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Abstract: This paper studies firms’ dynamic interaction in a Cournot market. In each period of
the game, the firm decides whether to make a stochastic positioning investment (establishing or
maintaining its position in market competition). The market demand is also stochastic (high or
low). By adopting symmetric Market perfect Nash equilibrium, firms choose strategies to maximize
the discounted present value of cash flow. By considering the cases with one, two, and three
active firms in the market, respectively, we present the stage game market outcome, show the
transition probabilities, find the steady state of the system, and discuss the speed of convergence.
Our work allows for two types of uncertainty in firms’ interactions, which contribute to the dynamic
oligopoly literature.
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1. Introduction

In the business world, the dynamic interaction among firms is common. To be specific,
the market demand and the firms’ investment decision both involve uncertainty. Therefore,
it is essential to study how firms compete in the dynamic competition environment.

In this paper, firms compete in a dynamic market with two types of uncertainty. The
first one is their positioning investment strategies while the second one is the stochastic
market demand. In other words, a firm can choose to enter the market in the next period
or not and the market demand can be either high or low.

Our model is based on the symmetric Markov perfect Nash equilibrium (SMPNE),
in which the firms make their positioning investment strategy first and then the quantity
strategy. By focusing on the cases with one, two, and three firms, we elaborate the stage
game market outcome. Furthermore, we study the steady state of the system and discuss
the speed of convergence to the steady state.

We contribute to the literature in two aspects. Our first innovation is to allow for two
types of stochastic uncertainty in the market. Most studies in the existing literature assume
that there is no uncertainty or only one dimension of uncertainty (Bloch et al., 2014) [1]. In
our work, the stochastic uncertainty lies not only in the dimension of firms’ positioning
investment strategy but also in the dimension of market demand, making the model more
realistic but also more technically challenging. Another innovation is that we focus on
output competition rather than price competition (Lian and Zheng, 2019) [2] and enrich
the literature on firms’ dynamic interaction under different market structures.

Over the last four decades, there have been a number of significant contributors to
the industrial organization literature related to our paper. Caves and Porter (1977) [3], Dixit
(1979, 1980) [4,5], Eaton and Lipsey (1978) [6], and Gilbert and Harris (1984) [7] have built
fundamental frameworks for studying entry barriers of firms in the market. Fershtman and
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Kamien (1987) [8] introduced the price stickiness in duopolistic competition and analyzed the
equilibrium prices under open-loop and closed-loop Nash equilibrium strategies. Claudio
(2000) [9], Cellini and Lambertini (2004) [10], Wiszniewska-Matyszkiel et al. (2015) [11],
and Colombo and Labrecciosa (2019) [12] further elaborated different scenarios based on
Fershtman and Kamien (1987)’s work. Later, a range of firm commitment strategies were
explored by scholars, including excess capacity (Eaton and Lipsey, 1979 [13]; Spence, 1977,
1979 [14,15]; Bulow et al., 1985 [16]), product development (Eaton and Lipsey, 1980 [17];
Fudenberg and Tirole, 1984 [18]), advertising and goodwill (Eaton and Lipsey, 1980 [17]),
percentage of total sunk costs (Salop, 1979 [19]; Sutton,1991 [20]), locations (West, 1981) [21],
industrial concentration (Bhattachary and Bloch, 2000) [22], learning and interacting be-
tween individuals (Wang and Zheng, 2015) [23]. Moreover, in recent studies, Mazalov
and Melnik (2016) [24], Lien et al. (2016) [25], and Kuang et al. (2020) [26] developed
theories to study serial and parallel transport network structures in different scenarios.
However, research on firms’ interaction has been much less explored by considering the
infinite horizon framework in a dynamic setting. Our model adopts the dynamic setting
from Maskin and Tirole (1988) [27] instead of a static setting, and employs a symmetric
Markov perfect Nash equilibrium (SMPNE) approach. It should be clear that a Markov
perfect Nash equilibrium always exists, since the firms’ strategy space in the stage game
is continuous (Maskin and Tirole, 2001) [28]. What is more, the existence of a symmetric
Markov perfect Nash equilibrium is guaranteed in our model, since all firms are ex ante
symmetric (Maskin and Tirole, 1988) [27]. Symmetry requires that we model decisions
with respect to positional investment as mixed strategies. We develop an algorithm which
allows us to find the market equilibrium.

Our work is based on the model developed by Bloch et al. (2014) [1]. However,
there are two main differences between our setups and theirs. The first one is that we
assume the number of active firms is fixed, or exogenous. The second one is that the
market demand in our work is stochastic. It is also important to compare our work with
Alessandro et al. (2017) [29]. Our paper and theirs both focus on the dynamic oligopoly,
instead of the static one. However, we use a discrete-time framework while theirs is a
continuous one. Moreover, our work is most similar to Lian and Zheng (2019) [2], which
focuses on the price competition in Bertrand market. However, we study the output
competition in Cournot market where firms set their quantities simultaneously.

In this study, we provide the following analytical results. First, we present the realiza-
tions of market structure when firms use their SMPNE strategies. We discover the patterns
of the realization differ significantly in different market competitions. Second, we examine
the probabilities for the system to be in a particular state, in times t > 0 conditional on
being in a particular state at time t = 0, when firms use their SMPNE strategies. Third,
we show the steady state distribution, calculate the expected duration for each state of the
system, and obtain the speed of convergence to the stead state.

The rest of the paper is laid out as follows: In Section 2, we construct a dynamic model
of a niche market. In Section 3, we provide our main results with analysis and discussion.
In Section 4, we conclude by summarizing our work and pointing out the directions for
future study.

2. The Model

In a niche market, there are a number of active firms (A) which are able to produce
and design goods. Some of the active participants are established firms, while others are
unestablished in a given period. The number of established firms is N ≤ A. A and N are
integers; A is exogenous, N is endogenous. The position of firm, g, is either established, E,
or unestablished, U, so g ∈ {E, U}. Market demand, d, is either high, H, or low, L, in each
period. Therefore, d ∈ {H, L}. In every period, all the established firms play a Cournot
game, while firms with no established position do not participate in the oligopoly game.
There is always an opportunity for unestablished firms to make an investment in order
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to establish positions in the market and for established firms to make an investment to
maintain their positions in the market.

In each period, the state of each firm will be defined by its own position, the positions
of the other active firms, and the state of demand. A firm’s positional investment, necessary
to establish or maintain its position, determines whether it will have an established position
or not in the next period, but has no affect on the oligopoly outcome within the current
period. In addition, the positions of the firms and the state of oligopoly in the next period
will be determined by the positioning investments of all firms in the current period. Here,
a Markov process is in a space with 4A states. Our paper is based on the SMPNE in which
the objective of all firms is to maximize the discounted present value of cash flow. This
work focuses on the Cournot framework where firms set their quantities simultaneously in
the oligopoly game.

2.1. Positioning Investments

In any period, an unestablished firm can choose to make an investment of I > 0 to
establish a position in the next period with probability P; or it will remain an unestablished
one. Similarly, an established firm can invest J > 0 to maintain its position in the next
period with the probability of Q; however, if the firm fails to spend J, the probability of
losing the established position is 1. We assume that 0 < P < 1 and 0 < Q < 1.

The parameters I and J could be explained by a number of activities in the process
of firm operation. I could be considered as product development, special purpose capital
goods (including product specific human capital) needed to produce the good, and/or
a brand advertising campaign to launch the good. Similarly, J could be associated with
product improvement, maintenance of product specific capital goods, and/or maintenance
of the good’s brand.

In addition, there are two levels of market demand in this model. The parameter
H represents a high market demand and L represents a low one. There are A active
firms in each market niche, each firm has either established or unestablished position
and faces either high or low demand, therefore, there are 4A states of the firm under
consideration. In this paper, we focus on the cases where A ∈ {1, 2, 3}. An active firm
in any period can be described as (g, nE, d), where g ∈ {E, U} means the firm’s current
position, which is established or unestablished. nE ∈ {0, 1, ..., A} is the number of the other
firms which are currently established, and d ∈ {H, L} is the demand of this market. For
instance, state of the firm under consideration (U, 2, H) means that the state in which the
firm is unestablished, two of the other active firms are established and the state of the
demand is high. In addition, the number of states of the system is 2(A + 1). The state of
system can be presented as (m, d), where m is the number of established firms and d is the
demand state. For instance, (2, L) means two established firms with low market demand.
Tables 1–3 show the state of the firm under consideration and the system for one, two, and
three active firms’ cases.

Table 4 (We adopt the same table as Lian and Zheng (2019) [2].) illustrates our
notational convention for numbering the states for the firm under consideration. First, we
enumerate g = U and d = H of A states, and the label of state (U, nE, H) is nE + 1. Next,
we enumerate g = U and d = L of A states, and the label of state (U, nE, L) is A + nE + 1,
then, we enumerate g = E and d = H of A states, and the label of state (e, nE, H) is
2A + nE + 1. Finally, we enumerate g = E and d = L of A states, and the label of state
(e, nE, L) is 3A + ne + 1.

Table 1. States of the firm under consideration and states of the system with one active firm.

States of the Firm under Consideration States of the System

(U, 0, H) (0, H)
(U, 0, L) (1, H)
(E, 0, H) (0, L)
(E, 0, L) (1, L)
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Table 2. States of the firm under consideration and states of the system with two active firms.

States of the Firm under Consideration States of the System

(U, 0, H) (0, H)
(U, 1, H) (1, H)
(U, 0, L) (2, H)
(U, 1, L) (0, L)
(E, 0, H) (1, L)
(E, 1, H) (2, L)
(E, 0, L)
(E, 1, L)

Table 3. States of the firm under consideration and the system with three active firms.

States of the Firm under Consideration States of the System

(U, 0, H) (0, H)
(U, 1, H) (1, H)
(U, 2, H) (2, H)
(U, 0, L) (3, H)
(U, 1, L) (0, L)
(U, 2, L) (1, L)
(E, 0, H) (2, L)
(E, 1, H) (3, L)
(E, 2, H)
(E, 0, L)
(E, 1, L)
(E, 2, L)

The firm’s strategy of the game consists of two components. The first component is the
positioning action for every decision node in an infinite game and the second component
is the quantity action for every decision node with established firm. Any decision node
of the firm will be in one of 4A states, therefore, we can reduce the strategy space by only
focusing on the Markovian strategy which has the advantage that the positioning and
quantity actions of a firm at any decision node depend only on the firm’s state at that
decision node. In the dynamic game, the positioning and quantity actions have different
roles. The positioning actions of firms drive a Markov process that determines their states
in the next period, while the quantity actions of established firms determine their profits.
Therefore, in this paper, we use a two-step procedure to formulate the value function under
the SMPNE: we first find equilibrium quantity of the static Cournot game and then use the
associated equilibrium profit or total surplus to formulate the dynamic game.

Table 4. Numbering convention for states.

State (u, h, 0; A) · · · (u, h, A− 1; A) (u, l, 0; A) · · · (u, l, A− 1; A) (e, h, 0; A) · · · (e, h, A− 1; A) (e, l, 0; A) · · · (e, l, A− 1; A)
Number 1 · · · A A + 1 · · · 2A 2A + 1 · · · 3A 3A + 1 · · · 4A

2.2. The Static Stage Cournot Game

Suppose the established firms produce goods that are either undifferentiated or sym-
metrically differentiated in a symmetric equilibrium. (It means that the goods produced by
the firms under consideration have the same degree of competitiveness and attractiveness
to the consumers. “Undifferentiated goods” refers to completely homogeneous products
while “symmetrically differentiated goods” refers to products that are equally substitutable
among each other. We borrow this term from Deneckere and Davidson (1985) [30], Brito
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(2003) [31] and Lian and Zheng (2019) [2]). The representative consumer with utility
function is as below:

U(y, q1, q2, ..., qN) = y + αd ∑
i=1,N

qi −
β

2 ∑
i=1,N

q2
i − γ ∑ qiqj

i=1,N,j 6=i
d = H or L (1)

where y represents the expenditure on a composite good and qi represents the quantity of
the goods produced by the ith established firm. We require that αd > 0 and β ≥ γ > 0.
Here, we assume H for a high demand state and L for a low demand state, αH > αL. Given
this assumption, the inverse demand functions of the representative consumer for the N
differentiated goods are

pi = αd − βqi − γ∑
j 6=i

qj, i = 1, N, j = 1, N, d = H or L (2)

In the Cournot competition model, firms set their own profit-maximizing outputs at
the same time. In addition, all firms’ marginal costs are supposed to be equal and constant.
For convenience, we further set marginal cost equals to 0.

Using the inverse demand function from Equation (2), the profit of each firm, firm 1
for simplicity, can be written as

πC = q1(αd − βq1 − γ(q2 + ... + qN))

where N is the number of established firms.
The first order profit maximizing condition is

αd − 2βq1 − γ(q2 + ... + qN) = 0

Of course, in equilibrium, all the qs are the same, so the equilibrium quantity sold by
firm 1 to a representative consumer is α/(2β + (N − 1)γ), and the total output sold by the
firm under consideration in the Cournot equilibrium, denoted by q∗(N) is

q∗C(N) =
αd

2β + (N − 1)γ

For the Cournot case, the function R(N), that is the oligopoly profit of each firm in
equilibrium, is

RC(N) = β(
αd

2β + (N − 1)γ
)2

With the equation above, we can calculate the equilibrium quantity, denoted by
q∗C(N, d) and the equilibrium price, denoted by p∗C(N, d). Then we can easily solve for
R∗C(N, d), which is the oligopoly profit of each firm in equilibrium, CS∗C(N, d), which is
the equilibrium consumers’ surplus, and TS∗C(N, d), which is the equilibrium total surplus.
More details are mentioned in the Table 5 below.

Table 5. Equilibrium quantity, price, profit, consumers’ surplus and total surplus with one, two and
three active firms.

N q∗C(N, d) p∗
C(N, d) R∗

C(N, d) CS∗
C(N, d) TS∗

C(N, d)

1 αd
2β

αd
2

α2
d

4β
α2

d
8β

3α2
d

8β

2 αd
2β+γ

αd β
2β+γ

α2
d β

(2β+γ)2
α2

d(β+γ)
(2β+γ)2

α2
d(3β+γ)

(2β+γ)2

3 αd
2β+2γ

αd β
2β+2γ

α2
d β

(2β+2γ)2
3α2

d(β+2γ)

8(β+γ)2
3α2

d(3β+2γ)

8(β+γ)2

Suppose the state of a firm k ∈ {2A + 1, ..., 3A}, then g = E (it is established), d = H,
and nE = k− 2A. Consequently, the equilibrium quantity is q∗C(k− 2A, H) in the Cournot



Mathematics 2021, 9, 489 6 of 18

framework. Meanwhile, suppose the state of a firm k ∈ {3A + 1, ..., 4A}, then g = E (it
is established), d = L and nE = k− 3A. The equilibrium quantity is q∗C(k− 3A, L). The
profit and maximized total surplus in any state k ∈ {2A + 1, ..., 3A} are Rx(k − 2A, H)
and TS(k − 2A, H). Meanwhile, the profit and maximized total surplus in any state
k ∈ {3A + 1, ..., 4A} are Rx(k− 3A, L) and TS(k− 3A, L).

2.3. Value Functions and Transition Probabilities

Given a common strategy for all the other active firms, we focus on the payoff
maximizing decisions of the firm under consideration. sk

R, 0 ≤ sk
R ≤ 1, represents

the probability of each firm making the relevant positioning investment in the state k;
the relevant investment is I when k ∈ {1, 2A} since its position is U, and it is J when
k ∈ {2A + 1, 4A} since its position is E. The positioning strategy of the firm under con-
sideration is then SR = (s1

R, s2
R, ..., s4A

R ) and positioning strategy of the other active firm is
SO = (s1

O, s2
O, ..., s4A

O ). The transition matrix Tkl(sR, sO) denotes the probability of transition
from state k in any period to state l in the next period for each firm and T(sR, sO) denotes
the entire 4A by 4A transition matrix. The transition matrix depends not only on the strat-
egy of the firm under consideration and other active firms but also on probability of high
or low market demand. Here it is important to mention the asymmetric transmission in
our paper. Suppose the firm under consideration in period t is in state k, then the transition
probabilities of being in state k and state j are different, that is Tkj(SR, SO) 6= Tkk(SR, SO).
Similarly, we can also find Tjk(SR, SO) 6= Tjj(SR, SO). Therefore, the transmission in our
paper is asymmetric.

To illustrate more explicitly, we provide an example that transition matrix is T23(sR, sO)
and A = 3. First notice that when the firm is in state 2 (U, 1, H), one of the other two firms
is also in state 2 (U, 1, H), and the other one is in state 7 (E, 0, H). In the next period, if
the firm moves to state 3 (U, 2, H), the following four independent events should occur:
the position of the firm under consideration remains U, the position of the other firm that
is currently in state 2 turns to E, the position of the other firm that is currently in state
7 remains E, and the market demand is still H. The first of these events will occur with
probability 1− s2

RP, the second with probability s2
OP, the third with probability s7

OQ, and
the last with probability H so

T23(SR, SO) = (1− s2
RP)s2

OPs7
OQH (3)

We denote the firm’s operating profit when it is in state i as R(k− 2A, d). In states 1
through 2A, the profit of the firm is zero because it has a non-established position in these
states. R(k − 2A, d) > 0 because it has an established position and plays the oligopoly
game in states 2A + 1 to 4A.

In order to calculate the value functions of the firm, we first define the payoff functions.
Suppose πk is the firm’s payoff when it is in state k. It can be calculated by subtracting
from R(k− 2A, d) the expected costs associated with its positioning investment.

πk = 0− sk
R I if k ∈ {1, ..., 2A} (4)

πk = R(k− 2A, d)− sk
R J if k ∈ {2A + 1, ..., 4A} (5)

Suppose Vk((ŜR, SR), SO) is the present value of the firm’s profit over an infinite time
horizon, when it is in state k. Here, ŜR = (ŝ1

R, ŝ2
R, ..., ŝ4A

R ) means the firm under consideration
in the current period, SR means the firm in all subsequent periods, and SO means other
firms in current and subsequent periods. Therefore, the function can be calculated in the
following expression:

Vk((ŜR, SR), SO) = E[Gk|SO] = πk + D ∑
j=1,...,4A

TkjV j(SR, SO), k = 1, ..., 4A (6)
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where D, 0 < D < 1, is a discount factor, and Gk represents the total value at state k. The
first term represents the immediate reward of the firm and the second one represents the
discounted future values. Then the value function, say Wk(SO), can be written as the
maximum of Vk((ŜR, SR), SO), that is

Wk(SO) = supŜR ,SR
Vk((ŜR, SR), SO)

= supŜR ,SR
[πk + D ∑

j=1,...,4A
TkjV j(SR, SO)], k = 1, ..., 4A

= supŜR
[πk + D ∑

j=1,...,4A
TkjW j(SO)], k = 1, ..., 4A

(7)

2.4. Characterizing the Symmetric Markov Perfect Nash Equilibrium

In order to have valid symmetric Markov perfect Nash equilibrium strategy, S∗, there
are two equations to be satisfied:

Vk((S∗, S∗), S∗) ≥ Vk(((sk, S∗−k), S∗), S∗)∀sk ∈ [0, 1], ∀k ∈ {1, 2, ..., 2A}. (8)

Suppose there are some k, 0 < sk∗ < 1, then

Vk((S∗, S∗), S∗) = Vk(((sk, S∗−k), S∗), S∗)∀sk ∈ [0, 1] (9)

sk∗ is the firm’s current equilibrium strategy profile in state k and (sk, S∗−k) is the strategy
when we replace sk∗ by sk . Suppose 0 < sk∗ < 1, then, the firms’s current maximization
problem is solved for any sk ∈ [0, 1].

Our work follows Bloch et al.’s study (2014) [1], in which the transition probability
is linear in the player’s own strategy. Based on the symmetric Markov perfect Nash
equilibrium (SMPNE), this algorithm returns a symmetric equilibrium when the transition
probability is linear. Then, we will be able to compute the symmetric Markov perfect Nash
equilibrium strategy, S∗ = (s1∗ , s2∗ , ..., s4A∗) by using an algorithm in the Appendix A.

3. Results

In the model, there are 11 exogenous variables: six of them control demand of the
representative consumer (αH , αL, β, γ, h, l), four of them govern positioning technology
(I, J, P, Q), and the last one is a discount factor (D). Given all these parameters, firms
conduct Cournot competition in every stage. We set the demand parameters in high
demand market to be αH = 60 and that in low demand market to be αL = 60√

2
. In addition,

we assume β = 1, γ = 0.95, h = 0.7, and l = 0.7. In addition, the positioning technology
parameters are I = 700, J = 200, P = 0.8 and Q = 0.95.

The rest of Section 3 is organized as follows: Firstly, values of baseline parameters are
provided, then we illustrate the market dynamic process, and in the last, the steady state of
the system and the speed of convergence are discussed.

3.1. The Base Parameterization

Table 6 shows the equilibrium profit per firm, consumer surplus and total surplus
under high and low market demand, for one, two, and three active firms’ cases. It is easy
to find that, as the market demand moves from high to low, the profit per firm, consumer
surplus, and total surplus decline together. What is more, as the increase of the number of
active firms, the profit per firm decreases while the consumer surplus and total surplus
increase under both the high market demand and the low market demand. This implies
the gains from more competition in this market exceed the losses from extra fixed costs.
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Table 6. Stage payoffs under different states in the Cournot framework.

States of Demand Number of Active Firms Payoffs

High

One
Profit Per Firm 900

Consumer Surplus 450
Total Surplus 1350

Two
Profit Per Firm 414

Consumer Surplus 806
Total Surplus 1634

Three
Profit Per Firm 237

Consumer Surplus 1030
Total Surplus 1740

Low

One
Profit Per Firm 450

Consumer Surplus 225
Total Surplus 675

Two
Profit Per Firm 207

Consumer Surplus 403
Total Surplus 817

Three
Profit Per Firm 118

Consumer Surplus 515
Total Surplus 870

3.2. A Realization of the Process

From Tables 7–12, we provide an example of the two active firms’ case with a re-
alization of the process under the Cournot competition in the dynamic world by using
baseline parameter values. We impose one of the initial states of the system for each table.
Suppose there are 20 periods in each competition, we can find that in each period of time,
the number of established firms can be the same or different from the previous period.
Based on those complex patterns of realization, finding out how a firm can seize what is
happening is difficult. As a result of that, in the following sections, we pay more attention
to obtain the steady state of the model.
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Table 7. Two active firms in the Cournot framework with the initial state of the system (0, H).

Number of Established Firms Period of Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 X X X
1 X X X X X
2 X X X X X X X X X X X X

Market Demand
H X X X X X X X X X X X X X
L X X X X X X X

Profit Per Firm 0 900 414 414 414 207 207 207 450 450 450 207 414 414 414 0 0 900 414 414
Consumer Surplus 0 450 806 806 806 403 403 403 225 225 225 403 806 806 806 0 0 450 806 806

Total Surplus 0 1350 1634 1634 1634 817 817 817 675 675 675 817 1634 1634 1634 0 0 1350 1634 1634

Table 8. Two active firms in the Cournot framework with the initial state of the system (1, H).

Number of Established Firms Period of Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 X X X
1 X X X X X X
2 X X X X X X X X X X X

Market Demand
H X X X X X X X X X X X X X
L X X X X X X X

Profit Per Firm 900 414 414 207 207 207 207 0 0 450 900 414 414 414 414 900 900 900 414 0
Consumer Surplus 450 806 806 403 403 403 403 0 0 225 450 806 806 806 806 450 450 450 806 0

Total Surplus 1350 1634 1634 817 817 817 817 0 0 675 1350 1634 1634 1634 1634 1350 1350 1350 1634 0

Table 9. Two active firms in the Cournot framework with the initial state of the system (2, H).

Number of Established Firms Period of Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 X X
1 X X X X X X
2 X X X X X X X X X X X X

Market Demand
H X X X X X X X X X X X X X X
L X X X X X X

Profit Per Firm 414 414 414 414 414 414 414 207 450 450 450 207 207 414 414 0 0 900 900 900
Consumer Surplus 806 806 806 806 806 806 806 403 225 225 225 403 403 806 806 0 0 450 450 450

Total Surplus 1634 1634 1634 1634 1634 1634 1634 817 675 675 675 817 817 1634 1634 0 0 1350 1350 1350
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Table 10. Two active firms in the Cournot framework with the initial state of the system (0, L).

Number of Established Firms Period of Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 X X X
1 X X X X X
2 X X X X X X X X X X X X

Market Demand
H X X X X X X X
L X X X X X X X X X X X X X

Profit Per Firm 0 450 207 207 207 414 414 414 900 900 900 414 207 207 207 0 0 450 207 207
Consumer Surplus 0 225 403 403 403 806 806 806 450 450 450 806 403 403 403 0 0 225 403 403

Total Surplus 0 675 817 817 817 1634 1634 1634 1350 1350 1350 1634 817 817 817 0 0 675 817 817

Table 11. Two active firms in the Cournot framework with the initial state of the system (1, L).

Number of Established Firms Period of Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 X X X
1 X X X X X X
2 X X X X X X X X X X X

Market Demand
H X X X X X X X
L X X X X X X X X X X X X X

Profit Per Firm 450 207 207 414 414 414 414 0 0 900 450 207 207 207 207 450 450 450 207 0
Consumer Surplus 225 403 403 806 806 806 806 0 0 450 225 403 403 403 403 225 225 225 403 0

Total Surplus 675 817 817 1634 1634 1634 1634 0 0 1350 675 817 817 817 817 675 675 675 675 0

Table 12. Two active firms in the Cournot framework with the initial state of the system (2, L).

Number of Established Firms Period of Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 X X
1 X X X X X X
2 X X X X X X X X X X X X

Market Demand
H X X X X X X
L X X X X X X X X X X X X X X

Profit Per Firm 207 207 207 207 207 207 207 414 900 900 900 414 414 207 207 0 0 450 450 450
Consumer Surplus 403 403 403 403 403 403 403 806 450 450 450 806 806 403 403 0 0 225 225 225

Total Surplus 817 817 817 817 817 817 817 1634 1350 1350 1350 1634 1634 817 817 0 0 675 675 675
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3.3. Conditional Probabilities

Next, we will study the probabilistic distribution in the dynamic process. From the
previous section, we have realized that the system is not static, instead it can switch from
one initial state to other different states. Then, what is the probability of moving from
one particular state to another in some periods? We will give an answer to this question
below. Here, the probability for a particular state, in period t > 0 conditional on being in a
particular state at period t = 0, is generated when firms use their SMPNE strategies. The
firm’s expected probability distribution over states in the t periods is calculated as follows:

Et = E[T∗]t (10)

where E is the initial probability distribution over states which has a 1 for one state and
0s for the others. T∗ is the equilibrium transition matrix. We use the two-firm case as an
example again. Table 13 presents the probability distribution of going from any of the 6
states to any of the same 6 states in one period. It is easy to find that when the initial state
is (0, H) or (0, L), the probability of remaining in the same state is very close to zero. In
contrast, when the initial state is (2, H), (1, L) or (2, L), the conditional probability is more
than 0.5. As explained in the previous sections, the number of established firms and the
state of market demand are two major determinants of the system state. In this case, it is
almost unlikely to stay in the initial state if there are no established firms in the market,
regardless of the market demand.

Table 13. Conditional probabilities of remaining in the same state within 1 period.

States of the System Conditional Probability

(0, H) 0.028
(1, H) 0.161
(2, H) 0.632
(0, L) 0.028
(1, L) 0.665
(2, L) 0.632

From Table 14, we impose different initial states of the system in period 0. We can
easily find that the size of the transaction probability changes at first is big and gradually
decline during the later periods. Furthermore, the transition probabilities with different
initial states seem to converge to a similar value, in other words, a steady state. Therefore,
the state of the system 10 periods from now has almost nothing to do with the state of the
system today.
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Table 14. Transition probabilities with different initial states for the system with two active firms in the Cournot framework.

State of the System Period 0 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8 Period 9 Period 10

(0, H) 1 0.028 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
(1, H) 0 0.224 0.106 0.090 0.088 0.088 0.089 0.089 0.090 0.090 0.090
(2, H) 0 0.448 0.469 0.438 0.421 0.413 0.410 0.408 0.407 0.406 0.406
(0, L) 0 0.012 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006
(1, L) 0 0.096 0.110 0.116 0.120 0.124 0.126 0.128 0.129 0.129 0.130
(2, L) 0 0.192 0.304 0.347 0.361 0.366 0.366 0.366 0.365 0.365 0.364

(0, H) 0 0.007 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004
(1, H) 1 0.161 0.089 0.083 0.083 0.085 0.087 0.088 0.089 0.090 0.090
(2, H) 0 0.532 0.487 0.446 0.426 0.416 0.412 0.409 0.408 0.407 0.406
(0, L) 0 0.003 0.004 0.004 0.005 0.005 0.006 0.006 0.006 0.006 0.006
(1, L) 0 0.069 0.089 0.102 0.112 0.118 0.123 0.125 0.127 0.128 0.129
(2, L) 0 0.228 0.327 0.362 0.371 0.371 0.370 0.368 0.367 0.366 0.365

(0, H) 0 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004
(1, H) 0 0.067 0.069 0.073 0.078 0.082 0.085 0.087 0.088 0.089 0.090
(2, H) 1 0.632 0.509 0.456 0.432 0.420 0.414 0.411 0.409 0.408 0.407
(0, L) 0 0.001 0.002 0.003 0.004 0.005 0.005 0.006 0.006 0.006 0.006
(1, L) 0 0.029 0.060 0.084 0.100 0.111 0.118 0.123 0.125 0.127 0.128
(2, L) 0 0.271 0.358 0.381 0.383 0.379 0.375 0.371 0.369 0.367 0.366

(0, H) 0 0.012 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004
(1, H) 0 0.096 0.110 0.107 0.103 0.099 0.096 0.094 0.093 0.092 0.091
(2, H) 0 0.192 0.304 0.356 0.380 0.392 0.398 0.401 0.403 0.404 0.405
(0, L) 1 0.028 0.010 0.008 0.008 0.007 0.007 0.006 0.006 0.006 0.006
(1, L) 0 0.224 0.198 0.176 0.160 0.149 0.142 0.138 0.135 0.133 0.132
(2, L) 0 0.448 0.372 0.348 0.345 0.349 0.353 0.356 0.359 0.360 0.362

(0, H) 0 0.015 0.013 0.010 0.008 0.006 0.005 0.005 0.004 0.004 0.004
(1, H) 0 0.285 0.242 0.192 0.156 0.133 0.117 0.107 0.101 0.097 0.095
(2, H) 0 0.000 0.165 0.266 0.323 0.356 0.375 0.387 0.394 0.398 0.401
(0, L) 0 0.035 0.025 0.018 0.014 0.011 0.009 0.008 0.007 0.007 0.006
(1, L) 1 0.665 0.471 0.347 0.268 0.217 0.185 0.165 0.152 0.144 0.139
(2, L) 0 0.000 0.084 0.166 0.231 0.277 0.308 0.328 0.341 0.349 0.354

(0, H) 0 0.001 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004
(1, H) 0 0.029 0.060 0.075 0.083 0.086 0.088 0.089 0.090 0.090 0.090
(2, H) 0 0.271 0.358 0.390 0.401 0.405 0.406 0.406 0.406 0.406 0.406
(0, L) 0 0.002 0.004 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006
(1, L) 0 0.067 0.096 0.111 0.119 0.124 0.126 0.128 0.129 0.129 0.130
(2, L) 1 0.632 0.480 0.416 0.388 0.376 0.370 0.367 0.366 0.365 0.364
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3.4. The Steady State of the System

The system converges to the steady state as the number of periods (t in Equation (10))
approaches infinity, and the probability distribution becomes constant. (According to
Gagniuc (2017) [32], a system or a process is in a steady state if the variables which define
the behavior of the system or the process are unchanging in time. We define the steady
state of the system as the limit of probability distribution across all possible states of the
system as time goes to infinity).

We can derive the steady state of the system by analyzing the steady state of the firm
under consideration. It should be clear that the steady state of each firm is determined
by the positional condition of the firm, the number of other established firms, and the
state of the market demand. However, the state of the system is determined only by the
number of established firms and the positional condition of the demand. Here, each state’s
steady state presents an estimation of the firm’s probability distribution in the far future.
This distribution is used to predict the current period if we have no information about
the history of the dynamic model. In Table 15, we discover that (2, H) and (2, L) have the
highest probability to occur, while (0, H) and (0, L) have the least. Having only one active
firm competing in the steady state is possible but the probability is not so high.

Similarly, Tables 16 and 17 present the steady state probability distribution for one-
firm and three-firm cases. It is easy to find that in one-firm case, (1, H) and (1, L) have
the highest probability to appear, while (2, H) and (2, L) are most likely to occur in three-
firm case.

Table 15. Steady state of two active firms.

States of the System Probability

(0, H) 0.004
(1, H) 0.090
(2, H) 0.406
(0, L) 0.006
(1, L) 0.130
(2, L) 0.364

Table 16. Steady state of one active firm.

States of the System Probability

(0, H) 0.029
(1, H) 0.471
(0, L) 0.029
(1, L) 0.471

Table 17. Steady state of three active firms.

States of the System Cournot

(0, H) 0.006
(1, H) 0.124
(2, H) 0.341
(3, H) 0.029
(0, L) 0.007
(1, L) 0.143
(2, L) 0.324
(3, L) 0.026
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3.5. Expected Duration

The formula below is applied to calculate the expected duration of each state of the
system, in which the conditional probability in Table 13 is utilized. (Formula (13) is used
to calculate the firm’s expected duration in state I, which can be described as the sum
of conditional probability of remaining in the same state for one more period, that is
EDi ∑∞

t=1 CPt−1
i . Since the problem can be transformed into a summation of the above

geometric sequence, with the first term of 1 and the common ratio of CPi, we can easily
derive Formula (13), which can be written as 1

1−CPi
).

EDi =
1

1− CPi
(11)

In the above formula, CPi is the conditional probability for state i of the firm under
consideration and EDi is the expected duration for state i of the firm. By transferring the
state of the firm to the state of the system, we obtain the expected duration for each state of
the system in these different frameworks. In Table 18, we use the two-active-firm case as
an example again. The first column shows the initial states of the firm under consideration
and the initial states of the system. Based on these initial states, we present the conditional
probabilities to stay in these initial states. Then we use the Equation (11) to calculate
the expected duration in the third column for each state. Since a firm is almost unlikely
to remain in the same state if there are no established firms in the market, as we have
shown in Table 13, the corresponding expected duration is very close to 1. Meanwhile, the
conditional probabilities of (2, H) and (2, L) are more than 0.5, so their expected durations
are more than two periods.

Table 18. Conditional probability and the expected duration With two active firms.

States of the System Conditional Probability Expected Duration

(0, H) 0.028 1.029
(1, H) 0.161 1.192
(2, H) 0.632 2.716
(0, L) 0.028 1.029
(1, L) 0.665 2.985
(2, L) 0.632 2.716

3.6. The Speed of Convergence to the Steady State

Based on the previous tables in Sections 3.3 and 3.4, we continue to calculate the speed
of convergence to the steady state of the system for 10 periods. Here, we are measuring
and comparing the speed of convergence which is obtained from an initial state by initial
state basis. In Figure 1, the D0 to D10 are calculated from the sum of absolute value of the
probability for each state by the power of transition matrix from period 0 to period 10 minus
the steady state probability for each state, respectively. Here, the horizontal axis indicates
the initial states of the system, which have the minimum or maximum converging speed
to the steady states of the system from period 0 to 10. The vertical axis means values for
the minimum or maximum of converging speed to the steady states of the system during
these 11 periods. Figure 1a,b show the maximum and minimum speed of convergence to
the steady state of the system for the one active firm’s case in the Cournot framework. We
discover that the speed of convergence is maximum when the initial states of the system is
(1, H) or (1, L) for any periods no more than three, then has indifference speed of converge
with different initial states. In contrast, the initial states (0, H) or (0, L) have the minimum
speed of convergence for any periods no more than three. We present the minimum and
maximum speed of convergence for two active firms’ case in Figure 1c,d. We discover the
initial state of the system (1, L) has the minimum speed of convergence for any periods
no less than one. As for the maximum speed of convergence, it appears in the initial
state (0, H) for any periods, which is greater than 3 and less than 7. Figure 1e,f show the
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maximum and minimum speed of convergence for the three active firms’ case. The initial
state of the system (3, H) has the minimum speed of convergence for any periods no less
than 1 and the maximum speed of convergence appears in the initial state (2, L) for any
periods, which is greater than 3 and less than 7.

Setting the convergence criteria equal to the distance between the probability distri-
bution of the state in period t and thus the probability distribution of the steady state is
supposed to be less than 0.01, we conclude that only the one and two active firms’ cases
are with their maximum speed of convergence in the Cournot framework. Nevertheless,
the probability distribution in period t is certain to converge to the steady state, for the
one-firm, two-firm, and three-firm cases with both their maximum and minimum speed, if
t is large enough.
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Figure 1. The speed of convergence in the Cournot framework.

4. Conclusions

This paper elaborates the dynamic interaction in a Cournot market. In our settings,
making a positioning investment can be used by a firm who would like to enter the market
in the next period. The rate of success and the cost of the investment are determined by the
firm’s position. In the market, all the established firms simultaneously set their quantities
while the unestablished firms could not enter the market until they make an investment
to establish their positions. The demand of market in our paper is symmetric and the
positioning strategy of firms are asymmetric.
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Our model is based on the symmetric Markov perfect Nash equilibrium (SMPNE),
in which the firms make their positioning investment strategy first and then the quantity
strategy. By considering the cases with one, two, and three active firms in a Cournot
market, respectively, we present firm profit, consumer surplus, and total surplus, show the
transition probabilities, find the steady state of the system, and discuss the speed of conver-
gence. The dynamic uncertainty on market demand is modeled in a symmetric way while
transmission probability of firms’ market position across different period is asymmetric.

This paper extends the model developed by Bloch et al. (2014) [1] with two significant
modifications. First, we assume the entry of firms is stochastic, so firms have to consider
the uncertainty after making the positioning investment strategy. Second, we assume there
are two levels of demand a niche market and realization of market demand is stochastic,
so firms have to consider the uncertainty of the market demand given the successful
investment. This work also extends the study of Lian and Zheng (2019) [2] in which the
price competition is studied. In this paper, we study the output competition in Cournot
market where firms set their quantities simultaneously.

There are several possibilities to further extend our current work. First, our work focuses
on the Cournot competition for the stage game, and it is worth investigating to consider the
Stackelberg stage game where the firms with established positions serve as leaders while
firms with unestablished positions serve as followers (Ford et al., 2019) [33]. It is also possible
to consider the sticky prices models, following Fershtman and Kamien (1987) [8], Claudio
(2000) [9], Cellini and Lambertini (2004) [10], Wiszniewska-Matyszkiel et al. (2015) [11],
Colombo and Labrecciosa (2019) [12]. Second, this paper assumes that the number of firms
is exogenously fixed, and it is meaningful to further study an endogenously determined
market structure (Ford et al., 2020) [33]. In addition, one may also consider (Kuang et al.,
2021) [34] of positioning investment and/or take the interdependence between market
condition and positioning investment into account.
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Appendix A. Algorithm for Searching for SMPNE

In order to obtain the symmetric Markov perfect Nash equilibrium strategy, we use
the following three step procedure.

First, we provide the initial value of Markovian strategy S = (s1 , s2 , ..., s4A) as well as
the parameter values of exogenous variables A, I, J, P, Q, H, L, D, R(N, d), SP(N, d).

Second, suppose we set ŜR = S, SR = S, and SO = S in the system 4A value functions,
we will be able to obtain Vk((S, S), S), k = 1, 4A. Then, we use these values to calculate sk

and nsk in the following three criteria:
(1) If Vk(((1, S−k), S), S) > Vk(((0, S−k), S), S), then nsk = min(1, sk + ε(Vk(((1, S−k),

S), S)−Vk(((0, S−k), S), S))).
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(2) If Vk(((1, S−k), S), S) < Vk(((0, S−k), S), S), then nsk = max(0, sk− ε(Vk(((0, S−k),
S), S)−Vk(((1, S−k), S), S))).

(3) If Vk(((1, S−k), S), S) = Vk(((0, S−k), S), S), then nsk = sk. We assume
ε = 0.0000000001 for this exercise.

Third, let us check the condition of convergence as below:

∆ =
4A

∑
1

∣∣∣sk − nsk
∣∣∣

The algorithm converges to an equilibrium only if ∆ ≤ ε. If this condition holds
at the fixed point, then a sufficiently small neighborhood must exist. Then we can call
the situation as convergence. To make it clear, we assume ε = 0.0000000001 in practice.
Otherwise, we propose S, (s1 , s2 , ..., s2A) = (ns1 , ns2 , ..., ns2A), and go back to the second
step until ∆ ≤ ε holds.
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