
Mathematics 2021, 9, 488. https://doi.org/10.3390/math9050488 www.mdpi.com/journal/mathematics 

Article 

Forecasting of the Prevalence of Dementia Using the 
LSTM Neural Network in Taiwan 
Stephanie Yang 1, Hsueh-Chih Chen 1,2,3,4,*, Chih-Hsien Wu 5, Meng-Ni Wu 6 and Cheng-Hong Yang 5,7,8,* 

1 Department of Educational Psychology and Counseling, National Taiwan Normal University, Taipei 106, 
Taiwan; sfyang@ntnu.edu.tw 

2 Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei 106, 
Taiwan 

3 Chinese Language and Technology Center, National Taiwan Normal University, Taipei 106, Taiwan 
4 MOST AI Biomedical Research Center, Tainan City 701, Taiwan 
5 Department of Electronic Engineering, National Kaohsiung University of Science and Technology, 

Kaohsiung 807, Taiwan; f108152123@nkust.edu.tw 
6 Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80756, Taiwan; 

mengniwu@kmu.edu.tw 
7 Ph.D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 80708, Taiwan 
8 Drug development and value creation research center, Kaohsiung Medical University, Kaohsiung 80708, 

Taiwan 
* Correspondence: chcjyh@ntnu.edu.tw (H.-C.C.); chyang@nkust.edu.tw (C.-H.Y.)

Abstract: The World Health Organization has urged countries to prioritize dementia in their public 
health policies. Dementia poses a tremendous socioeconomic burden, and the accurate prediction 
of the annual increase in prevalence is essential for establishing strategies to cope with its effects. 
The present study established a model based on the architecture of the long short-term memory 
(LSTM) neural network for predicting the number of dementia cases in Taiwan, which considers 
the effects of age and sex on the prevalence of dementia. The LSTM network is a variant of recurrent 
neural networks (RNNs), which possesses a special gate structure and avoids the problems in RNNs 
of gradient explosion, gradient vanishing, and long-term memory failure. A number of patients 
diagnosed as having dementia from 1997 to 2017 was collected in annual units from a data set ex-
tracted from the Health Insurance Database of the Ministry of Health and Welfare in Taiwan. To 
further verify the validity of the proposed model, the LSTM network was compared with three 
types of models: statistical models (exponential smoothing (ETS), autoregressive integrated moving 
average model (ARIMA), trigonometric seasonality, Box–Cox transformation, autoregressive mov-
ing average errors, and trend seasonal components model (TBATS)), hybrid models (support vector 
regression (SVR), particle swarm optimization–based support vector regression (PSOSVR)), and 
deep learning model (artificial neural networks (ANN)). The mean absolute percentage error 
(MAPE), root-mean-square error (RMSE), mean absolute error (MAE), and R-squared (R2) were 
used to evaluate the model performances. The results indicated that the LSTM network has higher 
prediction accuracy than the three types of models for forecasting the prevalence of dementia in 
Taiwan. 
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1. Introduction
The elderly population has been increasing sharply worldwide. In March 2018, Tai-

wan officially became an aged society, with an elderly population accounting for 14% of 
the total population [1]. Despite over 25 years elapsing before Taiwan progressed from an 
aging society to an aged society, Taiwan is estimated to become a super-aged society by 
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2026 because of its fast aging speed [2]. The rapid growth of the elderly population indi-
cates a shift in health care concerns (chronic diseases and conditions) and medical care for 
older adults as well as emphasis on the importance of long-term care, prevention, and 
resilience. Especially when facing sudden disastrous events, such as the outbreak of 
COVID-19 in 2020, a stabilized, resilient, and supportive healthcare system and policies 
are necessary to a fast-ageing society. Taiwan should involve strategies for alleviating the 
burden of this growing population on the current health care system. Aside from curing 
diseases, the goal of health care interventions for the elderly population should be to pre-
vent disability, reduce the occurrence of dementia, and expand the capacity of the current 
health care system. Based on an accurate proposed time series model, the aim of this study 
is to provide stakeholders a reference of the changing trend to accommodate this growing 
need.  

The literature indicates that dementia is an acquired, chronic, and progressive cogni-
tive dysfunction in multiple domains, including memory, language, visuospatial, and ex-
ecutive function [3]. Symptoms such as severe memory impairment, disorientation and 
confusion, mood instability, and behavioral and psychological changes (e.g., hallucina-
tions and delusions) develop as the disease progresses [4]. These symptoms may contrib-
ute to the daily social or professional dysfunction of patients, causing emotional exhaus-
tion among caregivers and increasing the socioeconomic burden [5].  

Past studies indicated that dementia has a substantial effect on the social care system 
and societal costs [6]. As an acquired disabling syndrome, characterized by a progressive 
deterioration in multiple cognitive domains that interferes with daily functioning, several 
conditions cause dementia symptoms, including Alzheimer’s disease, vascular disorders, 
and Parkinson’s disease. The prevalence of dementia among older adults increases as a 
population ages, significantly affecting the lives of an increasingly large number of older 
adults globally. Because dementia is the main cause of hospitalization among older adults, 
the increasing prevalence of dementia places tremendous pressure on the health insurance 
system. The number of people diagnosed as having dementia worldwide is growing with 
the increase in the global average living age [7]. The World Alzheimer’s Disease Report 
indicated that the number of people with dementia worldwide exceeded 50 million in 
2019 and is expected to increase to 15.2 billion by 2050; moreover, dementia currently in-
curs a cost of US$1 trillion per year, and this figure is expected to double by 2030 [7]. Based 
on the rapid increase in dementia patients and financial demands, dementia is a global 
problem that requires urgent attention. A time series approach could provide a thorough 
and accurate understanding of the prevalence rate, which will assist in actions taken to 
address this disease. 

A significant portion of the societal cost of dementia is patient care. Studies reported 
that the average total costs for the last 5 years of life of patients with dementia are higher 
than those of patients with heart disease or cancer, among other causes of mortality [8]. In 
2015, the overall cost of dementia was approximately US $818 billion; 40.4% of this cost 
was attributed to caregivers. Dementia is often associated with disorientation, confusion, 
mood instability, and behavioral psychological symptoms; care is thus demanding. Care 
for patients with dementia is generally more time consuming than care for patients with 
other diseases [9]. The informal caregivers of patients with dementia often develop de-
pression, anxiety, and physical symptoms and even have a relatively high mortality rate 
[5,10–12]. Therefore, the care of patients with dementia is one of the major sources of so-
cioeconomic burden that should be emphasized in policies on expanding the medical al-
lowance for this population. Suitable social welfare and public health policies necessitate 
a precise model for predicting the prevalence rate of dementia. 

Time series analysis, also known as dynamic series analysis, is a classic statistical 
method that refers to a sequence formed by arranging various variables according to a 
time series. Time and data variables play a critical role in time series analysis. Based on 
irregular changes, various factors in the actual situation can affect the time series forecast. 
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Numerous methods have been proposed in time series-related research. Among the pro-
posed methods, the two most commonly used time series forecasting models are the au-
toregressive integral moving average (ARIMA) proposed by Box and Jenkins and the ex-
ponential smoothing method (ETS) proposed by Brown [13,14]. Although these two meth-
ods have been applied in various fields [15,16], there are limitations. In the ARIMA, the 
future value of the time series and past observations are assumed to satisfy a linear rela-
tionship [17]; however, most time series data have a nonlinear relationship, which limits 
the application scope of the ARIMA. On the other hand, ETS forecasts are based on his-
torical data. If not combined with other methods, the prediction of a nonlinear time series 
cannot produce satisfactory results. These methods rely heavily on linear assumptions, 
which use historical data sets, single-variable, or multivariable time series functions to 
forecast future trends. The lack of nonlinear fitting capabilities may limit the development 
of these methods. 

Machine learning (ML) methods—such as artificial neural networks (ANNs) [18] and 
support vector regression (SVR) [19]—have demonstrated excellent nonlinear fitting ca-
pabilities in demand forecasting. However, improper parameter settings seriously affect 
the realization of ANN and SVR methods. Studies have strongly indicated that a solution 
is required to produce suitable hyperparameters [20,21]. Therefore, many hybrid models 
were proposed to solve the optimization problem, such as PSOSVR, GASVR, DESVR, 
GSSVR [20,22]. Recurrent neural networks (RNNs) are neural networks developed for 
time series problems in numerous types of neural network structures. Research has indi-
cated that RNNs outperform traditional neural networks, such as multilayer perceptron 
machines [23,24]. Cui and Liu used a combination of an RNN and convolutional neural 
network (CNN) to classify Alzheimer’s disease [25]. Maragatham and Devi (2019) estab-
lished a mental strength failure prediction model based on long short-term memory 
(LSTM) neural networks [26]. In addition, Lipton et al. (2015) used an LSTM network for 
the classification and diagnosis of patients in hospital pediatric intensive care units [27]. 
Wang et al. (2019) also developed a deep learning approach involving the use of longitu-
dinal electronic health records to predict mortality risk for the identification of patients 
with dementia who may benefit from palliative care [28]. Another study evaluated the 
role of deep learning models in identifying surgical behaviors and evaluating surgeons’ 
technical performance [29]. These aforementioned studies have demonstrated the success-
ful application of various RNN models to numerous medical prediction tasks through the 
effective use of the temporal relationship among collected patient data. 

This study proposes the use of an RNN structure based on an LSTM network to pre-
dict the trends of patients with dementia. Based on our understanding, relatively limited 
studies have explicitly evaluated the forecast of dementia worldwide to date. Most of the 
research focuses on predicting patients with dementia and the classification of dementia 
[30–32], which is substantial progress for physicians. However, for the government or pol-
icymakers, the strategic layout and budget of medical care are the issues they are con-
cerned about. With the increasing number of patients with dementia [33], the cost of care 
is also increasing, which is one of the focuses of this study. Recently, Kingston et al. fore-
casted the older population's care needs in England over the next 20 years via PACSim 
model [34]. Ahmadi-Abhari et al. developed a Monte-Carlo Markov model on predicting 
the number of people living with dementia to 2050 and provided the estimates for the 
impact of smoking cessation [35]. In addition to no relevant research on the relationship 
between the number of patients with dementia and nursing cost and policy promotion in 
Taiwan, the LSTM network with excellent performance in sequence prediction [36], has 
not been used to predict the number of people with dementia. Therefore, this study aims 
to establish a prediction model to provide a reference for government budgeting and ad-
ministration by accurately predicting the number of people with dementia. Comparisons 
with a series of benchmark models verified the superiority of the proposed model. On the 
basis of these findings, this paper presents further constructive recommendations to ac-
tively support dementia prevention and care, which can considerably improve the health 
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care process for caregivers and society. Section 2 discusses the LSTM architecture and 
other prediction models. Sections 3 and 4 respectively explain how the LSTM network can 
be used for regression problems and present the experimental results of a forecasting ap-
plication. 

2. Materials and Methods 
2.1. Data Sources and Preprocessing 

The sources of the data were extracted from the Health Insurance Database of the 
Ministry of Health and Welfare in Taiwan, which included the annual number of demen-
tia patients over 60 years old. According to the availability of information from 1997 to 
2017, we applied the proposed LSTM method to the abstracted data to determine the 
trend. The model methodology will be elaborated below. The annual data from 1997 to 
2013 was applied as a training set to train the proposed LSTM method. Subsequently, the 
testing set was used to test the accuracy of the forecast, which consisted of the annual 
number of dementia patients for 2014–2017. 

2.2. LSTM Network 
Time series forecasting is emerging as one of the most important branches of data 

analysis. However, traditional time series forecasting models often result in poor forecast-
ing accuracy, because such methods require large sequence data features [37]. Data col-
lected at fixed time intervals are called time series data; each data point is equally spaced 
in time. Time series prediction is a method of predicting future trends and patterns of a 
historical data set using time characteristics. Predicting the number of patients with de-
mentia using input data with a time component and a model that differs from the tradi-
tional regression method may be effective. 

Figure 1 presents a traditional RNN. The input of the RNN has a sequence length x = 
(x1, ..., xT), which can be processed recursively. When processing each symbol, the RNN 
maintains an internal hidden state (i.e., s). The parameters of this method are the recursive 
weight matrix W, the input weight matrix U, and the output weight matrix V. The opera-
tion of the RNN at each time step t can be expressed as ℎ = 𝜎(𝑈 + 𝑊𝑠 )  (1)

where σ is the starting function, and t = 1, 2, …, T. The output of the RNN is calculated 
using the formula 𝑜 = 𝜎(𝑉𝑠 )  (2)

A one-step-ahead forecast in a time series requires both the previous data and the 
most recent data. An RNN model has the advantages of a hidden-layer self-feedback 
mechanism and the ability to avoid long-term dependence problems. However, practical 
applications still face some difficulties [38]. 

 
Figure 1. Schematic diagram of an RNN. 
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The first LSTM neural network was proposed by Hochreiter and Schmidhuber (1997) 
and had a targeted design to solve the problem of long-term dependence [39]. The LSTM 
network memory unit consists of four gates (or units), namely the input gate, output gate, 
forget gate, and memory unit. The gate that controls the flow of information is displayed 
in Figure 2. The LSTM network is a variant of RNNs, which have been used for numerous 
practical situations in fields such as biomedical sciences [40], speech recognition [41], sen-
timent analysis [42], and image classification [43]. The input gate controls whether the 
input signal can modify the state of the memory cell. The output gate controls whether 
the state of other memory units can be modified. The forget gate can choose to forget or 
remember its previous state. Broadly: 
(1) The input gate allows new information to flow into the network. It has parameters 𝑊 , 𝑏 , where i stands for input. 
(2) The memory cell preserves the hidden unit information across time steps. It has pa-

rameters 𝑊 , 𝑏 , where c stands for cell. 
(3) The forget gate allows information, which is no longer pertinent, to be discarded. It 

has parameters 𝑊 , 𝑏 , where f stands for forget. 
(4) The output gate determines what information should be output to the next neuron 

and what should be propagated forward as part of the new hidden state. It has pa-
rameters 𝑊    and 𝑏 , where o stands for output. 
The LSTM network is an effective algorithm for establishing time series models. The 

basic component of the LSTM network is the memory block, which solves the gradually 
gradient vanishing problem by storing network parameters for a long period of time. The 
four gates of the LSTM network are represented by the following formula:  

At time t, xt is the input data of the LSTM unit, ht is the output of the LSTM unit, ht−1 
is the output of the LSTM unit at the previous moment, and Ct is the value of the memory 
unit. The process of the LSTM network can be divided into the following steps. 

(1) Calculate the value of the candidate memory unit 𝐶 , where 𝑊  is the weight 
matrix and 𝑏  is the bias. 𝐶 = 𝜎(𝑊 ∙ ℎ , 𝑥 + 𝑏 )  (3)

(2) Calculate the value of the input gate 𝐼 . The input gate controls the update of the 
current input data to the state value of the memory unit, where 𝜎 is the sigmoid 
function, 𝑊  is the weight matrix, and 𝑏  is the bias. 𝐼 = 𝜎(𝑊 ∙ ℎ , 𝑥 + 𝑏 )  (4)

(3) Calculate the value of the forget gate 𝐹 . The forget gate controls the update of the 
historical data to the state value of the memory unit, where 𝑊  is the weight matrix 
and 𝑏  is the bias. 𝐹 = 𝜎(𝑊 ∙ ℎ , 𝑥 + 𝑏 ) (5)

(4) Calculate the value of the current moment memory unit 𝐶 ; 𝐶  is the state value 
of the last LSTM unit. 𝐶 = 𝐹  𝐶 + 𝐼  𝐶   (6)

(5) Calculate the value of the output gate 𝑂 . The output gate controls the output of the 
state value of the memory unit, where 𝑊  is the weight matrix and 𝑏  is the bias. 𝑂 = 𝜎(𝑊 ∙ ℎ , 𝑥 + 𝑏 )  (7)

(6) Calculate the output of the LSTM unit ℎ , where tanh is a non-linear activation. It 
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squashes the permissible amplitude range of the output signal to some finite value. 
The function is shown as ℎ = 𝑂  𝑡𝑎𝑛ℎ (𝐶 )  (8)

𝑡𝑎𝑛ℎ(𝑥)  = 𝑠𝑖𝑛 ℎ(𝑥)𝑐𝑜𝑠 ℎ(𝑥) = 𝑒 𝑒𝑒 + 𝑒  (9)

 
Figure 2. Unit of long short-term memory neural network. 

The LSTM network employs three control gates and memory units to save, read, re-
set, and update long-term information. Due to the common mechanism of the LSTM net-
work’s internal parameters, the dimensions of the weight matrix can be set to control the 
dimension of the output. The LSTM network establishes a long time period between the 
input and feedback. 

An entire univariate or multivariate time series can be used to train LSTM networks. 
To improve the learning process and effectiveness of the model, smaller subsamples from 
the original time series were defined in this study. With T as the sequence length, the 
sequences z(t) = [xt, xt+1, …, xt+T−1] ∈ RT and y(t) = xt+T−1+q ∈ R are the tth input and output of the 
LSTM network, respectively; q is a positive integer that indicates the number of steps 
ahead to be predicted, and N is the total number of subsamples which depends on the 
length of the original time series or the sequence length. 

2.3. Statistical Models 
Statistical predictions are usually divided into two categories: qualitative and quan-

titative methods. Time series analysis is a quantitative prediction method that is widely 
used in mathematical statistics, signal processing, financial prediction, electroencephalog-
raphy, and other fields and is beneficial to economic and scientific improvement. To ob-
jectively present the most robust method with a low error rate, the three following meth-
ods were selected for comparison. 

2.3.1. ETS (Exponential Smoothing) 
Proposed by Brown and Meyer (1961) [44], ETS is a data averaging method that con-

siders three factors: the error, trend, and season. A maximum likelihood estimation is used 
in ETS to optimize the initial values and parameters, and the optimal exponential smooth-
ing model is then selected. Moreover, the weight of the ETS weighted data decays expo-
nentially. The latest data have a higher weight than older data, and the weight of the older 
data decreases gradually. The ETS algorithm is a solution that overcomes the limitations 



Mathematics 2021, 9, 488 7 of 19 
 

of previous exponential smoothing models, but does not provide a convenient forecasting 
interval calculation method. 

 

2.3.2. ARIMA (Autoregressive Integrated Moving Average) 
Proposed by Box and Jenkins (1976), the ARIMA model, also known as the Box–Jen-

kins model, uses several formed fragments after the time series has passed as the input, 
and a prediction model is established on the basis of the regression analysis results [13]. 
This model is frequently used for the prediction of short-term trends in economic areas. 

2.3.3. TBATS (Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, and 
Trend Seasonal Components Model) 

This method, which was proposed by Livera, Hyndman, and Snyder (2011), com-
bines trigonometric seasonality, Box–Cox transformation, ARMA errors, and trend and 
seasonal components [45]. This approach can be used to analyze and predict whether sea-
sonal data exist based on the exponential smoothing method. The combination of multiple 
models can achieve more accurate results but also requires more training time, resulting 
in slower calculation. 

2.4. Hybrid Models 
2.4.1. SVR (Support Vector Regression) 

SVR was proposed by Drucker et al. in 1996 [19]. SVR includes an insensitive loss 
function and penalty factor to enhance the robustness of SVMs [46,47]. SVR involves the 
projection of data to a high-dimensional hyperplane and subsequent calculation of the 
total distance from each point to the hyperplane. The hyperplane with the smallest total 
distance is identified as the solution. SVR has three hyperparameters: the regularization 
parameter (C), kernel function bandwidth (σ), and ε-insensitive loss function (ε). Changes 
to these parameters considerably affect the accuracy of SVR prediction. However, the au-
tomatic adjustment of the three hyperparameters in SVR remains a challenge in improv-
ing the accuracy of SVR prediction. 

2.4.2. PSOSVR (Particle Swarm Optimization-Based SVR) 
Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart (1995) 

based on the flight motion of foraging birds [48]. A bird’s movement continuously reveals 
places with food, thereby updating the position of the entire group until the optimal loca-
tion is finally identified. Defining the stopping criterion and constraining the processing 
mechanism is crucial in a PSO search space. If the number of iterations of the PSO exceeds 
a predetermined threshold, the PSO will stop. PSO is an approach to global optimization 
calculation that can effectively select the optimal combination of internal parameters for 
an SVR model and improve the model prediction accuracy and generalization ability (Liu 
et al., 2018). The fitness function is calculated in each optimization process of the PSO to 
determine the solution for the parameters (C, σ, and ε). 

2.5. Deep Learning Model (ARTIFICIAL Neural Network ANN) 
ANNs are inspired by the structure of the human nervous system. A neural network 

is a collection of interrelated ‘neurons’ in a self-adjusting system. An ANN arithmetically 
adjusts the weights (free parameters) to meet performance requirements using representa-
tive samples. Because of their learning process involves the use of historical data, ANNs 
demonstrate high effectiveness in complex problems [49]. Back-propagation networks are 
well-known supervised learning neural network models [50] that consist of an optimiza-
tion algorithm which combines a backward pass, gradient descent [51], and the chain rule 
in calculus. The gradient descent method identifies the initial position of the parameter in 
the steepest downhill direction and updates the parameter position. Slope information is 
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obtained through derivation of the function. The gradient descent method uses cost func-
tion to optimize the weights in ANN. 

3. Results 
3.1. Parameter Settings 

Table 1 presents a summary of the data collected from the Department of Statistics of 
Taiwan’s Ministry of Health and Welfare. The number of people with dementia over the 
age of 60 years registered from 1997 to 2017 was calculated. The data used in this study 
were grouped by gender and age, and the maximum, minimum, mean, median, first quar-
tile, third quartile, interquartile range (IQR), standard deviation (SD), and coefficient of 
variation (CV) were calculated for each group. The CV values were used to determine the 
degree of dispersion of a set of data around the average value, with a larger CV value 
indicating a higher degree of dispersion. The data indicated that older age was associated 
with a higher degree of dispersion. The overall number of dementia cases was higher 
among women than among men in each age group. SVR has three hyperparameters that 
affect the accuracy of the forecasting task; namely, the tube size of the ε-insensitive loss 
function (ε), regularization parameter (C), and bandwidth of the kernel function (σ). The 
parameter settings used in this study are displayed in Table 2 and 3. 

Table 1. Descriptive statistics for dementia patients in Taiwan from 1997 to 2017 

Years Old Sex Min Max Mean Med Q1 Q3 IQR SD COV 

60~64  
M 1003 2092 1392.67 2092 1088 1675 587 322.38 0.23 
F 925 2319 1390.62 2319 1053.5 1690 636.5 385.44 0.28 

65~69  
M 3459 9747 5020.86 4258 3832.5 5324.5 1492 1714.18 0.34 
F 3050 11572 5825.67 3621 3646 6937 3291 2379.33 0.41 

70~74  
M 5794 11094 8059 5794 7033 9625.5 2592.5 1533.13 0.19 
F 4613 15353 9734.86 4613 5995.5 13676.5 7681 3642.94 0.37 

75~79  
M 5198 17196 11469.9 5198 8578.5 13370.5 4792 3318.71 0.29 
F 4644 27538 14564.6 4644 7846 20566.5 12720.5 6973.84 0.48 

80~84  
M 3635 18941 12231.9 3635 6564 17755 11191 5428.23 0.44 
F 3837 33385 15857.2 3837 7379 23432 16053 8964.56 0.57 

85 and 
above 

M 1959 33696 13619.6 1959 4626 21380 16754 10091 0.74 
F 2524 49558 18865.5 2524 6831.5 28351 21519.5 13967.5 0.74 

Total 
M 25108 94040 52790.7 26079 31968 69794.5 37826.5 21466 0.41 
F 25322 140253 67047.5 26008 33068 95259.5 62191.5 35588.5 0.53 

Min, minimum; Max, maximum; Med, median; Q1, the first quartile; Q3, the third quartile, IQR, 
interquartile range; SD, standard deviation; COV, coefficient of variation; M, male; F, female. 

Table 2. Parameter settings in PSOSVR 

Years Old ε C σ 
60~64 0.0625 8 0.5 
65~69 0.015625 4 0.25 
70~74 0.03125 16 0.5 
75~79 0.0078125 32 0.5 
80~84 0.000976563 4 0.5 

85 and above 0.00390625 4 0.125 
Total 0.00390625 8192 0.001953125 
ε, ε-insensitive loss function; C, penalty factor; σ, kernel function bandwidth. 
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Table 3. Number of neurons and parameter settings for proposed model 

Input LSTM_1 LSTM_2 Hidden_1 Hidden_2 Output Activation function Learning rate Epochs 
300 250 200 100 50 1 Adam 1E-05 2000 

3.2. Model Performance 
Table 4 presents a comparison of the predicted results of the six time series prediction 

models and the proposed LSTM model for male patients with dementia. The models were 
divided into statistical, hybrid, and deep learning models to understand the relationship 
between each prediction model. The statistical models comprise ETS, ARIMA, and 
TBATS. The hybrid models comprise SVR and PSOSVR. The deep learning model were 
represented by ANN. These six models were compared with the prediction results of the 
proposed LSTM model. Among the statistical models, the model TBATS exhibited favor-
able performance compared with the models ETS and ARIMA, with respective decreases 
in mean absolute percentage error (MAPE) of 20% and 21% in TBATS. Hybrid models, 
PSOSVR also demonstrated favorable performance compared with the SVR and ANN 
models, with significant decreases in MAPE value of 65% and 16% in PSOSVR. 

Comparisons of the predicted results of the six time series prediction models and the 
proposed LSTM model for female patients with dementia are displayed in Table 5. Simi-
larly, the prediction models were divided into three categories based on whether they 
used statistical, hybrid, or deep learning models. In the statistical models, the MAPE of 
TBATS was relatively high compared with the MAPE values of ETS and ARIMA, which 
were 46% and 24% lower, respectively. This discrepancy is principally related to the pre-
diction model’s poor performance in the 65~69 years old group, for which the MAPE value 
was as high as 30.48%. The inability to modify or iterate the parameters is the major dis-
advantage of the statistical models. To improve the results, PSOSVR was compared with 
SVR; the MAPE was reduced by 46% in PSOSVR, and the error percentage was success-
fully reduced. However, when PSOSVR was compared with the ANN, the MAPE value 
was 2% higher, which may have been related to PSOSVR not having the yet-identified 
optimal solution. However, the prediction results were close to those of neural networks, 
which demonstrates the value of the hybrid models. 

Table 4. Predicted results for male dementia patients using different models 

Years Old Criteria ETS ARIMA TBATS SVR PSOSVR ANN LSTM 

60~64 
MAE 233.60 248.71 60.78 966.21 138.20 336.99 14.17 

MAPE (%) 16.26 17.02 3.65 52.10 8.89 5.57 0.90 
RMSE 327.64 322.56 76.59 890.08 142.76 87.44 14.66 

65~69 
MAE 911.40 976.72 653.48 2638.68 995.69 910.94 89.09 

MAPE (%) 10.15 10.99 7.04 26.40 11.96 10.15 1.18 
RMSE 1013.54 1064.55 853.48 2891.80 1210.74 1013.20 84.49 

70~74 
MAE 331.20 363.88 262.77 637.62 1045.12 179.15 159.58 

MAPE (%) 3.49 3.84 5.08 5.43 2.72 2.00 1.55 
RMSE 391.49 423.19 525.92 749.69 293.18 203.18 189.58 

75~79 
MAE 809.40 865.17 955.47 2870.72 2618.90 959.79 671.39 

MAPE (%) 4.80 5.19 8.10 15.77 4.46 4.67 2.75 
RMSE 859.95 908.05 1233.16 2911.56 802.91 702.17 483.70 

80~84 
MAE 520.20 547.82 618.75 5000.10 480.66 2247.28 527.91 

MAPE (%) 2.74 2.87 4.56 3.14 2.72 12.43 2.66 
RMSE 541.61 565.18 1027.30 726.64 612.25 2281.82 526.43 

85 and 
above 

MAE 2667.20 2768.72 3593.13 4782.60 1727.15 3106.78 1644.49 
MAPE (%) 8.58 8.86 8.36 14.66 7.13 10.57 4.61 

RMSE 3283.61 3318.90 3557.40 5066.09 2427.37 3137.09 2524.63 
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Total 
MAE 4945.60 5172.84 5532.69 3529.23 3116.40 4116.68 3175.42 

MAPE (%) 6.97 5.78 5.47 5.22 4.19 4.71 3.88 
RMSE 6260.40 6430.58 6940.69 4137.92 4127.25 4388.69 4007.95 

Average 
MAE 1488.37* 1563.41* 1596.72* 2917.88* 1446.02* 1693.94* 897.44 

MAPE (%) 7.56* 7.79* 6.04* 17.53* 6.01* 7.16* 2.50 
RMSE 1811.18* 1861.86* 2030.65* 2481.97* 1373.78 1687.66* 1118.78 

MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, root mean squared 
error; Boldface, the best values in each row. ETS, Exponential smoothing; ARIMA, Autoregressive 
integrated moving average; SVR, Support vector regression; PSOSVR, Particle swarm optimiza-
tion integrated Support vector regression; TBATS, Trigonometric seasonality Box–Cox transfor-
mation ARMA errors Trend Seasonal components; ANN, Artificial neural network; LSTM, Long 
short-term memory. * p < 0.05, ** p < 0.01, *** p < 0.001. 

Table 5. Predicted results for female dementia patients using different models 

Years old Criteria ETS ARIMA TBATS SVR PSOSVR ANN LSTM 

60~64 
MAE 128.24 97.49 39.82 577.79 152.94 278.21 6.60 

MAPE (%) 6.35 7.49 6.14 34.04 12.25 15.66 2.33 
RMSE 131.97 175.97 273.88 611.82 229.06 324.11 46.27 

65~69 
MAE 1215.29 882.27 2927.21 1147.67 1368.60 541.18 429.07 

MAPE (%) 10.84 8.45 30.48 17.24 14.76 5.06 4.42 
RMSE 1203.70 903.06 2734.10 2386.27 1397.15 776.41 634.07 

70~74 
MAE 614.80 623.69 730.62 2014.93 777.74 754.69 609.49 

MAPE (%) 4.38 4.54 5.49 11.59 5.50 5.33 4.34 
RMSE 766.84 703.18 832.89 2160.61 1020.11 945.34 710.01 

75~79 
MAE 1321.81 4630.01 1567.16 2139.77 955.08 994.06 893.49 

MAPE (%) 5.03 19.47 6.48 7.45 3.82 4.03 3.61 
RMSE 1409.63 4566.97 1542.58 2181.50 1033.29 1106.36 1014.32 

80~84 
MAE 2354.40 1763.74 2456.60 3955.26 887.86 1462.82 654.31 

MAPE (%) 7.41 5.23 9.37 10.90 3.43 5.02 2.37 
RMSE 2454.16 1685.58 2547.80 3187.92 1085.27 1645.63 812.76 

85 and  
above 

MAE 4734.00 3584.35 3496.61 1899.59 8248.37 9350.43 1173.70 
MAPE (%) 10.06 8.83 8.87 4.75 4.12 8.48 2.88 

RMSE 5341.83 3556.22 3641.71 3128.78 1997.94 3639.94 1678.02 

Total 
MAE 9577.40 8370.13 11891.27 3165.95 4105.93 4295.60 2392.24 

MAPE (%) 7.66 6.82 9.16 2.70 3.56 2.89 1.99 
RMSE 8952.33 8343.87 10896.10 3733.22 4564.03 3101.85 2764.75 

Average 
MAE 2849.42* 2850.24* 3301.33* 2128.71* 2356.65* 2048.20* 879.84 

MAPE (%) 7.39* 8.69* 10.86* 12.67* 6.78* 6.64* 3.13 
RMSE 2894.35* 2847.84* 3209.87* 2322.75* 1618.12* 1648.52* 1094.32 

MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, root mean squared 
error; Boldface, the best values in each row. ETS, Exponential smoothing; ARIMA, Autoregressive 
integrated moving average; SVR, Support vector regression; PSOSVR, Particle swarm optimiza-
tion integrated Support vector regression; TBATS, Trigonometric seasonality Box-Cox transfor-
mation ARMA errors Trend Seasonal components; ANN, Artificial neural network; LSTM, Long 
short-term memory. * p < .05, ** p < .01, *** p < .001. 

3.3. Analysis of Individual Data 
3.3.1. Patients Aged 60~64 Years 

As shown by the blue curves in Figure 3, the slope of the training set (1997–2012) was 
similar to the slope of the test set (2013–2017), indicating that the trend of the overall pa-
tient population was stable. Therefore, the predicted results produced by each model were 
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relatively similar. The SVR prediction curve deviated from the actual values in Figures 4a 
and 5a because SVR involved the use of the grid search method for parameter adjustment, 
meaning that the searched hyperparameters may not have included the optimal solution; 
thus, the PSOSVR predicted value was closer to the actual value. However, optimization 
algorithms such as PSO do not guarantee that the output is the global optimum. Therefore, 
there remains room for improvement in the prediction ability. The predicted value of the 
LSTM network was closer to the observed value due to network’s ability to memorize the 
overall curve trend and output value control through the gate. Therefore, the LSTM net-
work demonstrated the most favorable prediction accuracy for this age group. 

 
Figure 3. Projected increase in the number of dementia patients in the Taiwan, by age group 
(1997–2017). (a) male; (b) female. 
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Figure 4. Prediction results of the number of male dementia patients with different models at dif-
ferent age from 2013 to 2017. (a) 60~64 years old; (b) 65~69 years old; (c) 70~74 years old; (d) 75~79 
years old; (e) 80~84 years old; and (f) 85years old and above. 

 
Figure 5. Prediction results of the number of female dementia patients with different models at 
different age from 2013 to 2017. (a) 60~64 years old; (b) 65~69 years old; (c) 70~74 years old; (d) 
75~79 years old; (e) 80~84 years old; and (f) 85years old and above. 

3.3.2. Patients Aged 65~69 Years 
As indicated by the orange curve in Figure 3, the number of patients steadily in-

creased. Therefore, adapting to the overall trend is not demanding for the algorithms. 
Both Figures 4b and 5b indicate that the LSTM network was more sensitive to changes in 
the trend; thus, its performance was predicted to be the most favorable for this age group. 
Although the curves in Figure 5b suggest that the results obtained with ARIMA and 
TBATS were in higher agreement with the observed values, the errors of the output values 
were too large, making access to an accurate prediction impossible. 

3.3.3. Patients Aged 70~74 Years 
Among the patients aged 70~74 years, the prediction curve of the LSTM network for 

female patients was slightly behind the trend, and the estimation was affected by the train-
ing data. The gray curve in Figure 3b indicates that the number of female patients de-
creased from 2013 to 2014, which may have caused inconsistency in the test and training 
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data set trends. Therefore, because of the LSTM network’s sensitivity to changes in train-
ing data trends, the LSTM network predictions were slightly inferior to those of ANN 
models, which used neural networks to form direct predictions. PSOSVR and TBATS per-
formed better than the single models. 

3.3.4. Patients Aged 75~79 Years 
The prevalence of dementia among patients in the age range of 75 to 79 years steadily 

increased, as illustrated by the yellow curves in Figure 3. This regular growth should have 
been relatively easy for each model to predict. However, the PSOSVR prediction curve in 
Figure 4d was completely parallel (and close) to the SVR prediction curve. Even under 
PSO, SVR failed to identify more suitable parameters, resulting in the use of similar pa-
rameters for both PSOSVR and SVR. 

3.3.5. Patients Aged 80~84 Years 
Male and female patients in this age range exhibited considerably different trends 

from 2014 to 2017 (see Figure 3). The curves of male patients flattened or even decreased, 
whereas those of female patients increased significantly. Because of the abnormal down-
ward trend in male patients’ test data (Figure 3), obtaining accurate prediction results was 
difficult for the algorithms. These challenges are reflected in the predictions of SVR, PSO-
SVR, ANN, and other statistical models. Due to its memorization ability, the LSTM net-
work produced more stable predictions, consequently achieving the highest prediction 
accuracy for this age group. 

Similar and weak prediction results were obtained by other statistical models for this 
age group. In the case of a large deviation between the training and test data, both the 
ANN and LSTM network maintained a certain level of prediction accuracy. The predic-
tion result of the LSTM network was still the most reliable because of its high sensitivity 
to changes in the training data. Minor trends can be included to improve the training of 
the model, thereby assisting the LSTM network in achieving even higher prediction accu-
racy. 

3.3.6. Patients Over 85 Years Old 
Patients over 85 years of age constituted the largest age group of patients with de-

mentia. As the population aged, the number of patients over the age of 85 years also in-
creased in the test set. SVR, PSOSVR, and other statistical models exhibited difficulty in 
predicting small trends in the training data set. Even though the prediction results of both 
the ANN and LSTM network were close to the actual values, the LSTM network reported 
the exact value in some sections. Overall, compared with other models, the LSTM network 
produced more accurate predictions of small trends. 

Figures 4 and 5 present the predicted numbers of male and female with dementia 
from 2013 to 2017 obtained by various models (ETS, ARIMA, TBATS, SVR, PSOSVR, 
ANN, and LSTM network model). The solid black lines represent the number of real pa-
tients, and the dashed red lines represent the prediction result of the LSTM model pro-
posed in this study. The experimental results verified that the LSTM network is the model 
with the lowest average error value in different age blocks and thus the optimal prediction 
model in this study. 

4. Discussion 
In this study, we analyzed the patients diagnosed as having dementia from 1997 to 

2017 in annual units from a data set extracted from the Health Insurance Database of the 
Ministry of Health and Welfare in Taiwan. To further verify the validity of the proposed 
model, the statistical models (ETS, ARIMA, and TBATS), hybrid models (SVR and PSO-
SVR), and deep learning models (ANN and LSTM) were compared. Overall, the RMSE 
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and MAPE demonstrated that LSTM network has superior performance than other ex-
isted models. In this section, we discussed the statistical models, hybrid models, and deep 
learning models. 

 
 

4.1. Statistical Models: Comparison of the ETS, ARIMA, and TBATS Models 
The statistical models used for comparison were the ETS, ARIMA, and TBATS mod-

els, as listed in Tables 4 and 5. Both ETS and ARIMA are classic time series forecasting 
models. However, both have disadvantages for predictions based on data from multiple 
time periods. If the series has a single root (nonstationary series) or is not adjusted to the 
appropriate lagging period, then the model cannot achieve a high accuracy. Therefore, 
complicated preprocessing is required, such as statistical testing of the sequence. Devel-
oped from ETS, TBATS is a seasonal model that can predict seasonal time series more 
effectively. The research results indicate that TBATS has a higher average error for pre-
dictions among female patients, which may be because of the instable number of dementia 
patients; therefore, TBATS did not exhibit sufficient performance improvements. 

4.2. Hybrid Models: Comparison of the SVR and PSOSVR Models 
Support vector regression (SVR) is a popular choice for prediction and curve fitting 

for linear and non-linear regression types. Formulated as an optimization problem, SVR 
can determine the optimal regression model by using the epsilon function, which is 
mapped to the hyperplane of the solution space. This model has the advantage of adapt-
ing to multidimensional tasks and producing suitable predictions for nonlinear data. 
Therefore, this study used SVR for sequence prediction. The results revealed that the pre-
diction error of SVR was higher than that of statistical models because SVR has three hy-
perparameters—namely C, σ, and ε. If the hyperparameters are not properly adjusted, the 
model’s predictive ability cannot achieve optimal performance. PSO has been widely used 
to solve the hyperparameter optimization problem [49,52]. As a result, PSO was used in 
the present study to adjust the hyperparameters of the SVR by adjusting the parameters 
to an optimal combination and reduced prediction error. Tables 3 and 4 indicate that the 
error rate of PSOSVR was considerably lower than that of SVR and was better than most 
statistical models. 

4.3. Deep Learning Models: Comparison of the ANN and LSTM Network Models 
ANNs are developed through imitation of the neuron transmission in the human 

brain. A shallow neural network based on back-propagation has the advantages of effi-
cient training, high accuracy, and suitability for data sets with noise. ANNs demonstrate 
excellent predictive ability but also have numerous shortcomings, such as the use of mul-
tiple hyperparameters, proneness to overfitting, gradient disappearance, gradient explo-
sion, and long-term dependence problems. Numerous neural network models have been 
used to solve time series forecasting problems. RNNs have received extensive attention 
[50] because of their internal state and short-term memory. RNNs store a vector for each 
step, which is especially important when the input data contain short-term correlations. 
However, because of the vanishing gradient problem, the model has difficulty learning 
the long-term correlations of the input sequence if the stochastic gradient descent is used 
to train the model. 

In the LSTM network, the special valve structure (gate) can avoid gradient vanishing 
in a deep network. Furthermore, the memory unit enhances the long-term memory capa-
bility and overall prediction efficiency. The results of this study confirm that the LSTM 
network has the lowest prediction error, with the average MAPE falling between 2.50% 
and 3.12%, demonstrating its excellent prediction accuracy. This study used p-values and 
R2 (coefficient of determination) to statistically analyze the prediction results and verify 
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the significance and interpretability of the proposed model. In this study, if the p value is 
significant, it implies that the difference between the two is obvious, which proves that 
LSTM has a much lower prediction error than other models. Tables 3 and 4 show that all 
models exhibited significant differences. The prediction ability of the LSTM network was 
higher than that of the ETS, ARIMA, TBATS, SVR, PSOSVR, and ANN models. The R2 
value reflects the proportion of variance of the dependent variable that can be explained 
by the independent variable, and it is often used for regression models. Higher R2 values 
indicate better explanatory power of the model. Table 6 demonstrates that most of the R2 
values of the LSTM network were substantially higher than those of the ETS, ARIMA, 
TBATS, SVR, PSOSVR, and ANN models, which indicates that the LSTM model optimally 
fit the original data and had the highest explanatory power of all models. 

Table 6. R2 of dementia patients by different models 

Age ETS ARIMA TBATS SVR PSOSVR ANN LSTM 
60~64 0.7022 0.7854 0.8510 0.9868 0.4920 0.1022 0.9971 

65~69 0.8606 0.8627 0.8193 0.8994 0.8812 0.8606 1.0000 
70~74 0.9116 0.9111 0.9799 0.9237 0.9116 0.9116 0.9259 
75~79 0.8941 0.8953 0.9131 0.3873 0.4873 0.9112 0.9441 
80~84 0.7545 0.8330 0.7861 0.6721 0.0881 0.1545 0.9545 
85 and  
above 0.7692 0.7757 0.9297 0.8665 0.9273 0.7692 0.9692 

Average 0.6153 0.6272 0.8915 0.6772 0.6312 0.6330 0.9368 
Boldface, the best values in each row. ETS, Exponential smoothing; ARIMA, Autoregressive inte-
grated moving average; SVR, Support vector regression; PSOSVR, Particle swarm optimization 
integrated Support vector regression; TBATS, Trigonometric seasonality Box–Cox transformation 
ARMA errors Trend Seasonal components; ANN, Artificial neural network; LSTM, Long short-
term memory. 

4.4. Dementia Prevention and Interventions. 
With declining mortality in younger populations, dementia is expected to become 

one of the greatest global health concerns of the 21st century. Although dementia is not 
curable, its management and the delay of its manifestation are considered to be theoreti-
cally possible. Studies have reported that the course of the disease can be modified with 
adequate care [53], which supports the focus on the manipulation of modifiable risk fac-
tors. In 2017, nine potentially modifiable risk factors were reported, including hyperten-
sion, obesity, depression, and low social contact [3]. Three new modifiable risk factors, 
namely traumatic brain injury, excessive alcohol consumption, and air pollution, were in-
troduced in 2020, with convincing evidence [3]. Approximately 30–50% of dementia cases 
are attributed to these potentially modifiable risk factors. A reduction of 10–25% of these 
risk factors can reduce the number of patients with dementia by 1.1 to 3 million worldwide 
[54]. Furthermore, postponement of the onset of dementia by even 2 years can reduce the 
burden on public health, society, interpersonal relationships, and the economy [55]. Based 
on this study’s proposed model, policy administrators, medical workers, and stakeholders 
can implement more effective and extensive societal policies on dementia prevention and 
care among society. The following suggestions on dementia prevention and care are pro-
vided for the aim of a more dementia-friendly society. 

Promoting resilience in an aging society is a far-reaching approach to dementia pre-
vention. The maximization of care quality and reduction of dementia incidence should 
begin at the community level, including through the promotion of dementia awareness 
and knowledge. According to the UK National Institute of Health and Care Excellence 
and the US National Institute of Health, social isolation is a potentially modifiable risk 
factor [56,57]. Aging people may experience loneliness and a lack of social contact and 
social participation, and the promotion of social engagement opportunities is necessary 
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within the community. Moreover, education and intellectual stimulation alternatives have 
been demonstrated to enhance cognitive resilience later in life [58]. Therefore, within com-
munities, the establishment of supportive social networks that encourage interaction will 
alleviate loneliness, hence reduce dementia possibilities.  

The cost and burden of dementia care are tremendous and continue to rise as the 
global population ages. The average total cost incurred by patients with dementia exceeds 
the total costs of patients with other diseases [8]. Patients with dementia are often elderly 
people approaching their last years of life; thus, their workforce productivity is naturally 
weaker. As a group that has relatively low capability of coping with such a household 
financial crisis, the illness contributes to patients’ cognitive and physical burden and hin-
ders the ability of their families to afford future health care [8]. Therefore, especially fi-
nancially, dementia care often calls for more medical health care support than other ill-
nesses [9]. To actively promote high-quality dementia care, additional medical expendi-
ture on dementia care and prevention is necessary and strongly recommended.  

Furthermore, the prevalence of dementia affects not only patients but also their fam-
ily or the health care workers who must live with these patients and deal with the behav-
ioral and emotional effects of dementia. As mentioned earlier, patients with dementia of-
ten also experience disorientation, confusion, mood instability, and behavioral or psycho-
logical symptoms. As a result, under high pressure for an extended period of time, studies 
have reported that informal caregivers of patients with dementia often develop poor men-
tal health, and have a relatively high mortality rate [5,10–12], which results in further so-
cioeconomic problems. Additional dementia-care training is necessary for the develop-
ment of adequate dementia care, which should also include the emphasis on caregivers’ 
mental and physical health. Not only the quality of care of patients with dementia, but 
also their family caregivers should be emphasized in future policies; an expand in the 
medical allowance and societal support for this particular population should be consid-
ered.  

Prevention is more effective than a cure. Proper social welfare and public health pol-
icies necessitate a precise model for predicting the prevalence rate of dementia. The pur-
pose of this study was to examine whether an alternative prediction model, namely the 
proposed LSTM network, could effectively predict the trends among the population of 
patients with dementia. The results demonstrate that the proposed model was not only 
applicable, but also significantly more accurate than the other models. This precise model 
can successfully predict the prevalence of dementia and can thus aid government admin-
istrations in the development of relevant strategies. For example, policymakers can man-
age the budget allocated to dementia care to reduce its occurrence by implementing leg-
islative changes, developing preventive interventions for younger populations, and 
providing ongoing education and care for elderly adults and their families. Future re-
search is warranted to investigate the performance of the proposed LSTM network for the 
prediction of trends in other illnesses. 

4.5. Contribution of This Paper 
In this study, we analyzed the patients diagnosed as having dementia from 1997 to 

2017 and used seven models to forecast the number of patients. This paper’s contribution 
is listed below: (1) analysis of the dementia patient data and figure out the long-term de-
pendency; (2) construction of the LSTM forecasting model; (3) successful forecast of the 
prevalence of dementia using the LSTM model; (4) provide aid to the government admin-
istrations in developing relevant strategies. For example, policymakers can manage the 
budget allocated to dementia care to reduce its occurrence by implementing legislative 
changes, developing preventive interventions for younger populations, and providing on-
going education and care for elderly adults and their families. Future research is war-
ranted to investigate the performance of the proposed LSTM network for the prediction 
of trends in other illnesses Furthermore, the successful application of LSTM in the se-
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quence prediction task of this study will significantly improve the prediction of the prev-
alence of dementia patients if more clinical variables can be analyzed in the future, which 
achieves the original intention of this study. Prevention is more effective than a cure. 
Lastly, the LSTM model can also be widely applied in many fields, such as vessel trajec-
tory prediction [59], tidal level forecasting [60], financial market forecasting [61], and real-
time crash risk prediction. 

5. Conclusions 
The accurate prediction of the trends and prevalence of dementia among people of 

different genders and ages would strongly assist in providing evidence for the develop-
ment of interventions to prevent or delay dementia onset. The proposed LSTM network 
demonstrated a higher prediction accuracy compared with ETS, ARIMA, TBATS, SVR, 
PSOSVR, and ANN models. The prevalence was further analyzed among patients from 
different gender and age groups to further elucidate the prediction results. Continued ef-
fort in the development of advanced prediction models can provide evidence for health 
care professionals to further improve the care and interventions for people with dementia 
and their family caregivers. Successful dementia prevention, treatment, and support pro-
grams would dramatically reduce the burden on health care systems, individuals, socie-
ties, and economies. As the aging population continues to grow, the development of 
health and social care strategies for patients with dementia using accurate time series 
models will inevitably be an ongoing process. Being equipped to adequately address de-
mentia will likely be one of the ultimate indicators of societal advancement in the future 
world. 
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