

Here, the application of the neutrosophic logic on the derivation of AHP-based criteria
weights is exposed. First, some preliminaries on the neutrosophic logic and the basic
neutrosophic arithmetic operations are presented. Then, the construction of a neutrosophic
AHP comparison matrix that accounts for the nonprobabilistic uncertainties associated to
the expert’s emitted judgments is described.

2.2.1. Neutrosophic Logic Fundamentals

Neutrosophic sets theory is a generalization of the fuzzy sets theory meant to model
more cognitive information than the fuzzy logic, because it can handle indeterminacies
and neutralities [34]. A neutrosophic set A in a finite universe set X is defined as:

A = {〈 x, tA(x), iA(x), fA(x)〉|x ∈ X} , (2)

where tA(x), iA(x), and fA(x) correspond to the truth, indeterminacy, and falsity functions of
the element x ∈ X. Truth, indeterminacy, and falsity membership functions are defined in
the unit interval [0, 1] and are independent, i.e., they satisfy:

0 ≤ tA(x) + iA(x) + fA(x) ≤ 3 (3)

A single-valued triangular neutrosophic number a = 〈(a1, a2, a3); ta, ia, fa〉 on the real
number set is described with the following membership functions [35]:

µa(x) =


(x− a1)

(a2 − a1)
·ta, f or a1 ≤ x < a2

(a3 − x)
(a3 − a2)

·ta, f or a2 ≤ x ≤ a3

0, otherwise

(4)

νa(x) =


(a2 − x + ia·(x− a1))

(a2 − a1)
, f or a1 ≤ x < a2

(x− a2 + ia·(a3 − x))
(a3 − a2)

, f or a2 ≤ x ≤ a3

0, otherwise

(5)

λa(x) =


(a2 − x + fa·(x− a1))

(a2 − a1)
, f or a1 ≤ x < a2

(x− a2 + fa·(a3 − x))
(a3 − a2)

, f or a2 ≤ x ≤ a3

0, otherwise

(6)

The basic arithmetic operations between two single-valued triangular neutrosophic
numbers a = 〈(a1, a2, a3); ta, ia, fa〉 and b = 〈(b1, b2, b3); tb, ib, fb〉 are defined as [36,37]:

k·a = 〈(ka1, ka2, ka3); 1− (1− ta)
k, (ia)

k, ( fa)
k〉 (7)

ak = 〈(a1
k, a2

k, a3
k); ta

k, 1− (1− ia)
k, 1− (1− fa)

k〉 (8)

a + b = 〈(a1 + b1, a2 + b2, a3 + b3); ta + tb − tatb, iaib, fa fb〉 (9)

a× b = 〈(a1b1, a2b2, a3b3); tatb, ia + ib − iaib, fa + fb − fa fb〉 (10)

a÷ b = 〈
(

a1

b3
,

a2

b2
,

a3

b1

)
;

ta

tb
,

ia − ib
1− ib

,
fa − fb
1− fb

〉 (11)

It should be noted that the division operation is only valid if ta ≤ tb, ia ≥ ib, fa ≥ fb,
tb 6= 0, and ib, fb 6= 1.
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2.2.2. On the Construction of the Neutrosophic AHP Comparison Matrix

To incorporate the nonprobabilistic uncertainties associated to the judgments emitted
by the decision maker, a neutrosophic AHP comparison matrix is constructed following
the methodology proposed by Navarro et al. [13], where each element of the matrix aij is a
single-valued neutrosophic number aij = 〈(lij,mij,uij); tij, iij, fij〉 ∀i,j ∈ {1,...,n}. The diagonal
elements of the comparison matrix are defined as aii = 〈(1,1,1); 0,0,0〉 ∀i ∈ {1,...,n}. It is
important to note that the reciprocal elements of the matrix are defined as aji = 1/aij =
〈(1/uij,1/mij,1/lij); tij, iij, fij〉 ∀i,j ∈ {1,...,n} [38].

The method requires from the decision maker to fill a conventional AHP matrix,
together with the self-confidence degree, evaluated on the interval [0, 1], expressed by the
expert on their comparisons. Considering these inputs, the central values mij of each matrix
element aij correspond directly to the judgments emitted by the decision maker expressed
according to the fundamental scale introduced by Saaty. The lower and upper bounds
{lij, uij} of each triangular number are expressed in terms of the Saaty’s scale as well. These
bounds can be obtained as:{

lij, uij
}
=
{

mij − ∆
(
cij
)
, mij + ∆

(
cij
)}

, (12)

where mij ± ∆(cij) represents the value of the extended Saaty’s fundamental scale after
subtracting/adding a certain number of steps ∆(cij) to the central value mij. The extended
fundamental scale is a discrete set that adds to Saaty’s fundamental scale its reciprocal
values in an inverse order, thus ranging from 1/9 to 9. ∆(cij) is defined as a stepwise
function that depends on the certainty cij emitted by the decision maker when expressing
judgment aij (Table 1).

Table 1. Steps on Saaty’s extended scale [8].

Certainty cij Steps ∆(cij) on Saaty’s Extended Scale

cij = 1 0
0.8 ≤ cij < 1 1

0.6 ≤ cij < 0.8 2
0.4 ≤ cij < 0.6 3
0.2 ≤ cij < 0.4 4
0 ≤ cij < 0.2 5

cij = 0 6

Obtaining the neutrosophic parameters {tij, iij, fij} expressing the reliability of each
judgment aij emitted by the decision maker is now presented. The truth parameter tij can
be derived from the expert’s assessment credibility [39]. Here, the expert’s credibility is
related to the relevant experience that the decision maker expresses on the fields involved
in the decision-making problem [40]:

tij = (1 + ∑p
m=1 Km)/(p + 1), (13)

where the expertise of the decision maker is addressed here in terms of p coefficients
defined in the interval [0, 1]. Four coefficients are considered here to be relevant for
determining the expert’s knowledge related to the sustainable design of infrastructures,
measuring the expert’s experience in structural design, as well as in environmental, social,
and economic assessments.

The indeterminacy iij can be obtained from the complementary of the certainty values
cij expressed by the decision maker for each element of the comparison matrix:

iij = 1− cij (14)
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At last, the parameter representing the falsehood fij of the expert’s statements is
derived from the consistency of his/her resulting comparison matrix and is common for
every statement:

fij = CI/(RI·CRlim), (15)

where RI is a random index defined by Saaty [14] that reflects the coherency of a comparison
nxn matrix filled with random values (Table 2), and CRlim is the limiting consistency ratio
for a comparison matrix to be considered acceptably consistent. For more than 5 criteria,
CRlim = 10%.

Table 2. Steps on Saaty’s extended scale [8].

Number of criteria n 3 4 5 6 7 8 9
Random Index RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45

2.2.3. Derivation of Weights from a Neutrosophic Comparison Matrix

To derive the eigenvalue-based weights from an AHP matrix so as proposed by the
classical method is nonpractical in fuzzy environments [41]. Buckley [42] presented an
alternative procedure to derive weights from fuzzy comparison matrices that has been
widely used since its publication. However, given that the extended Saaty’s fundamental
scale is not equispaced, fuzzy weights derived from the application of Buckley’s method
turn out to become unreasonably high and asymmetric definition ranges [43]. As a response
to the abovementioned limitation, Enea and Piazza [44] proposed a procedure to derive
acceptably constrained fuzzy ranges for the weights resulting from the application of
Buckley’s method. This constriction method, originally defined for fuzzy numbers, was
first successfully applied by Navarro [13] to determine weight boundaries in a neutrosophic
environment. The method consists of the following two mathematical programming
models to derive the lower and upper bounds (wl,i, wu,i) of a neutrosophic weight w as:

wl,i = min


(

∏n
j=1 aij

)1/n

∑n
k=1

(
∏n

j=1 akj

)1/n

, (16)

wu,i = max


(

∏n
j=1 aij

)1/n

∑n
k=1

(
∏n

j=1 akj

)1/n

 (17)

Both models are subject to following conditions:

akj ∈
[
lkj, ukj

]
∀j > k (18)

ajk = 1/akj ∀j < k (19)

ajj = 1 ∀j ∈ {1, . . . , n} (20)

2.2.4. Deneutrosophication Process

As a result from the above, weights wi for each of the decision criteria i are derived
in the form of triangular neutrosophic numbers, namely wi = 〈(wl,i, wm,i, wu,i); ti, ii, fi〉.
A so-called deneutrosophication technique is required to transform those weights into
scalar numbers. Sodenkamp et al. [39] proposed a procedure for single-valued neutro-
sophic numbers based on two subsequent steps, which was extended for its application
on generalized neutrosophic numbers by Navarro et al. [13]. Firstly, the neutrosophic
weights are converted into triangular fuzzy numbers. The transfer function converting
the neutrosophic membership functions 〈µi(x),νi(x),λi(x)〉 into a single fuzzy membership
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function ηi(x) is obtained as the distance between each point contained in the triad and the
point corresponding to the neutrosophic point of optimum reliability 〈1,0,0〉:

ηi(x) = 1−
√
{(1− µi(x))2 + νi(x)

2 + λi(x)2}/3 ∀x ∈ [ wl,i; wu,i] (21)

The second step for obtaining the scalar weights consists in defuzzifying the fuzzy
weights. Chu and Tao [45] proposed a defuzzification procedure based on obtaining an
area index, which results from the rectangular area between the origin of the considered
coordinate system (0, 0) and the centroid point (CoGx, CoGy) of the fuzzy weight. The final
scalar weights Wi are obtained as:

Wi =
CoGx(wi)·CoGy(wi)

∑n
k=1 CoGx(wk)·CoGy(wk)

, (22)

where n is the number of criteria involved in the decision-making process.

2.3. Completion Method for Neutrosophic AHP Comparison Matrices

In this section, a methodology is presented to derive neutrosophic AHP comparison
matrices out of an incomplete, conventional comparison matrix. The resulting synthetic
matrix shall repair the incomplete matrix to its original consistency condition. First, the
fundamentals of the classical DEMATEL technique are exposed. Then, a DEMATEL-based
completion method on a neutrosophic environment is presented.

2.3.1. The Classical DEMATEL Technique

The MCDM DEMATEL method is conceived to convert complex causal relations
between elements of any type into a structured and intelligible visual model, where
factors are classified into effect and cause categories [46]. The classical method consists of
four steps:

Step 1. Generation of a direct influence matrix DIM. Similar to the AHP method,
experts are first asked to fill a comparison matrix. Here, the influence that factor i has on
factor j is estimated using a four-levels scale of integers ranging from 0 to 3, each score
representing “no influence”, “low influence”, “medium influence”, and “high influence”,
respectively. For each expert k, a non-negative influence matrix DIMk = {zij}, where zij is the
influence score assigned in accordance with the abovementioned scale. Diagonal elements
are set to zero. The final direct influence matrix DIM is obtained as the average of the
matrices DIMk obtained from the experts.

Step 2. Matrix normalization. The direct influence matrix DIM is now normalized to
NIM by dividing each matrix element zij by s, defined as:

s = max

max
1≤i≤n

n

∑
j=1

zij, max
1≤j≤n

n

∑
i=1

zij

 (23)

Step 3. Generation of the total relation matrix TRM. By definition, a total influence
relation matrix TRM = {gij} can be obtained by aggregating direct and indirect effects as:

TRM = NIM + NIM2 + NIM3 + . . . + NIM∞ = NIM(I − NIM)−1, (24)

where I is represents the identity matrix.
Step 4. Derivation of the influential factors Ri and Ci. The influential factors Ri and

Ci can be obtained as the sum of each row and column of the TRM, respectively. For a
particular factor i, depending on whether Ri − Ci is positive or negative, it can be obtained
if factor i falls in the cause or in the effect group, respectively.
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2.3.2. Completion Method for Neutrosophic AHP Matrices

Given that DEMATEL method is conceived to reveal the non-evident relations existing
between a set of factors and considering that both DEMATEL and AHP are based on
the analysis of comparison matrices, Zhou [33] recently suggested a DEMATEL-inspired
technique for restoring incomplete AHP comparison matrices to their initial state and
consistency. Zhou’s method was limited to handling scalar comparison matrices.

A DEMATEL-based method is introduced here for repairing incomplete AHP com-
parison matrices A* = {aij} defined in a neutrosophic environment, i.e., where elements aij
are defined by triangular neutrosophic numbers aij = 〈(lij,mij,uij); tij, iij, fij〉 ∀i,j ∈ {1,...,n}.
The basic inputs for the problem are an incomplete, conventional comparison matrix AHP
M* = {mij}, together with an incomplete certainty matrix C* = {cij}. It shall be noted that
cij is known only if mij is known. The construction of the complete neutrosophic matrix
consists of several steps, as follows:

First, the missing central values mij of the incomplete matrix M* are obtained following
the technique proposed by Zhou et al. [33]:

Step 1.1. Generation of DIM. Given an incomplete scalar AHP matrix M* = {mij},
compute DIM = {zij}, where zij = mij if mij is known and zij = 0 if mij is unknown.

Step 1.2. Normalization of DIM. Compute the normalized influence matrix NIM by
dividing each matrix element zij by s, as in classical DEMATEL (see Equation (23)).

Step 1.3. Compute total relation matrix TRM = {gij} as in classical DEMATEL (see
Equation (24)).

Step 1.4. Estimate a complete and reciprocal pairwise comparison matrix M’ = {m’ij},
considering the relations revealed between factors by the total relation matrix TRM = {gij}:

gij/m′ij = gji/m′ji (25)

Taking into consideration that the resulting synthetic comparison matrix M’ containing
the central elements shall be reciprocal and considering the factors relation presented in
Equation (25), each missing entry m*ij shall be derived.

Once the central elements are obtained, the upper and lower bounds {lij, uij} of each
element aij shall be derived. For the known values of the input AHP matrix, the lower and
upper bounds {lij, uij} shall be obtained according to Equation (12). The estimation of the
missing bounds {l*ij, u*ij} consists of several steps:

Step 2.1. Two auxiliary square matrices L* = {lij} and U* = {uij} are constructed, where
{lij, uij} = {0, 0} if mij is unknown.

Step 2.2. Normalization of L* and U*. Compute the normalized influence matrices by
dividing each matrix element {lij, uij} as follows:

lij

max
(

max
1≤i≤n

∑n
j=1 lij, max

1≤j≤n
∑n

i=1 lij

) ,
uij

max
(

max
1≤i≤n

∑n
j=1 uij, max

1≤j≤n
∑n

i=1 uij

)
 (26)

Step 2.3. Compute total relation matrices TRML = {gL
ij} and TRMU = {gU

ij} as in
classical DEMATEL (see Equation (24)).

Step 2.4. The missing values {l*ij, u*ij} shall then be derived as:{
l∗ij, u∗ij

}
=
{√

gL
ij/gL

ji,
√

gU
ij /gU

ji

}
, ∀j ∈ {1, . . . , n} and i < j (27)

{
l∗ij, u∗ij

}
=
{√

gU
ij /gU

ji ,
√

gL
ij/gL

ji

}
, ∀j ∈ {1, . . . , n} and i > j (28)

The neutrosophic parameters {t*ij, i*ij, f*ij} of the missing entries shall reflect the
reliability of the estimates. The expert’s credibility when handling complete neutrosophic
AHP matrices is considered equal for every matrix entry according to Equation (13). Here,
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the expert’s credibility t*ij associated to the repaired missing elements. a*ij is proposed to
be penalized by the number of missing judgments in the original AHP matrix M* = {mij}.
The greater the number of missing elements, the less information is available to predict
{l*ij, m*ij, u*ij}, and consequently the less reliable these estimates will be. The following
formula is proposed for determining the missing truth membership function parameters t*ij:

t∗ij = tij·
(

1− 2·n∗
n·(n− 1)

)
, (29)

where n* is the number of total missing judgments and n is the number of criteria involved
in the decision-making process. From Equation (29) it follows that the expert’s credibility
when assessing aij is zero if no elements are known (i.e., n* = n·(n − 1)/2), and equals to
their average credibility if no element is unknown (i.e., n* = 0).

The indeterminacy i*ij of a missing entry is expected to be related to the certainty that
the decision maker expresses when making comparisons that involve criteria i and j:

i∗ij =
[
∑n

k=1(1− cik) + ∑n
k=1

(
1− ckj

)]
/2n (30)

The indeterminacy iij for the remaining entries shall be obtained following Equation (14).
At last, the falsity membership function parameter fij depends on the inconsistencies
revealed by the expert’s judgments when filling the comparison matrix. The consistency
of the responses shall only be evaluated from a complete matrix. Thus, it is proposed to
determine the average expert’s incoherency fij from the synthetically completed matrix M’
including the central values mij. The inconsistency f*ij associated to the estimated missing
values shall then be calculated as:

f ∗ij = fij +
(
1− fij

)
· 2·n∗
n·(n− 1)

, (31)

where n* is the number of total missing judgments and n is the number of criteria involved
in the decision-making process. Although relying on a similar penalization idea as the
definition of t*ij, Equation (31) has been slightly modified so that when no elements are
known (i.e., n* = n·(n − 1)/2), the falsity parameter f*ij becomes 1, while if every entry is
known, f*ij = fij ∀i,j ∈ {1,...,n}.

3. Problem Definition

The neutrosophic matrix completion method presented here is applied to a sustainability-
based decision-making design problem. The problem consists of deriving the weights of the
criteria considered relevant to find the most sustainable-design solution for a prestressed
concrete bridge deck located in a coastal region. In such chloride-laden environments,
the maintenance demand of concrete structures along their service lives can result in en-
vironmental, social, and economic impacts comparable in magnitude to those derived
from the construction of the infrastructure itself. To address the sustainability life-cycle
performance of alternative bridge-deck designs in aggressive environments, a set of nine
decision criteria is proposed (Table 3). Two of them are related to the economic dimen-
sion of sustainability, and imply considering, on the one hand, the costs derived from
the construction of the infrastructure, and on the other hand, the costs that result from
maintenance and decommissioning of the structure.
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Table 3. Sustainability criteria relevant for bridge design in coastal regions [13].

Sustainability
Dimension Criterion Comments

Economy C1—Construction costs Costs associated to materials production and installation,
machinery, and workers

C2—Maintenance and demolition costs Costs associated to materials production and installation,
machinery, and workers involved in maintenance activities

Environment
C3—Damage on human health Emission of pollutants causing respiratory diseases, carcinogenics

C4—Damage on ecosystems Land occupation, emission of pollutants
C5—Resource depletion Depletion of natural resources resulting from extraction activities

Society

C6—Employment generation Accounts for gender equity, unemployment, safety, and fair salary

C7—Development of local economies Economic investments derived from material production activities
and machinery rental

C8—Impacts on infrastructure users Accessibility and drivers’ safety
C9—Impacts on local communities Public opinion considering aesthetics and disturbances

The life-cycle impacts of an infrastructure shall be assessed in terms of the three
environmental criteria on which the so-called life cycle assessment endpoint methodologies,
such as ReCiPe [47], are based at the present. The first of these criteria accounts for
the damage that the emissions derived from the different production and construction
processes have on the human health. Such impact is usually measured in DALY (disability
adjusted life years), representing the lifetime that a person is disabled due to disease
derived from pollutants. The second environmental criterion considers the damage to
the ecosystem. Such impact is usually measured as the local species loss over time at
a particular location because of emissions and land occupation resulting from human
activities. The third environmental aspect to be considered is the negative contribution of
production and construction processes to natural resources scarcity. This can be measured
in terms of the additional costs required for future mineral and fossil resource extraction.

The social dimension of sustainability can be addressed by means of four different
criteria, which are defined after a hotspot analysis following the UNEP/SETAC guide-
lines [48] for social life cycle assessments. The first social criterion to be accounted for is the
generation of employment and the conditions of such employment. This is measured in
terms of effective working hours required by every construction and maintenance activity
developed throughout the complete life cycle of the structure. When generating one hour of
work, it is necessary to take into consideration the conditions of the employment generated,
bearing in mind the safety of the work generated, if there we are contributing or not to
gender discrimination, if such employment is fairly paid, or if the employment is generated
in a region with high or low unemployment rates. The second social criterion considers the
contribution to the economic development of regions, benefitting alternatives that imply an
economic input to poorer areas. When choosing a design alternative in terms of sustainabil-
ity, its associated maintenance needs shall be accounted for, as a bridge-deck solution that
requires constant maintenance will affect both the accessibility of the locations connected by
the infrastructure, as well as the driving safety of the users. At last, maintenance activities
conducted on the infrastructure also imply negative impacts on the aesthetics of the site
where the structure is located, as well as a series of externalities affecting the comfort of the
local community, such as the generation of dust, noise, and vibrations.

The assessment of the relevance that each of the nine abovementioned criteria shall
take when making a decision on the most sustainable-design alternative for a particular
bridge design problem shall be done by means of the AHP method. Such methodology
requires an expert to fill a 9× 9 comparison matrix, which implies emitting 9·(9− 1)/2 = 36
pairwise comparisons, some of them particularly difficult to conduct consistently attending
to the different and complex nature of the criteria described above. The matrix completion
methodology proposed here aims to provide a tool to reduce the number of judgments
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required by the decision maker without jeopardizing the overall consistency of their
responses. Additionally, the incomplete comparison matrix is translated into a neutrosophic
environment to take into account the nonprobabilistic uncertainties of the nonmissing
matrix entries.

However, the goodness of the results obtained after applying the matrix completion
method proposed here depends on the number of missing entries from the original AHP
matrix. Here, an initially complete and consistent AHP matrix serves as the basis to
determine how the number of missing judgments affects the obtained criteria weights.
The complete baseline AHP matrix M is provided in Table 4, together with the certainty
expressed by the expert for each comparison (Table 5).

Table 4. Baseline complete AHP comparison matrix M.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 6 1/5 1/6 1/5 4 1 1/4 1/3
C2 1/6 1 1/7 1/7 1/6 1/3 1/3 1/6 1/7
C3 5 7 1 1/2 1 5 5 2 2
C4 6 7 2 1 1 7 6 2 5
C5 5 6 1 1 1 5 4 1 1
C6 1/4 3 1/5 1/7 1/5 1 1/4 1/6 1/6
C7 1 3 1/5 1/6 1/4 4 1 1/5 1/3
C8 4 6 1/2 1/2 1 6 5 1 2
C9 3 7 1/2 1/5 1 6 3 1/2 1

Table 5. Baseline complete certainty matrix C.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 0.80 0.80 0.90 0.90 0.60 0.60 0.70 0.20
C2 0.8 1 0.80 0.90 0.90 0.70 0.70 0.80 0.20
C3 0.8 0.8 1 0.70 0.80 0.70 0.50 0.50 0.50
C4 0.9 0.9 0.7 1 0.90 0.80 0.80 0.90 0.90
C5 0.9 0.9 0.8 0.9 1 0.70 0.70 0.70 0.90
C6 0.6 0.7 0.7 0.8 0.7 1 0.80 0.80 0.80
C7 0.6 0.7 0.5 0.8 0.7 0.8 1 0.50 0.50
C8 0.7 0.8 0.5 0.9 0.7 0.8 0.5 1 0.60
C9 0.2 0.2 0.5 0.9 0.9 0.8 0.5 0.6 1

4. Results

Here, results are investigated on how the proposed neutrosophic completion method
for incomplete comparison matrices performs depending on the number of missing entries.

4.1. Scalar Weights Derived from the Baseline Complete Comparison Matrix

To serve as the basis for comparison, the results obtained following the neutrosophic
AHP technique presented in Section 2.2 are briefly presented. Table 6 summarizes the
profile of the expert, together with the resulting neutrosophic characterization parameters
derived according to Equations (13) to (15).

Figure 1 presents the triangular neutrosophic truth: indeterminacy and falsehood
membership functions associated to the criteria weights. Additionally, Figure 1 shows the
scalar weights that result after applying the deneutrosophication technique presented in
Equations (21) and (22).
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Table 6. Neutrosophic profile of the baseline decision maker.

Expert’s Profile Defining Parameters Value

Knowledge degree in design of infrastructures 1.00
Expertise in economic assessments 0.60

Expertise in environmental assessments 0.80
Expertise in social life-cycle assessments 0.40

Expert’s credibility. Truth membership parameter t 0.76
Expressed mean self confidence 0.74

Expert’s certainty. Indeterminacy membership parameter i 0.26
Consistency ratio of the comparison matrix 0.06

Expert’s inconsistency. Falsehood membership parameter f 0.59
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4.2. Completion Results

The performance of the proposed neutrosophic completion technique is addressed
considering four different scenarios for the completeness degree of the baseline matrix. In
each scenario, a different number of entries is randomly selected and assumed missing.
The number of missing entries is 3 for scenario 1, 5 for the second scenario, 8 for the third
and 12 for the last one. This implies, respectively, a reduction of 8, 14, 22, and 33% of
the number of comparisons required to be completed by the expert when following the
AHP method conventionally. One thousand simulations are conducted for each scenario
to generate unique incomplete matrices. For each simulation, the methodology presented
in Section 2.3 is followed to generate complete neutrosophic matrices from which scalar
criteria weights are derived.

Table 7 shows the obtained results for each of the nine criteria addressed. It can be
observed that the maximum deviation of the mean estimated weights versus the base-
line weights is 10.5% and is obtained for criterion C7 (development of local economies).
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This deviation corresponds to the scenario where 12 entries of the baseline matrix are
considered missing.

Table 7. Mean scalar criteria weights obtained for each scenario.

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9

Baseline 0.049 0.019 0.179 0.262 0.168 0.024 0.046 0.152 0.101
3 missing 0.051 0.019 0.170 0.267 0.177 0.026 0.048 0.155 0.088
5 missing 0.052 0.019 0.169 0.263 0.178 0.026 0.048 0.155 0.091
8 missing 0.053 0.018 0.168 0.257 0.178 0.026 0.049 0.156 0.096
12 missing 0.053 0.018 0.164 0.249 0.178 0.027 0.051 0.159 0.101

Max. deviation from
baseline 8.4% 8.7% 8.1% 4.9% 6.3% 10.2% 10.5% 4.5% 0.1%

Figure 2 shows the scalar weights of each criterion (C1 to C9) resulting from the
baseline complete matrix, together with the 5th and 95th percentile of the estimations
resulting from scenarios 1 and 4. For the sake of simplicity, results of scenarios 2 and 3 have
not been plotted, as they are enveloped by results of scenario 4. It can be observed that,
despite the good fitting of the mean, the dispersion of the results increases significantly
with the number of missing entries.

Mathematics 2021, 9, 496 13 of 19 
 

 

deviation corresponds to the scenario where 12 entries of the baseline matrix are consid-

ered missing.  

Table 7. Mean scalar criteria weights obtained for each scenario. 

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9 

Baseline 0.049 0.019 0.179 0.262 0.168 0.024 0.046 0.152 0.101 

3 missing 0.051 0.019 0.170 0.267 0.177 0.026 0.048 0.155 0.088 

5 missing 0.052 0.019 0.169 0.263 0.178 0.026 0.048 0.155 0.091 

8 missing 0.053 0.018 0.168 0.257 0.178 0.026 0.049 0.156 0.096 

12 missing 0.053 0.018 0.164 0.249 0.178 0.027 0.051 0.159 0.101 

Max. deviation 

from baseline 
8.4% 8.7% 8.1% 4.9% 6.3% 10.2% 10.5% 4.5% 0.1% 

Figure 2 shows the scalar weights of each criterion (C1 to C9) resulting from the base-

line complete matrix, together with the 5th and 95th percentile of the estimations resulting 

from scenarios 1 and 4. For the sake of simplicity, results of scenarios 2 and 3 have not 

been plotted, as they are enveloped by results of scenario 4. It can be observed that, despite 

the good fitting of the mean, the dispersion of the results increases significantly with the 

number of missing entries. 

 

Figure 2. Dispersion of the results for scenarios 1 (3 random entries of the baseline matrix missing) 

and 4 (12 random entries of the baseline matrix missing). 

To measure the observed dispersion, the relative standard deviation is calculated for 

each scenario and criterion. The relative standard deviation is defined as the ratio between 

the standard deviation and the mean of a set of estimations. Table 8 shows the relative 

standard deviation (RSD) for each criterion and scenario. It can be observed that the dis-

persion increases as the number of nonmissing entries decreases. 

Table 8. Relative standard deviation of the criteria weights obtained for each scenario. 

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9 

3 missing 5.25% 7.41% 3.26% 4.22% 3.76% 6.62% 3.29% 3.22% 6.75% 

5 missing 7.11% 9.92% 5.58% 6.64% 5.26% 8.54% 5.31% 4.88% 8.29% 

8 missing 10.45% 14.63% 9.39% 9.89% 7.93% 13.14% 8.63% 8.23% 9.07% 

Figure 2. Dispersion of the results for scenarios 1 (3 random entries of the baseline matrix missing)
and 4 (12 random entries of the baseline matrix missing).

To measure the observed dispersion, the relative standard deviation is calculated
for each scenario and criterion. The relative standard deviation is defined as the ratio
between the standard deviation and the mean of a set of estimations. Table 8 shows the
relative standard deviation (RSD) for each criterion and scenario. It can be observed that
the dispersion increases as the number of nonmissing entries decreases.

In view of the results, to evaluate the overall goodness of the proposed completion
model, the root mean square error (RMSE) is applied. RMSE is used here to evaluate
the differences between the predicted estimates and the baseline weights. The root mean
square error of the weight estimate of a particular criterion i is defined as:

RMSEi =

√√√√∑N
n=1

(
w∗i, n − wi

)2

N
, (32)
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where N = 1000 is the sample size, wi is the scalar baseline weight of criterion i, and w*i,n
is each of the 1000 weight estimates for criterion i for the incompleteness scenario under
evaluation. Here, RMSE obtained for each criterion is normalized by the value of the
corresponding baseline criterion. Figure 3 shows the normalized RMSE (N-RMSE) derived
for each criterion and for each of the four analyzed scenarios. It can be observed that the
mean N-RMSE, falling close to 11% when 22% of the required initial judgments are missing,
increases with the number of missing entries. Such an increase is in accordance with the
increasing dispersion of the estimates detected for scenarios 3 and 4.

Table 8. Relative standard deviation of the criteria weights obtained for each scenario.

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9

3 missing 5.25% 7.41% 3.26% 4.22% 3.76% 6.62% 3.29% 3.22% 6.75%
5 missing 7.11% 9.92% 5.58% 6.64% 5.26% 8.54% 5.31% 4.88% 8.29%
8 missing 10.45% 14.63% 9.39% 9.89% 7.93% 13.14% 8.63% 8.23% 9.07%

12 missing 17.22% 23.00% 15.83% 15.57% 12.60% 19.44% 15.81% 12.95% 13.87%
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4.3. Comparison of the Results Considering a Different Expert

Here, the proposed matrix completion method is applied to a different set of inputs
corresponding to a new decision maker (expert 2 henceforth) in order to confirm the
goodness of the results presented above for the baseline expert. For the sake of simplic-
ity, the inputs for this second analysis are provided in Appendix A. Tables A1 and A2
show, respectively, the expert’s complete comparison matrix and their confidence degree
expressed for each of the opinions. Table A3 summarizes the neutrosophic characterization
parameters corresponding to the second expert. The scalar criteria weights obtained for
this second expert are given in Table A4, where weights of the baseline decision maker are
also given for comparative purposes.

Again, 1000 randomly generated incomplete comparison matrices are constructed out
of the second baseline matrix, assuming the same four incompleteness scenarios than those
defined above. Table 9 shows the mean scalar criteria weights estimated when 3, 5, 8, and
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12 of the entries of the complete comparison matrix are missing. The mean estimations are,
on average, quite similar to those obtained for the first expert. It can be observed that the
maximum deviation for the second expert is 10.1%, close to the 10.5% obtained for the first
decision maker, although associated to different a criterion.

Table 9. Second expert’s mean scalar criteria weights obtained for each scenario.

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9

Baseline 0.027 0.060 0.204 0.214 0.237 0.076 0.048 0.074 0.061
3 missing 0.025 0.071 0.225 0.210 0.230 0.074 0.043 0.070 0.052
5 missing 0.025 0.070 0.220 0.209 0.233 0.074 0.043 0.071 0.055
8 missing 0.025 0.068 0.214 0.206 0.238 0.074 0.043 0.072 0.059
12 missing 0.024 0.065 0.209 0.202 0.242 0.073 0.045 0.076 0.065

Max. deviation from
baseline 10.1% 6.9% 2.6% 5.8% 2.3% 3.1% 6.6% 2.6% 6.4%

Max. deviation
observed for expert 1 8.4% 8.7% 8.1% 4.9% 6.3% 10.2% 10.5% 4.5% 0.1%

Table 10 presents the relative standard deviation of the obtained weights resulting
from the second expert’s synthetical matrices. Similar dispersion results are observed
when comparing with the first expert analyzed; although, in general terms, results from
this second analysis are slightly more dispersed. However, the maximum absolute differ-
ence obtained in terms of the relative standard deviation is 4.5% and corresponds to the
dispersion of the weight estimation of criterion C1 when 12 input entries are missing.

Table 10. Second expert’s relative standard deviation of the criteria weights obtained for each scenario.

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9

3 missing 7.34% 7.08% 5.86% 5.43% 6.61% 5.34% 6.35% 6.90% 9.06%
5 missing 9.55% 9.49% 8.14% 7.53% 8.26% 8.07% 8.73% 8.35% 10.21%
8 missing 13.56% 13.85% 11.85% 10.86% 10.31% 12.67% 12.88% 11.07% 11.48%

12 missing 21.73% 22.79% 17.63% 17.54% 14.69% 21.64% 19.19% 15.62% 15.21%

The normalized RMSE is obtained for this second analysis. The mean N-RMSE values
for each of the four incompleteness scenarios are presented in Table 11. For comparative
purposes, the N-RMSE are included in Table 11 as well. Again, when 22% of the judgments
are missing (8 entries), the obtained N-RMSE still falls beneath 15%, irrespective of the
configuration of the randomly generated incomplete matrix.

Table 11. Second expert’s normalized RMSE resulting in the weight estimation of each criterion for
different incompleteness degrees.

Scenario 3 5 8 12

Expert 1 0.072 0.087 0.117 0.180
Expert 2 0.105 0.112 0.133 0.191

5. Conclusions

A neutrosophic completion technique is proposed in this paper for the derivation
of AHP weights out of incomplete, higher-order comparison matrices. Such technique is
useful when dealing with decision-making design problems, where a significant number
of criteria are involved. The completion technique in this work has been applied to address
a construction-related sustainability-based design problem, namely the evaluation of the
sustainability life-cycle performance of different concrete bridge-deck alternatives located
in a coastal region.
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Results show that the maximum observed difference between the criteria weights
obtained from a complete 9 × 9 AHP matrix and the estimated weights obtained from
synthetically completed neutrosophic matrices is 10% on average for the worst case ana-
lyzed, namely when 33% of the required pairwise comparisons are missing. On the other
hand, the dispersion measured in terms of the relative standard deviation is between 10
and 15%, when 22% of the entries are missing. From the analysis of the estimates derived
from the 1000 randomly generated repaired comparison matrices, it is shown that for 14%
of the entries missing, a N-RMSE of 11% is obtained, while when 22% of the entries are
missing, the N-RMSE is still below 15%. Such results have been validated with the inputs
of a second decision maker, where similar values have been obtained. Results require,
however, further validation by analyzing a greater set of alternative decision makers. It
shall also be noted that the restored comparison matrices might still result in poor consis-
tency. A future line of research relates to the investigation and establishment of adequate
neutrosophic consistency thresholds to allow for the acceptance/rejection of artificially
completed comparison matrices.

In conclusion, the present paper proposes a powerful tool for reducing the number
of judgments required to face MCDM problems based on AHP criteria weights deriva-
tion. Given that the proposed method has been validated with 1000 randomly generated
synthetical matrices, the conclusions are valid irrespective of the entries missing. This is
particularly advantageous when a great number of criteria are involved in the decision-
making problem, as the decision maker is allowed to neglect those comparisons where he
feels less confident about. In addition, working in a neutrosophic environment allows the
designer to capture the nonprobabilistic uncertainties associated to the vagueness of human
thinking, thus accounting for the valuable information derived from the consideration of
the judgments’ reliability associated to the decision maker’s credibility, inconsistencies,
and indeterminacies.
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Appendix A

Input data regarding the second decision maker are provided here. Table A1 shows
the complete AHP comparison matrix of the second expert that serves as the basis for the
exposed validation analysis.

Table A2 shows the complete certainty matrix of the second expert that serves as the
basis for the exposed validation analysis.

Table A3 shows the neutrosophic characterization parameters of the second decision maker.
Table A4 shows the resulting scalar weights derived from the second analysis after

applying the deneutrosophication technique described in this paper.
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Table A1. Baseline complete AHP comparison matrix M for expert 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 1/3 1/6 1/6 1/6 1/3 1/4 1/4 1/4
C2 3 1 1/2 1/5 1/4 1/2 3 1/2 1/2
C3 6 2 1 1 1/2 3 7 6 6
C4 6 5 1 1 1/2 3 7 6 6
C5 6 4 2 2 1 2 6 5 5
C6 3 2 1/3 1/3 1/2 1 2 1/2 1/2
C7 4 1/3 1/7 1/7 1/6 1/2 1 1/2 1/2
C8 4 2 1/6 1/6 1/5 2 2 1 1
C9 4 2 1/6 1/6 1/5 2 2 1 1

Table A2. Baseline complete certainty matrix C for expert 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 0.8 0.5 0.7 0.9 0.8 0.8 0.6 0.2
C2 0.8 1 0.7 0.8 0.6 0.6 0.4 0.7 0.7
C3 1/2 2/3 1 0.8 0.8 0.7 0.8 0.7 0.6
C4 0.7 0.8 0.8 1 0.8 0.3 0.4 0.5 0.6
C5 0.9 0.6 0.8 0.8 1 0.2 0.7 0.6 0.4
C6 0.8 0.6 0.7 0.3 0.2 1 0.8 0.8 0.4
C7 0.8 0.4 0.8 0.4 0.7 0.8 1 0.5 0.5
C8 0.6 0.7 0.7 0.5 0.6 0.8 0.5 1 0.4
C9 0.2 0.7 0.6 0.6 0.4 0.4 0.5 0.4 1

Table A3. Neutrosophic profile of expert 2.

Expert’s Profile Defining Parameters Value

Knowledge degree in design of infrastructures 0.60
Expertise in economic assessments 0.60

Expertise in environmental assessments 1.00
Expertise in social life-cycle assessments 0.80

Expert’s credibility. Truth membership parameter t 0.80
Expressed mean self confidence 0.66

Expert’s certainty. Indeterminacy membership parameter i 0.34
Consistency ratio of the comparison matrix 0.07

Expert’s inconsistency. Falsehood membership parameter f 0.72

Table A4. Scalar criteria weights obtained for expert 2.

Scenario C1 C2 C3 C4 C5 C6 C7 C8 C9

Expert 1 0.049 0.019 0.179 0.262 0.168 0.024 0.046 0.152 0.101
Expert 2 0.027 0.060 0.204 0.214 0.237 0.076 0.048 0.074 0.061
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