The Shape of the (15,3)-Arc of PG(2,7)

Stefano Innamorati *(D) and Mauro Zannetti

Department of Industrial and Information Engineering and of Economics, University of L'Aquila, Piazzale Ernesto Pontieri, 1, Monteluco di Roio, I-67100 L'Aquila, Italy; mauro.zannetti@univaq.it

* Correspondence: stefano.innamorati@univaq.it

Citation: Innamorati, S.; Zannetti, M. The Shape of the $(15,3)$ - Arc of $\operatorname{PG}(2,7)$. Mathematics 2021, 9, 486. https:// doi.org/10.3390/math9050486

Academic Editor: Yang-Hui He

Received: 27 January 2021
Accepted: 22 February 2021
Published: 26 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

Marcugini et al. proved, by computer-based proof, the unicity of the maximum ($k, 3$)-arc in PG(2,7). In this paper, we show how the $(15,3)$-Arc in PG(2,7) may be described using only geometrical properties. The description we provide, believing it is novel, relies on the union of a conic and a complete external quadrangle.

Keywords: $(k, 3)$-arc; NMDS code; complete quadrangle
MSC: 51E21; 51E21

1. Introduction and Motivation

A $(k, n)-\operatorname{arc} K$ in a projective plane $\operatorname{PG}(2, q)$ is a set of k points such that some n, but no $n+1$ of them, are collinear. By writing the homogeneous coordinates of the k points of K as columns of a generator matrix, one obtains a projective linear $[k, 3, k-3]_{q}$ code. Thus, $(k, 3)$-arcs in PG $(2, q)$ correspond to NMDS codes of dimension 3. Since its error-correcting capability increases with k, it is natural to determine the largest value of k for which a $(k, 3)$-arc exists. Define $m_{3}(2, q)$ to be the maximum size of a $(k, 3)$-arc in $\operatorname{PG}(2, q)$. In $1975, \mathrm{~J}$. Thas [1] proved that if $q>3$, then $m_{3}(2, q) \leq 2 q+1$. The projective plane of order seven is the dominant focus of this work. Our reason for deciding to conduct a detailed investigation of this special case is that $\operatorname{PG}(2,7)$ is the smallest projective plane of prime power such that the maximum $(k, 3)$-arc, i.e., the $(15,3)$-Arc, is unique, up to projectivity, cf. [2,3], and the awareness that the unique (15,3)-Arc reveals interesting geometric descriptions, cf. [4-8]. The object of this paper is to show that the $(15,3)$-Arc of $\operatorname{PG}(2,7)$ may be described by means of geometrical properties only. An easy geometric description of the $(15,3)$-Arc in PG(2,7) is provided by considering the union of the vertices of a complete quadrangle with the conic for which the nine lines of the complete quadrangle are external lines.

2. The Description of the $(15,3)$-Arc in $\operatorname{PG}(2,7)$

Let K be a $(15,3)$-Arc in $\mathrm{PG}(2,7)$. For each integer i such that $0 \leq I \leq 3$, let us denote by $t_{i}=t_{i}(K)$ the number of lines of $\operatorname{PG}(2,7)$ meeting K in exactly i points. The numbers t_{i} are called the characters of K with respect to the lines, see [9]. By double counting the number of lines, the number of pairs (P, r), where $P \in K$ and r is a line through P, and the number of pairs $((P, Q), r)$, where $\{P, Q\} \subset K$ and r is the line through P and Q, we get the following equations:

$$
\left\{\begin{array}{c}
t_{0}+t_{1}+t_{2}+t_{3}=57 \\
t_{1}+2 t_{2}+3 t_{3}=120 \\
2 t_{2}+6 t_{3}=210
\end{array}\right.
$$

Solving these equations, we obtain the characters of K with respect to the lines:

Therefore, we have six character vectors:

$$
\begin{gathered}
\left\{\begin{array}{c}
t_{0}=42-t_{3} \\
t_{1}=3 t_{3}-90 \\
t_{2}=105-3 t_{3}
\end{array}\right. \\
7 \leq t_{0} \leq 12,0 \leq t_{1} \leq 15,0 \leq t_{2} \leq 15,30 \leq t_{3} \leq 35 \\
\left(t_{0}, t_{1}, t_{2}, t_{3}\right) \in\{(7,15,0,35),(8,12,3,34),(9,9,6,33),(10,6,9,32),(11,3,12,31),(12,0,15,30)\} .
\end{gathered}
$$

Let P be a point of K. For each integer i such that $0 \leq i \leq 3$, let us denote by $v_{i}=v_{i}(P)$ the number of lines through P meeting K in exactly i points. The numbers v_{i} are called the characters of P with respect to the lines, cf. [9]. By double counting the number of lines through P, the number of pairs (Q, r), where $Q \in K-P$ and r is a line through P and Q, we get the following equations:

$$
\left\{\begin{array}{c}
v_{1}+v_{2}+v_{3}=8 \\
v_{2}+2 v_{3}=14
\end{array}\right.
$$

Solving these equations we obtain the characters of P with respect to the lines:

$$
\left\{\begin{array}{c}
v_{1}=v_{3}-6 \\
v_{2}=14-2 v_{3}
\end{array}\right.
$$

Since $v_{1} \geq 0$ and $v_{2} \geq 0$ we get $v_{3} \in\{6,7\}$. Therefore, we have two types of inner points:

$$
\left(v_{1}, v_{2}, v_{3}\right) \in\{(0,2,6),(1,0,7)\} .
$$

Let Q be a point nonbelonging to K. For each integer i such that $0 \leq i \leq 3$, let us denote by $u_{i}=u_{i}(Q)$ the number of lines through Q meeting K in exactly i points. The numbers u_{i} are called the characters of Q with respect to the lines, cf. [9]. By double counting the number of lines through Q, we get

$$
\left\{\begin{array}{c}
u_{0}+u_{1}+u_{2}+u_{3}=8 \\
u_{1}+2 u_{2}+3 u_{3}=15
\end{array}\right.
$$

Solving these equations we obtain the characters of Q with respect to the lines:

$$
\left\{\begin{array}{l}
u_{1}=1+u_{3}-2 u_{0} \\
u_{2}=7-2 u_{3}+u_{0}
\end{array}\right.
$$

Therefore, we have eleven types of outer points:

$$
\begin{aligned}
& \left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(0,1,7,0),(0,2,5,1),(0,3,3,2),(0,4,1,3),(1,0,6,1) \\
& \quad(1,1,4,2),(1,2,2,3),(1,3,0,4),(2,0,3,3),(2,1,1,4),(3,0,0,5)\}
\end{aligned}
$$

In order to prove the unicity of the $(15,3)$-Arc in $\operatorname{PG}(2,7)$, we firstly prove that the character vector of a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ is $(12,0,15,30)$. We divide the proof into five steps.

Step 1. The nonexistence of a $(15,3)$-Arc in PG(2,7) with character vector $\left(\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right)=$ (7,15,0,35).

Proof. Let K be a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=(7,15,0,35)$. Since $t_{2}=0$, we have that $u_{2}=v_{2}=0$, so the inner points are of type $(1,0,7)$. The outer points are of types $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(1,3,0,4),(3,0,0,5)\}$. Let l denote a 0 -line. Since the other six 0 -lines meet l in outer points of type $(3,0,0,5)$, we get that there are exactly 35 outer points of type $(1,3,0,4)$ and exactly 7 points of type $(3,0,0,5)$. The seven outer points of type $(3,0,0,5)$ with the seven 0 -lines has the structure of a Steiner triple system $S(2,3,7)$, i.e., a Fano subplane of order two, a contradiction because PG(2,7) contains no Fano subplanes, cf. Lemma 7.2, page 154, of [9].

Step 2. The nonexistence of a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ with character vector $\left(\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right)=$ (8,12,3,34).

Proof. Let K be a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=(8,12,3,34)$. Since t_{2} $=3$, we get that any two 2 -lines meet in one inner point of type $(0,2,6)$. Since $t_{2}=3$, we have that $0 \leq u_{2} \leq 1$, the outer points are of types $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(0,4,1,3),(1,3,0,4),(2,1,1,4),(3,0,0,5)\}$. Let x, y and z denote the number of outer points of type $(0,4,1,3),(1,3,0,4)$ and $(2,1,1,4)$, respectively, of a 1 -line l_{1}. By double counting the number of pairs (Q, r), where $Q \in l_{1}$ and r is a i-line, $I=0,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ y + 2 z = 8 } \\
{ x + z = 3 } \\
{ 3 x + 4 y + 4 z = 2 7 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=1 \\
y=4 \\
z=2
\end{array}\right.\right.
$$

So, there are exactly 3 outer points of type ($0,4,1,3$).
Moreover, let x and y denote the number of outer points of type $(0,4,1,3)$ and $(2,1,1,4)$, respectively, of a $2-$ line l_{2}. By double counting the number of pairs (Q, r), where $Q \in l_{2}$ and r is a $i-$ line, $I=0,1,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ 2 y = 8 } \\
{ 4 x + y = 1 2 } \\
{ 3 x + 4 y = 2 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=2 \\
y=4
\end{array}\right.\right.
$$

Since $t_{2}=3$ and any two 2 -lines meet in one inner point of type $(0,2,6)$, we get that there are exactly 6 outer points of type $(0,4,1,3)$, a contradiction.

Step 3. The nonexistence of a $(15,3)$-Arc in PG(2,7) with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=$ $(9,9,6,33)$.

Proof. Let K be a $(15,3)$-Arc in PG(2,7) with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=(9,9,6,33)$. Since a 2 -line contains inner points of type $(0,2,6)$ and $t_{2}=6$, the six 2 -lines with the six inner points of type $(0,2,6)$ form either two disjoint triangles or one hexagon. If they form two triangles, P_{1}, P_{3}, P_{5} and P_{2}, P_{4}, P_{6} the lines $P_{2 h-1} P_{2 k}$, with $h=1,2,3$, and $k=1,2,3$ are nine 3 -lines no three of which form a triangle with vertices $P_{i}, I=1,2, \ldots, 6$. If they form one hexagon with consecutive vertices, $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ and P_{6} the lines $P_{2 h-1} P_{2 k-1}$, and $P_{2 h} P_{2 k}$ with $h=1,2,3, k=1,2,3$ and $h \neq k$ are 3 -lines no three of which form a triangle with vertices $P_{i}, I=1,2, \ldots, 6$. Moreover, the outer points are of types

$$
\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(0,3,3,2),(0,4,1,3),(1,2,2,3),(1,3,0,4),(2,0,3,3),(2,1,1,4),(3,0,0,5)\}
$$

Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(1,2,2,3),(1,3,0,4)$, $(2,0,3,3),(2,1,1,4),(3,0,0,5)$ respectively, of a 0 -line l_{0}. By double counting the number of pairs (Q, r), where $Q \in l_{0}-K$ and $r \neq l_{0}$ is a $i-$ line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 2 0 } + x _ { 2 1 } + 2 x _ { 3 0 } = 8 } \\
{ 2 x _ { 1 2 } + 3 x _ { 1 3 } + x _ { 2 1 } = 9 } \\
{ 2 x _ { 1 2 } + 3 x _ { 2 0 } + x _ { 2 1 } = 6 } \\
{ 3 x _ { 1 2 } + 4 x _ { 1 3 } + 3 x _ { 2 0 } + 4 x _ { 2 1 } + 5 x _ { 3 0 } = 3 3 }
\end{array} \quad \Rightarrow \left\{\begin{array}{c}
x_{20}=x_{13}-1 \\
x_{21}=9-2 x_{12}-3 x_{13} \\
x_{30}=x_{12}+x_{13}
\end{array}\right.\right.
$$

We get $0 \leq x_{12} \leq 3$ and $1 \leq x_{13} \leq \frac{9-2 x_{12}}{3}$.
Thus, $\left(x_{12}, x_{13}\right) \in\{(0,1),(0,2),(0,3),(1,1),(1,2),(2,1),(3,1)\}$.
If $\left(x_{12}, x_{13}\right)=(0,1)$ we get $\left\{\begin{array}{l}x_{20}=0 \\ x_{21}=6 \\ x_{30}=1\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(0,1,0,6,1)\right.$.

$$
\begin{aligned}
& \text { If }\left(x_{12}, x_{13}\right)=(0,2) \text { we get }\left\{\begin{array}{l}
x_{20}=1 \\
x_{21}=3 \\
x_{30}=2
\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(0,2,1,3,2)\right. \text {. } \\
& \text { If }\left(x_{12}, x_{13}\right)=(0,3) \text { we get }\left\{\begin{array}{l}
x_{20}=2 \\
x_{21}=0 \\
x_{30}=3
\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(0,3,2,0,3)\right. \text {. } \\
& \text { If }\left(x_{12}, x_{13}\right)=(1,1) \text { we get }\left\{\begin{array}{l}
x_{20}=0 \\
x_{21}=4 \\
x_{30}=2
\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(1,1,0,4,2)\right. \text {. } \\
& \text { If }\left(x_{12}, x_{13}\right)=(1,2) \text { we get }\left\{\begin{array}{l}
x_{20}=1 \\
x_{21}=1 \\
x_{30}=3
\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(1,2,1,1,3)\right. \text {. } \\
& \text { If }\left(x_{12}, x_{13}\right)=(2,1) \text { we get }\left\{\begin{array}{l}
x_{20}=0 \\
x_{21}=2 \\
x_{30}=3
\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(2,1,0,2,3) .\right. \\
& \text { If }\left(x_{12}, x_{13}\right)=(3,1) \text { we get }\left\{\begin{array}{l}
x_{20}=0 \\
x_{21}=0 \\
x_{30}=4
\end{array} \Rightarrow\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(3,1,0,0,4) .\right.
\end{aligned}
$$

Therefore, the 0 -lines can be of type

$$
\begin{gathered}
\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,1,0,6,1),(0,2,1,3,2),(0,3,2,0,3),(1,1,0,4,2),(1,2,1,1,3) \\
(2,1,0,2,3),(3,1,0,0,4)\}
\end{gathered}
$$

Let $x_{i j}, I=u_{0}, j=u_{1}$, denote the number of outer points of type $(0,3,3,2),(0,4,1,3)$, $(1,2,2,3),(1,3,0,4),(2,1,1,4)$, respectively, of a 1 -line l_{1}. By double counting the number of pairs (Q, r), where $Q \in l_{1}-K$ and $r \neq l_{1}$ is a $i-$ line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 1 2 } + x _ { 1 3 } + 2 x _ { 2 1 } = 9 3 3 } \\
{ 2 x _ { 0 3 } + 3 x _ { 0 4 } + x _ { 1 2 } + 2 x _ { 1 3 } = 8 } \\
{ 3 x _ { 0 3 } + x _ { 0 4 } + 2 x _ { 1 2 } + x _ { 2 1 } = 6 } \\
{ 2 x _ { 0 3 } + 3 x _ { 0 4 } + 3 x _ { 1 2 } + 4 x _ { 1 3 } + 4 x _ { 2 1 } = 2 6 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x_{12}=2-2 x_{03}-x_{04} \\
x_{13}=3-x_{04} \\
x_{21}=2+x_{03}+x_{04}
\end{array}\right.\right.
$$

By the first equation, we get $0 \leq 2 x_{03}+x_{4} \leq 2$. Thus, $\left(x_{03}, x_{04}\right) \in\{(0,0),(0,1),(0,2)$, $(1,0)\}$.

$$
\begin{aligned}
& \text { If }\left(x_{03}, x_{04}\right)=(0,0) \text { we get }\left\{\begin{array}{l}
x_{12}=2 \\
x_{13}=3 \\
x_{21}=2
\end{array} \Rightarrow\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right)=(0,0,2,3,2)\right. \text {. } \\
& \text { If }\left(x_{03}, x_{04}\right)=(0,1) \text { we get }\left\{\begin{array}{l}
x_{12}=1 \\
x_{13}=2 \\
x_{21}=3
\end{array} \Rightarrow\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right)=(0,1,1,2,3)\right. \text {. } \\
& \text { If }\left(x_{03}, x_{04}\right)=(0,2) \text { we get }\left\{\begin{array}{l}
x_{12}=0 \\
x_{13}=1 \\
x_{21}=4
\end{array} \Rightarrow\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right)=(0,2,0,1,4) .\right. \\
& \text { If }\left(x_{03}, x_{04}\right)=(1,0) \text { we get }\left\{\begin{array}{l}
x_{12}=0 \\
x_{13}=3 \\
x_{21}=3
\end{array} \Rightarrow\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right)=(1,0,0,3,3) .\right.
\end{aligned}
$$

Therefore, the 1 -lines can be of type

$$
\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right) \in\{(0,0,2,3,2),(0,1,1,2,3),(0,2,0,1,4),(1,0,0,3,3)\}
$$

Now, let $x_{i j}, I=u_{0}, j=u_{1}$, denote the number of outer points of type $(0,3,3,2),(0,4,1,3)$, $(1,2,2,3),(2,0,3,3),(2,1,1,4)$, respectively, of a $2-$ line l_{2}. By double counting the number of pairs (Q, r), where $Q \in l_{2}-K$ and $r \neq l_{2}$ is a $i-$ line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 1 2 } + 2 x _ { 2 0 } + 2 x _ { 2 1 } = 9 } \\
{ 3 x _ { 0 3 } + 4 x _ { 0 4 } + 2 x _ { 1 2 } + x _ { 2 1 } = 9 } \\
{ 2 x _ { 0 3 } + x _ { 1 2 } + 2 x _ { 2 0 } = 3 } \\
{ 2 x _ { 0 3 } + 3 x _ { 0 4 } + 3 x _ { 1 2 } + 3 x _ { 2 0 } + 4 x _ { 2 1 } = 2 1 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x_{03}=x_{21}-3 \\
x_{04}=x_{20} \\
x_{12}=9-2 x_{20}-2 x_{21}
\end{array}\right.\right.
$$

Therefore, the $2-$ lines can be of type $\left(x_{03}, x_{04}, x_{12}, x_{20}, x_{21}\right) \in\{(0,0,3,0,3),(0,1,1,1,3)$, $(1,0,1,0,4)\}$.

We note that $x_{12} \neq 0$.
Two 1-lines meet in an outer point.
We have two possibility: an outer point of type $(0,3,3,2)$ exists or not.
If an outer point Q of type $(0,3,3,2)$ exists, then the two 3 -lines through Q contain six inner points of type ($1,0,7$). An outer point R of type ($0,4,1,3$) does not exist, otherwise the line $Q R$ would be a 3 -line with an inner point of type $(0,2,6)$, a contradiction. Let l_{i} and $m_{i}, i=1,2,3$, denote the 1 -lines of type $(1,0,0,3,3)$ and the 2 -lines of type $(1,0,1,0,4)$ through Q, respectively. Let us denote by M_{1}, M_{2} and M_{3} the points of type $(1,2,2,3)$ on m_{1}, m_{2} and m_{3}, respectively. Let us denote by n_{1}, n_{2} and n_{3} the other three 2 -lines on M_{1}, M_{2} and M_{3}, respectively. The 2 -lines n_{1}, n_{2} and n_{3} are of type ($1,0,1,0,4$), because they meet l_{1}, l_{2} and l_{3} in nine points of type ($2,1,1,4$). Thus, there is another outer point R of type $(0,3,3,2)$. Let r_{h} denote the 1 -lines through $R, h=1,2,3$. The line $Q R$ is a $3-$ line with three inner points P_{1}, P_{2} and P_{3} of type $(1,0,7)$. Let p_{k} denote the 1 -line through P_{k}, $k=1,2,3$. Let us denote by $L_{i j}$ the points of type ($1,3,0,4$) on the 1 -lines $l_{i}, j=1,2,3$. The eleven points $Q, R, L_{i j}$ with the nine 1 -lines are contained in a dual affine plane structure $\operatorname{DAG}(2,3)$ embedded in $\operatorname{PG}(2,7)$. It follows that the three $1-$ lines p_{k} meet in a unique point, a contradiction because they pairwise meet in the points M_{1}, M_{2} and M_{3}.

Therefore, an outer point of type $(0,3,3,2)$ does not exist.
Thus, the 1 -lines can be of type $\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right) \in\{(0,0,2,3,2),(0,1,1,2,3)$, $(0,2,0,1,4)\}$, and the 2 -lines can be of type $\left(x_{03}, x_{04}, x_{12}, x_{20}, x_{21}\right) \in\{(0,0,3,0,3)$, $(0,1,1,1,3)\}$. Since every 2 -line contains exactly three points of type ($2,1,1,4$), we have exactly 18 points of type $(2,1,1,4)$. Let x, y and z be the number of 1 -lines of type $(0,0,2,3,2),(0,1,1,2,3)$ and $(0,2,0,1,4)$, respectively. By double counting the number of 1 -lines and the number of the pairs (Q, l) where Q is a point of type $(2,1,1,4), l$ is a 1 -line and $Q \in l$, we get $\left\{\begin{array}{c}x+y+z=9 \\ 2 x+3 y+4 z=18\end{array}\right.$. Multiply the first equation by -2 and add: $y+2 z=0$. It follows that $y=z=0$. Thus, the 1 -lines are of type $\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{21}\right)=$ $(0,0,2,3,2)$, an outer point of type $(0,4,1,3)$ does not exist, and the 2 -lines are of type $\left(x_{03}, x_{04}, x_{12}, x_{20}, x_{21}\right)=(0,0,3,0,3)$. Thus, an outer point of type $(2,0,3,3)$ does not exist.

Therefore, the 0 -lines can be of type

$$
\left(x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,1,0,6,1),(1,1,0,4,2),(2,1,0,2,3),(3,1,0,0,4)\}
$$

Since every 0 -line contains exactly one point of type ($1,3,0,4$), we have exactly 9 points of type ($1,3,0,4$). Since every 1 -line contains exactly two points of type ($1,2,2,3$) and through any point of type $(1,2,2,3)$ there pass two 1 -lines, we have exactly 9 points of type $(1,2,2,3)$. Thus, the number of points of type $(3,0,0,5)$ is 6 . By the 9 points of type $(1,3,0,4)$ with the 91 -lines we find an affine plane of order three $A G(2,3)$ in which the incidences between the 9 points and the lines of one parallel class has been removed. It follows that the missing parallelism class is formed by three 3-lines of type $\left(x_{03}, x_{04}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(0,0,0,3,0,0,2)$ which form a triangle with vertices points of type ($0,2,6$), a contradiction.

Step 4. The nonexistence of a (15,3)-Arc in $\operatorname{PG}(2,7)$ with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=$ (10,6,9,32).

Proof. Let K be a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=(10,6,9,32)$. We have eleven types of outer points:

$$
\begin{aligned}
& \left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(0,1,7,0),(0,2,5,1),(0,3,3,2),(0,4,1,3),(1,0,6,1), \\
& \quad(1,1,4,2),(1,2,2,3),(1,3,0,4),(2,0,3,3),(2,1,1,4),(3,0,0,5)\}
\end{aligned}
$$

Since $t_{2}=9$ and through any inner point of type $(0,2,6)$ there are two 2 -lines, we get that there are no outer points of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(0,1,7,0),(0,2,5,1),(1,0,6,1)\}$.

Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type (1, $\left.1,4,2\right),(1,2,2,3)$, $(1,3,0,4),(2,0,3,3),(2,1,1,4),(3,0,0,5)$, respectively, of a $0-$ line l_{0}. By double counting the number of pairs (Q, r), where $Q \in l_{0}$ and $r \neq l_{0}$ is a $i-$ line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 2 0 } + x _ { 2 1 } + 2 x _ { 3 0 } = 9 } \\
{ x _ { 1 1 } + 2 x _ { 1 2 } + 3 x _ { 1 3 } + x _ { 2 1 } = 6 } \\
{ 4 x _ { 1 1 } + 2 x _ { 1 2 } + 3 x _ { 2 0 } + x _ { 2 1 } = 9 } \\
{ 2 x _ { 1 1 } + 3 x _ { 1 2 } + 4 x _ { 1 3 } + 3 x _ { 2 0 } + 4 x _ { 2 1 } + 5 x _ { 3 0 } = 3 2 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x_{20}=1-x_{11}+x_{13} \\
x_{21}=6-x_{11}-2 x_{12}-3 x_{13} \\
x_{30}=1+x_{11}+x_{12}+x_{13}
\end{array}\right.\right.
$$

By the third equation, we have that $0 \leq x_{11} \leq 2$.
If $x_{11}=0 \quad$ we get $\left\{\begin{array}{c}x_{20}+x_{21}+2 x_{30}=9 \\ 2 x_{12}+3 x_{13}+x_{21}=6 \\ 2 x_{12}+3 x_{20}+x_{21}=9 \\ 3 x_{12}+4 x_{13}+3 x_{20}+4 x_{21}+5 x_{30}=32\end{array} \quad \Rightarrow\right.$

$$
\left\{\begin{array}{c}
x_{20}=1+x_{13} \\
x_{21}=6-2 x_{12}-3 x_{13} \\
x_{30}=1+x_{12}+x_{13}
\end{array}\right.
$$

Thus, $0 \leq x_{13} \leq 2,0 \leq x_{12} \leq \frac{6-3 x_{13}}{2}$. Therefore,

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in
$$

$\{(0,0,0,1,6,1),(0,0,2,3,0,3),(0,1,0,1,4,2),(0,2,0,1,2,3),(0,3,0,1,0,4),(0,0,1,2,3,2),(0,1,1,2,1,3)\}$

$$
\begin{aligned}
& \text { If } x_{11}=1 \text { we get }\left\{\begin{array}{c}
x_{20}+x_{21}+2 x_{30}=9 \\
2 x_{12}+3 x_{13}+x_{21}=5 \\
2 x_{12}+3 x_{20}+x_{21}=5 \\
3 x_{12}+4 x_{13}+3 x_{20}+4 x_{21}+5 x_{30}=30
\end{array} \quad \Rightarrow\right. \\
& \left\{\begin{array}{c}
x_{20}=x_{13} \\
x_{21}=5-2 x_{12}-3 x_{13} \\
x_{30}=2+x_{12}+x_{13}
\end{array}\right. \\
& \text { Thus, } 0 \leq x_{13} \leq 1,0 \leq x_{12} \leq \frac{5-3 x_{13}}{2} \text {. Therefore, }\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in \\
& \{(1,0,0,0,5,2),(1,1,0,0,3,3),(1,2,0,0,1,4),(1,0,1,1,2,3),(1,1,1,1,0,4)\} \text {. } \\
& \text { If } x_{11}=2 \text { we get }\left\{\begin{array}{c}
x_{20}+x_{21}+2 x_{30}=9 \\
2 x_{12}+3 x_{13}+x_{21}=4 \\
2 x_{12}+3 x_{20}+x_{21}=1 \\
3 x_{12}+4 x_{13}+3 x_{20}+4 x_{21}+5 x_{30}=28
\end{array} \quad \Rightarrow\right. \\
& \left\{\begin{array}{c}
x_{20}=x_{13}-1 \\
x_{21}=4-2 x_{12}-3 x_{13}, \\
x_{30}=3+x_{12}+x_{13}
\end{array}\right. \\
& \text { Thus, } x_{13}=1 \text { and } x_{12}=0 \text {. Therefore, }\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right)=(2,0,1,0,1,4) \text {. } \\
& \text { Therefore, the } 0 \text {-lines can be of type }
\end{aligned}
$$

$$
\begin{gathered}
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in \\
\{(0,0,0,1,6,1),(0,0,1,2,3,2),(0,0,2,3,0,3),(0,1,0,1,4,2),(0,1,1,2,1,3),(0,2,0,1,2,3),(0,3,0,1,0,4) \\
(1,0,0,0,5,2),(1,0,1,1,2,3),(1,1,0,0,3,3),(1,1,1,1,0,4),(1,2,0,0,1,4),(2,0,1,0,1,4)\}
\end{gathered}
$$

Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(0,3,3,2),(0,4,1,3)$, $(1,1,4,2),(1,2,2,3),(1,3,0,4),(2,1,1,4)$, respectively, of a 1 -line l_{1}. By double counting the number of pairs (Q, r), where $Q \in l_{1}$ and $r \neq l_{1}$ is a i-line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array}{c}
x_{11}+x_{12}+x_{13}+2 x_{21}=10 \\
2 x_{03}+3 x_{04}+x_{12}+2 x_{13}=5 \\
3 x_{03}+x_{04}+4 x_{11}+2 x_{12}+x_{21}=9 \\
2 x_{03}+3 x_{04}+2 x_{11}+3 x_{12}+4 x_{13}+4 x_{21}=25
\end{array} \Rightarrow\right.
$$

The system of linear equation is equivalent to

$$
\left\{\begin{array} { c }
{ 3 x _ { 0 3 } + x _ { 0 4 } + 4 x _ { 1 1 } + 2 x _ { 1 2 } + x _ { 2 1 } = 9 } \\
{ 2 x _ { 0 3 } + 3 x _ { 0 4 } + 2 x _ { 1 1 } + 3 x _ { 1 2 } + 4 x _ { 1 3 } + 4 x _ { 2 1 } } \\
{ x _ { 1 1 } + x _ { 1 2 } + x _ { 1 3 } + 2 x _ { 2 1 } = 1 0 }
\end{array} \Rightarrow 2 5 \Rightarrow \left\{\begin{array}{c}
x_{12}=3-2 x_{03}-x_{04}-2 x_{11} \\
x_{13}=1-x_{04}+x_{11} \\
x_{21}=3+x_{03}+x_{04}
\end{array}\right.\right.
$$

Thus, $0 \leq x_{03} \leq 1,0 \leq x_{11} \leq \frac{3-2 x_{03}}{2}, 0 \leq x_{04} \leq \min \left\{1+x_{11}, 3-2 x_{03}-2 x_{11}\right\}$. Therefore, $\quad\left(x_{03}, x_{04}, x_{11}, x_{12}, x_{13}, x_{21}\right) \quad \in \quad\{(0,0,0,3,1,3),(0,1,0,2,0,4),(0,0,1,1,2,3)$, $(0,1,1,0,1,4),(1,0,0,1,1,4),(1,1,0,0,0,5)\}$ Therefore, the 1 -lines can be of type

$$
\begin{gathered}
\left(x_{03}, x_{04}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(0,0,0,3,1,3),(0,1,0,2,0,4),(0,0,1,1,2,3) \\
(0,1,1,0,1,4),(1,0,0,1,1,4),(1,1,0,0,0,5)\} .
\end{gathered}
$$

Two 1-lines meet in an outer point.
We have two possibilities: an outer point of type $(0,3,3,2)$ exists or not.
If an outer point Q of type $(0,3,3,2)$ exists, then through Q there pass three 1 -lines of type either $(1,0,0,1,1,4)$ or $(1,1,0,0,0,5)$. A 1 -line of type $(1,1,0,0,0,5)$ does not exist because the other three 1 -lines not through Q pass through the outer point R of type $(0,4,1,3)$ and meet another 1 -line in at most two outer points, a contradiction. Therefore, an outer point of type $(0,4,1,3)$ does not exist and through Q there pass three $1-$ lines, l_{1}, l_{2} and l_{3} of type $(1,0,0,1,1,4)$. The other three 1 -lines m_{1}, m_{2} and m_{3} meet l_{1}, l_{2} and l_{3} in points of type either $(1,3,0,4)$ or $(1,2,2,3)$. Thus, m_{1}, m_{2} and m_{3} must contain two outer points of type ($1,3,0,4$) and one outer point of type ($1,2,2,3$), and they are of type ($0,0,1,1,2,3$). Now, we count the outer point types by the 1 -line types. The pointset $l_{1} \cup l_{2} \cup l_{3}$ consists of one point of type $(0,3,3,2)$, the point $Q, 12$ points of type $(2,1,1,4), 3$ points of type $(1,3,0,4)$ and 3 of type $(1,2,2,3)$. The pointset $\left(m_{1} \cup m_{2} \cup m_{3}\right)-\left(l_{1} \cup l_{2} \cup l_{3}\right)$ consists of 9 points of type $(2,1,1,4)$ and 3 points of type $(1,1,4,2)$. The types of the 11 outer points contained in no 1 -lines remain to be determined. Since an outer point contained in no 1 -lines is of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(2,0,3,3),(3,0,0,5)\}$, we have through it at least a pair of 0 -lines. Each of the $\binom{10}{2}=450$-lines pairs meet on points of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(2,0,3,3),(2,1,1,4)$, $(3,0,0,5)\}$. Exactly 210 -lines pairs meet on points of type $(2,1,1,4)$. So, 240 -lines pairs meet on points of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(2,0,3,3),(3,0,0,5)\}$. Let x and y denote the number of outer points of type $(2,0,3,3)$ and $(3,0,0,5)$, respectively. We get $\left\{\begin{array}{c}x+y=11 \\ x+3 y=24\end{array} \Rightarrow\left\{\begin{array}{c}x=\frac{9}{2} \\ y=\frac{13}{2},\end{array}\right.\right.$ a contradiction.

Therefore, an outer point of type $(0,3,3,2)$ does not exist.
Therefore, the 1 -lines can be of type

$$
\left(x_{03}, x_{04}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(0,0,0,3,1,3),(0,1,0,2,0,4),(0,0,1,1,2,3),(0,1,1,0,1,4)\}
$$

Now, let $x_{i j}, I=u_{0}, j=u_{1}$, denote the number of outer points of type $(0,4,1,3),(1,1,4,2)$, $(1,2,2,3),(2,0,3,3),(2,1,1,4)$, respectively, of a $2-$ line l_{2}. By double counting the number of pairs (Q, r), where $Q \in l_{2}-K$ and $r \neq l_{2}$ is a i-line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array}{c}
x_{11}+x_{12}+2 x_{20}+2 x_{21}=10 \\
4 x_{04}+x_{11}+2 x_{12}+x_{21}=6 \\
3 x_{11}+x_{12}+2 x_{20}=6 \\
3 x_{04}+2 x_{11}+3 x_{12}+3 x_{20}+4 x_{21}=20
\end{array}\right.
$$

Taking into account the second equation, since $0 \leq 4 x_{0.4} \leq 6 \Rightarrow x_{04} \in\{0,1\}$. The system of linear equation is equivalent to

$$
\left\{\begin{array}{c}
x_{11}=x_{21}-2 \\
x_{12}=4-x_{21}-2 x_{04} \\
x_{20}=4-x_{21}+x_{04}
\end{array}\right.
$$

If $x_{04}=0$ we get

$$
\left\{\begin{array}{l}
x_{11}=x_{21}-2 \\
x_{12}=4-x_{21} \\
x_{20}=4-x_{21}
\end{array}\right.
$$

Thus, $2 \leq x_{21} \leq 4$ and $\left(x_{04}, x_{11}, x_{12}, x_{20}, x_{21}\right) \in\{(0,0,2,2,2),(0,1,1,1,3),(0,2,0,0,4)\}$. If $x_{04}=1$ we get

$$
\left\{\begin{array} { l }
{ x _ { 1 1 } = x _ { 2 1 } - 2 } \\
{ x _ { 1 2 } = 2 - x _ { 2 1 } } \\
{ x _ { 2 0 } = 5 - x _ { 2 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{11}=0 \\
x_{12}=0 \\
x_{20}=3 \\
x_{21}=2
\end{array} \text { and }\left(x_{04}, x_{11}, x_{12}, x_{20}, x_{21}\right)=(0,1,0,0,3,2)\right.\right.
$$

Therefore, the $2-$ lines can be of type
$\left(x_{04}, x_{11}, x_{12}, x_{20}, x_{21}\right) \in\{(0,0,2,2,2),(0,1,1,1,3),(0,2,0,0,4),(1,0,0,3,2)\}$.
Two 1 -lines meet in an outer point.
We have two possibilities: an outer point of type $(0,4,1,3)$ exists or not.
If an outer point Q of type $(0,4,1,3)$ exists, then through Q there pass four 1 -lines: three, l_{1}, l_{2} and l_{3}, of type $(0,1,0,2,0,4)$ and one, l, of type $(0,1,1,0,1,4)$. The other two 1 -lines not through Q, m_{1} and m_{2}, are of type $(0,0,0,3,1,3)$. Now, we count the outer point types by the 1 -line types. The pointset $l \cup l_{1} \cup l_{2} \cup l_{3}$ consists of one point of type $(0,4,1,3)$, the point $Q, 16$ points of type $(2,1,1,4), 1$ point of type $(1,3,0,4), 1$ point of type $(1,1,4,2)$ and 6 of type $(1,2,2,3)$. The pointset $\left(m_{1} \cup m_{2}\right)-\left(l \cup l_{1} \cup l_{2} \cup l_{3}\right)$ consists of 6 points of type $(2,1,1,4)$. The types of the 11 outer points contained in no 1 -lines remain to be determined. Since an outer point contained in no 1 -lines is of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(2,0,3,3),(3,0,0,5)\}$, we have through it at least a pair of 0 -lines. Each of the $\binom{10}{2}=450$-lines pairs meet on points of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(2,0,3,3),(2,1,1,4),(3,0,0,5)\}$. Exactly 220 -lines pairs meet on points of type $(2,1,1,4)$. So, 230 -lines pairs meet on points of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(2,0,3,3)$, $(3,0,0,5)\}$. Let x and y denote the number of outer points of type $(2,0,3,3)$ and $(3,0,0,5)$, respectively. We get $\left\{\begin{array}{c}x+y=11 \\ x+3 y=23\end{array} \Rightarrow\left\{\begin{array}{l}x=5 \\ y=6\end{array}\right.\right.$. Thus, we have 5 outer points of type $(2,0,3,3)$ and 6 outer points of type $(3,0,0,5)$.

Therefore, the nine 2 -lines can be of type

$$
\left(x_{04}, x_{11}, x_{12}, x_{20}, x_{21}\right) \in\{(0,0,2,2,2),(0,1,1,1,3),(1,0,0,3,2)\}
$$

Since there is exactly one point of type ($0,4,1,3$), we have exactly one 2 -line of type $(1,0,0,3,2)$. Since there is exactly one point of type $(1,1,4,2)$, we have exactly four 2 -lines of type $(0,1,1,1,3)$. It follows that the other four 2 -lines are all of type $(0,0,2,2,2)$.

Therefore, the ten 0 -lines can be of type

```
( }\mp@subsup{x}{11}{},\mp@subsup{x}{12}{},\mp@subsup{x}{13}{},\mp@subsup{x}{20}{},\mp@subsup{x}{21}{},\mp@subsup{x}{30}{})\in{(0,0,0,1,6,1),(0,0,1,2,3,2),(0,0,2,3,0,3),(0,1,0,1,4,2),(0,1,1,2,1,3)
    (0,2,0,1,2,3),(1,0,0,0,5,2),(1,0,1,1,2,3),(1,1,0,0,3,3),(1,2,0,0,1,4), (1,1,1,1,0,4)}
```

Since there is exactly one point of type ($1,1,4,2$), there is exactly one 0 -line of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(1,0,0,0,5,2),(1,1,0,0,3,3),(1,2,0,0,1,4),(1,0,1,1,2,3),(1,1,1,1,0,4)\}
$$

Since there is exactly one point of type ($1,3,0,4$), a 0 -line of type $(0,0,2,3,0,3)$ does not exist, and there is exactly one 0 -line of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,1,2,3,2),(0,1,1,2,1,3),(1,0,1,1,2,3),(1,1,1,1,0,4)\}
$$

If there is exactly one 0 -line of type $(1,0,0,0,5,2)$ and one of type $(0,0,1,2,3,2)$, then the other eight 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly 6 points of type $(1,2,2,3)$ and another 14 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=6 \\ 6 x+4 y+2 z=28\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 -line of type $(1,0,0,0,5,2)$ and one of type $(0,1,1,2,1,3)$, then the other eight 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly five points of type $(1,2,2,3)$ and another 16 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=5 \\ 6 x+4 y+2 z=32\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 -line of type $(1,1,0,0,3,3)$ and one of type $(0,0,1,2,3,2)$, then the other eight 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly five points of type ($1,2,2,3$), and another 16 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=5 \\ 6 x+4 y+2 z=32\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 - line of type $(1,1,0,0,3,3)$ and one of type $(0,1,1,2,1,3)$, then the other eight 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly four points of type ($1,2,2,3$), and
another 18 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=4 \\ 6 x+4 y+2 z=36\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 -line of type $(1,2,0,0,1,4)$ and one of type $(0,0,1,2,3,2)$, then the other eight 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly four points of type ($1,2,2,3$), and another 18 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=4 \\ 6 x+4 y+2 z=36\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 -line of type $(1,2,0,0,1,4)$ and one of type $(0,1,1,2,1,3)$, then the other eight 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly three points of type ($1,2,2,3$), and another 20 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=3 \\ 6 x+4 y+2 z=40\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 -line of type $(1,0,1,1,2,3)$, then the other nine 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly six points of type ($1,2,2,3$), and another 20 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=6 \\ 6 x+4 y+2 z=40\end{array}\right.$ which has no solutions, a contradiction.

If there is exactly one 0 -line of type $(1,1,1,1,0,4)$, then the other nine 0 -lines can be of type

$$
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3)\}
$$

Let us denote by x, y and z the number of 0 -lines of type $(0,0,0,1,6,1),(0,1,0,1,4,2)$ and $(0,2,0,1,2,3)$, respectively. Since there are exactly five points of type ($1,2,2,3$), and 22 points of type $(2,1,1,4)$, we get $\left\{\begin{array}{c}x+y+z=8 \\ y+2 z=5 \\ 6 x+4 y+2 z=44\end{array}\right.$ which has no solutions, a contradiction.

Therefore, an outer point of type $(0,4,1,3)$ does not exist, and the 1 -lines can be of type

$$
\left(x_{03}, x_{04}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(0,0,0,3,1,3),(0,0,1,1,2,3)\}
$$

and the $2-$ lines can be of type

$$
\left(x_{04}, x_{11}, x_{12}, x_{20}, x_{21}\right) \in\{(0,0,2,2,2),(0,1,1,1,3),(0,2,0,0,4)\}
$$

The number of outer points of type $(2,1,1,4)$ is 18 because every 1 -line contains exactly 3 outer points of type $(2,1,1,4)$. Let x, y and z denote the numbers of 2 -lines of type $(0,0,2,2,2),(0,1,1,1,3)$ and $(0,2,0,0,4)$, respectively. We get $\left\{\begin{array}{c}x+y+z=9 \\ 2 x+3 y+4 z=18\end{array}\right.$
\Rightarrow we get $\left\{\begin{array}{l}x=9 \\ y=0 \\ z=0\end{array}\right.$. Thus, the 2 -lines are of type $(0,0,2,2,2)$. It follows that there are no outer points of type $(1,1,4,2)$ and that the 1 -lines are of type $(0,0,0,3,1,3)$. There are exactly two outer points, P and Q, of type $(1,3,0,4)$. The 31 -lines through P meet the 3 1 -lines through Q in different points of type (1,2,2,3). Therefore, there are exactly 9 outer points of type $(1,2,2,3)$. There are exactly 6 outer points of type $(2,0,3,3)$ and, so, 7 outer points of type $(3,0,0,5)$.

Therefore, the 0 -lines can be of type

$$
\begin{gathered}
\left(x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,6,1),(0,1,0,1,4,2),(0,2,0,1,2,3),(0,3,0,1,0,4),(0,0,1,2,3,2) \\
(0,1,1,2,1,3)\}
\end{gathered}
$$

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}$ and x_{6} denote the numbers of 0 -lines of type ($0,0,0,1,6,1$), $(0,1,0,1,4,2),(0,2,0,1,2,3),(0,3,0,1,0,4),(0,0,1,2,3,2)$, and $(0,1,1,2,1,3)$, respectively. We get $\left\{\begin{array}{c}x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=10 \\ x_{2}+2 x_{3}+3 x_{4}+x_{6}=9 \\ x_{5}+x_{6}=2 \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+2 x_{5}+3 x_{6}=35\end{array}\right.$ which has no solutions, a contradiction.

Step 5. The nonexistence of a $(15,3)$ - Arc in $\operatorname{PG}(2,7)$ with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=$ (11,3,12,31).

Proof. Let K be a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ with character vector $\left(t_{0}, t_{1}, t_{2}, t_{3}\right)=(11,3,12,31)$. We have ten types of outer points:

$$
\begin{gathered}
\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(0,1,7,0),(0,2,5,1),(0,3,3,2),(1,0,6,1) \\
(1,1,4,2),(1,2,2,3),(1,3,0,4),(2,0,3,3),(2,1,1,4),(3,0,0,5)\} .
\end{gathered}
$$

We firstly prove that an outer point Q of type $(0,1,7,0)$ does not exist. Suppose, on the contrary, that an outer point Q of type $(0,1,7,0)$ exists. Since $t_{1}=3$, there are exactly three inner points P_{1}, P_{2} and P_{3} of type (1,0,7). The lines $Q P_{1}, Q P_{2}$ and $Q P_{3}$ are three $1-$ lines, a contradiction.

Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(1,0,6,1),(1,1,4,2)$, $(1,2,2,3),(1,3,0,4),(2,0,3,3),(2,1,1,4),(3,0,0,5)$, respectively, of a 0 -line l_{0}. By double counting the number of pairs (Q, r), where $Q \in l_{0}$ and $r \neq l_{0}$ is a i-line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 2 0 } + x _ { 2 1 } + 2 x _ { 3 0 } = 1 0 } \\
{ x _ { 1 1 } + 2 x _ { 1 2 } + 3 x _ { 1 3 } + x _ { 2 1 } = 3 } \\
{ 6 x _ { 1 0 } + 4 x _ { 1 1 } + 2 x _ { 1 2 } + 3 x _ { 2 0 } + x _ { 2 1 } = 1 2 } \\
{ x _ { 1 0 } + 2 x _ { 1 1 } + 3 x _ { 1 2 } + 4 x _ { 1 3 } + 3 x _ { 2 0 } + 4 x _ { 2 1 } + 5 x _ { 3 0 } = 3 1 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x_{20}=3-2 x_{10}-x_{11}+x_{13} \\
x_{21}=3-x_{11}-2 x_{12}-3 x_{13} \\
x_{30}=2+x_{10}+x_{11}+x_{12}+x_{13}
\end{array}\right.\right.
$$

By the second equation, we have that $0 \leq x_{13} \leq 1$ and $0 \leq x_{12} \leq \frac{3-3 x_{13}}{2}$.
If $\left(x_{12}, x_{13}\right)=(0,0)$, we get $\left\{\begin{array}{c}x_{20}=3-2 x_{10}-x_{11} \\ x_{21}=3-x_{11} \\ x_{30}=2+x_{10}+x_{11}\end{array}\right.$
Thus, $0 \leq x_{10} \leq 1,0 \leq x_{11} \leq 3-2 x_{10}$. Therefore, $\left(x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in$ $\{(0,0,0,0,3,3,2),(0,1,0,0,2,2,3),(0,2,0,0,1,1,4),(0,3,0,0,0,0,5),(1,0,0,0,1,3,3)$, $(1,1,0,0,0,2,4)\}$.

If $\left(x_{12}, x_{13}\right)=(1,0)$, we get $\left\{\begin{array}{c}x_{20}=3-2 x_{10}-x_{11} \\ x_{21}=1-x_{11} \\ x_{30}=3+x_{10}+x_{11}\end{array}\right.$
Thus, $0 \leq x_{10} \leq 1$ and $0 \leq x_{11} \leq 1$. Therefore, $\left(x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in$ $\{(0,0,1,0,3,1,3),(0,1,1,0,2,0,4),(1,0,1,0,1,1,4),(1,1,1,0,0,0,5)\}$

If $x_{13}=1 \Rightarrow x_{11}=0, x_{12}=0, x_{21}=0 \Rightarrow\left\{\begin{array}{c}x_{20}=4-2 x_{10} \\ 0=0 \\ x_{30}=3+x_{10}\end{array} \Rightarrow 0 \leq x_{10} \leq 2\right.$. Thus, $\left(x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,1,4,0,3),(1,0,0,1,2,0,4),(2,0,0,1,0,0,5)\}$

Therefore, the 0 -lines can be of type
$\left(x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,0,3,3,2),(0,1,0,0,2,2,3),(0,2,0,0,1,1,4)$
$(0,3,0,0,0,0,5),(1,0,0,0,1,3,3),(1,1,0,0,0,2,4),(0,0,1,0,3,1,3),(0,1,1,0,2,0,4),(1,0,1,0,1,1,4)$
$(1,1,1,0,0,0,5),(0,0,0,1,4,0,3),(1,0,0,1,2,0,4),(2,0,0,1,0,0,5)\}$
Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(0,2,5,1),(0,3,3,2)$, $(1,1,4,2),(1,2,2,3),(1,3,0,4),(2,1,1,4)$, respectively, of a $1-$ line l_{1}. By double counting the number of pairs (Q, r), where $Q \in l_{1}$ and $r \neq l_{1}$ is a i-line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array}{c}
x_{11}+x_{12}+x_{13}+2 x_{21}=11 \\
x_{02}+2 x_{03}+x_{12}+2 x_{13}=2 \\
5 x_{02}+3 x_{03}+4 x_{11}+2 x_{12}+x_{21}=12 \\
x_{02}+2 x_{03}+2 x_{11}+3 x_{12}+4 x_{13}+4 x_{21}=24
\end{array}\right.
$$

The system of linear equation is equivalent to

$$
\left\{\begin{array} { c }
{ x _ { 0 2 } + 2 x _ { 0 3 } + x _ { 1 2 } + 2 x _ { 1 3 } = 2 } \\
{ x _ { 1 1 } + x _ { 1 2 } + x _ { 1 3 } + 2 x _ { 2 1 } = 1 1 } \\
{ x _ { 0 2 } - x _ { 1 2 } - 2 x _ { 1 3 } - 2 x _ { 2 1 } = - 1 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x_{02}=x_{12}+2 x_{13}+2 x_{21}-10 \\
x_{03}=6-x_{12}-2 x_{13}-x_{21} \\
x_{11}=11-x_{12}-x_{13}-2 x_{21}
\end{array}\right.\right.
$$

By the first equation, we have that $0 \leq x_{03} \leq 1$ and $0 \leq x_{13} \leq \frac{2-2 x_{03}}{2}$.
If $\left(x_{03}, x_{13}\right)=(0,0)$, we get $\left\{\begin{array}{l}x_{02}=x_{21}-4 \\ x_{12}=6-x_{21} \\ x_{11}=5-x_{21}\end{array}\right.$.
Thus, $4 \leq x_{21} \leq 5$. Therefore,
$\left(x_{02}, x_{03}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(1,0,0,1,0,5),(0,0,1,2,0,4)\}$.
If $\left(x_{03}, x_{13}\right)=(0,1)$, we get $\left\{\begin{array}{l}x_{02}=x_{21}-4 \\ x_{12}=4-x_{21} \\ x_{11}=6-x_{21}\end{array}\right.$
Thus, $x_{21}=4$. Therefore, $\left(x_{02}, x_{03}, x_{11}, x_{12}, x_{13}, x_{21}\right)=(0,0,2,0,1,4)$.
If $\left(x_{03}, x_{13}\right)=(1,0)$, we get $\left\{\begin{array}{l}x_{02}=x_{21}-5 \\ x_{12}=5-x_{21} \\ x_{11}=6-x_{21}\end{array}\right.$
Thus, $x_{21}=5$. Therefore, $\left(x_{02}, x_{03}, x_{11}, x_{12}, x_{13}, x_{21}\right)=(0,1,1,0,0,5)$.
Therefore, the 1 -lines can be of type

$$
\left(x_{02}, x_{03}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(1,0,0,1,0,5),(0,0,1,2,0,4),(0,0,2,0,1,4),(0,1,1,0,0,5)\}
$$

Two 1-lines meet in an outer point.
We have two possibilities: an outer point of type $(0,3,3,2)$ exists or not.
If an outer point Q of type $(0,3,3,2)$ exists, then through Q there pass three $1-$ lines, l_{i}, i $\in\{1,2,3\}$, of type $(0,1,1,0,0,5)$. Let us denote by L_{i} the point of type $(1,1,4,2)$ on the 1 -line $l_{i}, i \in\{1,2,3\}$. Let us denote by $m_{i j}, j \in\{1,2,3,4\}$, the four 2 -lines through L_{i}. Let us denote by $M_{i h}, h \in\{1,2,3,4,5\}$, the five points of type $(2,1,1,4)$ on the 1 -line $l_{i}, i \in\{1,2,3\}$. Two of
the eight 2 -lines $m_{1 j}$ and $m_{2 j}, j \in\{1,2,3,4\}$, meet l_{3} in the point L_{3} and the other six in six different points $M_{3 h}, h \in\{1,2,3,4,5\}$, a contradiction.

Therefore, an outer point of type $(0,3,3,2)$ does not exist.
Thus, the 1 -lines can be of type

$$
\left(x_{02}, x_{03}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(1,0,0,1,0,5),(0,0,1,2,0,4),(0,0,2,0,1,4)\}
$$

We have two possibilities: an outer point of type $(1,3,0,4)$ exists or not.
If an outer point Q of type ($1,3,0,4$) exists, then through Q there pass three 1 -lines, l_{1}, l_{2} and l_{3}, of type $(0,0,2,0,1,4)$. Now, we count the outer point types on the 1 -lines. The pointset $l_{1} \cup l_{2} \cup l_{3}$ consists of one point of type (1,3,0,4), the point $Q, 12$ points of type $(2,1,1,4), 6$ points of type $(1,1,4,2)$. Two points of type $(1,1,4,2)$ not on the same 1 -line are joined by a 2 -line. Thus the 0 -lines have $0 \leq x_{11} \leq 1$ and $x_{12}=0$. The 3 -line through a point of type $(1,0,6,1)$ meets l_{1}, l_{2} and l_{3} in its inner points. A point of type $(1,0,6,1)$ and Q are joined by a 0 -line. Thus, the 0 -line through Q contains at most two points of type $(1,0,6,1)$ and there exist no $0-$ lines with $x_{10} \neq 0$ and $x_{13}=0$.

Since there are 6 points of type $(1,1,4,2)$, the number of 0 -lines of type $(0,1,0,0,2,2,3)$ is 6 . The other 50 -lines are of type
$\left(x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{30}\right) \in\{(0,0,0,0,3,3,2),(0,0,0,1,4,0,3),(1,0,0,1,2,0,4),(2,0,0,1,0,0,5)\}$
Let x denote the number of 0 -lines of type $(0,0,0,0,3,3,2)$. Double counting the pairs (R, l), where R is a point of type $(2,1,1,4), l$ is a 0 -line of type $(0,0,0,0,3,3,2)$ and $R \in$ l, we get $3 x=24$, a contradiction.

Therefore, an outer point of type $(1,3,0,4)$ does not exist.
Thus, the 1 -lines can be of type $\left(x_{02}, x_{03}, x_{11}, x_{12}, x_{13}, x_{21}\right) \in\{(1,0,0,1,0,5)$, $(0,0,1,2,0,4)\}$.

Now, let $x_{i j}, I=u_{0}, j=u_{1}$, denote the number of outer points of type $(0,2,5,1),(1,0,6,1)$, $(1,1,4,2),(1,2,2,3),(2,0,3,3),(2,1,1,4)$, respectively, of a 2 -line l_{2}. By double counting the number of pairs (Q, r), where $Q \in l_{2}-K$ and $r \neq l_{2}$ is a $i-$ line, $I=0,1,2,3$, through Q, we get:

$$
\left\{\begin{array}{c}
x_{10}+x_{11}+x_{12}+2 x_{20}+2 x_{21}=11 \\
2 x_{02}+x_{11}+2 x_{12}+x_{21}=3 \\
4 x_{02}+5 x_{10}+3 x_{11}+x_{12}+2 x_{20}=9 \\
x_{02}+x_{10}+2 x_{11}+3 x_{12}+3 x_{20}+4 x_{21}=19
\end{array}\right.
$$

The third equation minus the first equation gives $2 x_{02}+2 x_{10}+x_{11}=x_{21}-1 \Rightarrow$ $x_{21} \geq 1$.

Taking into account the second equation, we get $2 x_{02}+x_{11}+2 x_{12}=3-x_{21} \leq 2$.
$\Rightarrow\left(x_{02}, x_{11}, x_{12}, x_{21}\right) \in\{(0,0,0,3),(0,0,1,1),(0,1,0,2),(0,2,0,1),(1,0,0,1)\}$.
The system of linear equation is equivalent to

$$
\left\{\begin{array}{c}
x_{02}=x_{20}+x_{21}-5 \\
x_{10}=x_{12}+x_{21}-2 \\
x_{11}=13-x_{12}-x_{20}-3 x_{21}
\end{array}\right.
$$

Taking into account the second equation,
We get $x_{12}+x_{21} \geq 2 \Rightarrow\left(x_{02}, x_{11}, x_{12}, x_{21}\right) \in\{(0,0,0,3),(0,0,1,1),(0,1,0,2)\}$.
If $\left(x_{02}, x_{11}, x_{12}, x_{21}\right)=(0,0,0,3)$, we get
$\left\{\begin{array}{c}0=x_{20}+3-5 \\ x_{10}=0+3-2 \\ 0=13-0-x_{20}-9\end{array}\right.$, a contradiction.
If $\left(x_{02}, x_{11}, x_{12}, x_{21}\right)=(0,0,1,1)$, we get

$$
\left\{\begin{array}{c}
0=x_{20}+1-5 \\
x_{10}=1+1-2 \\
0=13-1-x_{20}-3
\end{array},\right. \text { a contradiction. }
$$

If $\left(x_{02}, x_{11}, x_{12}, x_{21}\right)=(0,1,0,2)$, we get

$$
\left\{\begin{array}{c}
0=x_{20}+2-5 \\
x_{10}=0+2-2 \\
1=13-0-x_{20}-6
\end{array},\right. \text { a contradiction }
$$

Thus, the character vector of a $(15,3)$-Arc in $\operatorname{PG}(2,7)$ is $(12,0,15,30)$. Since $t_{1}=0$, the inner points are of type $(0,2,6)$ and the outer points are of type $\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \in\{(1,0,6,1),(2,0,3,3)$, $(3,0,0,5)\}$.

Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(1,0,6,1),(2,0,3,3)$, $(3,0,0,5)$, respectively, of a $0-$ line l_{0}. By double counting the number of pairs (Q, r), where $Q \in l_{0}$ and $r \neq l_{0}$ is a i-line, $i=0,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 2 0 } + 2 x _ { 3 0 } = 1 1 } \\
{ 6 x _ { 1 0 } + 3 x _ { 2 0 } = 1 5 } \\
{ x _ { 1 0 } + 3 x _ { 2 0 } + 5 x _ { 3 0 } = 3 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x_{20}=5-2 x_{10} \\
x_{30}=x_{10}+3
\end{array}\right.\right.
$$

We have that $0 \leq x_{10} \leq 2$.
If $x_{10}=0$, we get $\left\{\begin{array}{l}x_{20}=5 \\ x_{30}=3\end{array}\right.$ and $\left(x_{10}, x_{20}, x_{30}\right)=(0,5,3)$.
If $x_{10}=1$, we get $\left\{\begin{array}{l}x_{20}=3 \\ x_{30}=4\end{array}\right.$ and $\left(x_{10}, x_{20}, x_{30}\right)=(1,3,4)$.
If $x_{10}=2$, we get $\left\{\begin{array}{l}x_{20}=1 \\ x_{30}=5\end{array}\right.$ and $\left(x_{10}, x_{20}, x_{30}\right)=(2,1,5)$.
Thus, the 0 -lines can be of type $\left(x_{10}, x_{20}, x_{30}\right) \in\{(0,5,3),(1,3,4),(2,1,5)\}$.
Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(1,0,6,1),(2,0,3,3)$, respectively, of a $2-$ line l_{2}. By double counting the number of pairs (Q, r), where $Q \in l_{2}$ and $r \neq l_{2}$ is a i-line, $i=0,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ x _ { 1 0 } + 2 x _ { 2 0 } = 1 2 } \\
{ 5 x _ { 1 0 } + 2 x _ { 2 0 } = 1 2 } \\
{ x _ { 1 0 } + 3 x _ { 2 0 } = 1 8 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{10}=0 \\
x_{20}=6
\end{array}\right.\right.
$$

Thus, the 2 -lines are of type $\left(x_{10}, x_{20}\right)=(0,6)$, an outer point of type $(1,0,6,1)$ does not exist, and the 0 -lines are of type $\left(x_{10}, x_{20}, x_{30}\right)=(0,5,3)$.

Let $x_{i j}, i=u_{0}, j=u_{1}$, denote the number of outer points of type $(2,0,3,3),(3,0,0,5)$ respectively, of a 3 -line l_{3}. By double counting the number of pairs (Q, r), where $Q \in l_{3}$ and $r \neq l_{3}$ is a $i-$ line, $i=0,2,3$, through Q, we get:

$$
\left\{\begin{array} { c }
{ 2 x _ { 2 0 } + 3 x _ { 3 0 } = 1 2 } \\
{ 3 x _ { 2 0 } = 9 } \\
{ 2 x _ { 2 0 } + 4 x _ { 3 0 } = 1 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{20}=3 \\
x_{30}=2
\end{array}\right.\right.
$$

Thus, the 3 -lines are of type $\left(x_{20}, x_{30}\right)=(3,2)$.
Exactly 15 of the $\binom{15}{2}=1052$-lines pairs meet on points of type $(0,2,6)$, the other 90 on points of type ($2,0,3,3$). So, we have exactly 30 points of type $(2,0,3,3)$ and 12 points of type $(3,0,0,5)$. This yields a self-dual configuration. Indeed, the set of the $2-$ lines in the dual plane is a $(15,3)$-Arc of $\operatorname{PG}(2,7)$.

Let X and Y denote two inner points such that the line joining X and Y is a $2-$ line l_{1}. Let l_{2} and l_{3} denote the other two 2 -lines through X and Y, respectively, different from l_{1}.

If the point $Z \in l_{2} \cap l_{3}$ does not belong to K then Z is of type ($2,0,3,3$). There is another 2 -line through Z which meets the line l_{1} in a point Q_{0}. Let P_{1} and P_{2} denote the two inner points of the $2-$ line $Z Q_{0}$. Moreover let $Q_{j}, j=1,2,3,4$ denote the other four outer points of the 2 -line $Z Q_{0}$, different from Z and Q_{0}. The points of K different from $X, Y, P_{i}, I=1,2$, are one on each of the lines $X Z$ and $Y Z$, two on the lines $P_{i} Q_{j}, i=1,2, j=1,2,3,4$, and one on the lines $X P_{i}$ and $Y P_{i}, i=1,2$. Thus, the size of K is even, a contradiction.

Therefore, the point $Z \in l_{2} \cap l_{3}$ belongs to K and the three 2 -lines l_{1}, l_{2} and l_{3} form a triangle with vertices X, Y and Z. It follows that there is a partition of the 2-line 15-set into 5 triangles.

Let P_{1} and P_{2} denote the two other inner points of a 3-line through X. Let P_{3} denote the other inner point of the 3-line $Y P_{2}$. Let P_{4} denote the other inner point of the 3-line $X P_{3}$. If P_{4} is on the 3 -line $Y P_{1}$, then the four 3-lines $X P_{1} P_{2}, X P_{3} P_{4}, Y P_{2} P_{3}, Y P_{1} P_{4}$ form a quadrangle with diagonal points X, Y and Z. If P_{4} is not on the $3-$ line $Y P_{1}$, then the 3-line $P_{2} P_{4}$ meets the 3-line $P_{1} P_{3}$ in the point Z, then the four 3-lines $X P_{1} P_{2}, X P_{3} P_{4}$, $Z P_{2} P_{4}, Z P_{1} P_{3}$ form a quadrangle with diagonal points X, Y and Z. Therefore, there exists a quadrangle of four 3 -lines with diagonal points X, Y and Z. Since any quadrangle is projectively equivalent with the reference quadrangle $R=\{(0,0,1),(0,1,0),(1,0,0),(1,1,1)\}$, the construction and the uniqueness, up to projective equivalence, of the (15,3)-Arc K in $P G(2,7)$ follows by observing that the other 8 points of K are exactly the complementary set of the union of the nine lines joining the seven points of the quadrangle.

We explicitly note that if one considers as blocks the 3 -lines and the 3 -sets of vertices of the 2 -line triangles, then a Steiner triple system $\mathrm{S}(2,3,15)$ is obtained. It follows that the $(15,3)$-Arc K in $\operatorname{PG}(2,7)$ is an embedding of a Steiner triple system $\mathrm{S}(2,3,15)$ in $\mathrm{PG}(2,7)$.

The automorphism group of K is a group G_{72} of order 72 with 21 elements of order 2, 26 elements of order 3, 18 elements of order 4 and 6 elements of order 6, cf. [3].

For convenience we represent $\mathrm{PG}(2,7)$ as a set of orthogonal arrays of $A G(2,7)$ with the intersection point of the members of each parallel class indicated to the right of the row array and at the bottom of the column array. We do this by using the Singer difference set defining $\mathrm{PG}(2,7)$ as the line at infinity $l_{\infty}=\{0,1,3,13,32,36,43,52\}$, cf. [10]. The remaining lines of the plane are found by adding 1 to each point of the preceding line beginning with l_{∞} as l_{0} and using addition modulo 57. Any quadrangle together with its three diagonal points is projectively equivalent with the reference quadrangle $R=\{0,1,2,16,51,52,53\}$, see Figure 1.

Figure 1. The Reference quadrangle.
One can easily verify by the Singer representation, see Table 1, that the 8 -set of points of the plane which are not in the nine lines joining these points is a conic $C=$ $\{5,9,20,23,39,40,41,49\}$. Moreover, the set $R \cup C$ is, up to projective equivalence, the (15,3)-Arc of PG(2,7).

Table 1. The Singer representation of PG(2,7).

5	12	21	26	27	29	39		2	5	15	34	38	45	54	
6	42	7	38	9	49	19		6	46	55	35	39	16	4	
8	35	22	25	17	54	23		22	42	48	47	33	26	50	
18	51	16	28	15	10	47	1	28	23	7	29	41	14	31	3
37	2	53	4	14	33	44		27	10	25	37	24	56	19	
41	56	34	11	50	55	30		30	53	12	20	17	49	18	
48	31	24	20	46	40	45		40	11	44	9	51	8	21	
			0								13				
33	35	45	11	7	18	27		48	49	51	4	23	27	34	
34	10	6	31	17	26	44		2	50	7	10	20	8	39	
46	21	25	49	47	2	41		11	24	54	12	6	47	14	
8	30	29	15	4	24	42	32	16	5	30	9	33	31	25	43
12	38	50	37	40	23	16		19	35	26	41	15	53	40	
19	14	51	22	5	55	20		17	28	37	45	21	55	42	
28	48	53	39	56	9	54		29	44	46	22	56	38	18	
			36								52				

3. Conclusions

The main contribution of this paper is the geometric construction of the $(15,3)$-Arc in PG(2,7), relying on the union of a conic and a complete external quadrangle. The construction has a particularly large automorphism group and a nice structure. This is in line with normal experience in all branches of finite geometry. Extremal $(k, 3)$-arcs in $\mathrm{PG}(2,7)$ are shown to be vastly outnumbered by less interesting objects with no particular group or structure, cf. [3]. This leads us to conclude that except in a very small number of special cases, namely minimum and maximum cases, the question of geometric classification is neither feasible nor of particularly great interest.

Author Contributions: Investigation, S.I.; Writing-review \& editing, M.Z. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: We thank the anonymous referees whose reports have helped improve the presentation of the results of the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Thas, J.A. Some results concerning $\{(q+1)(n-1) ; n\}$-arcs and $\{(q+1)(n-1)+1 ; n\}$-arcs in finite projective planes of order q. J. Combin. Theory Ser. A 1975, 19, 228-232. [CrossRef]
2. Ahmad, A.M.; Al-Mukhtar, A.S.H.; Faiyadh, M.S. Classification and Construction of ($k, 3$)-Arcs on Projective Plane Over Galois Field GF(7). Ibn Al-Haitham J. Pure Appl. Sci. 2013, 26, 259-265.
3. Marcugini, S.; Milani, A.; Pambianco, F. Classification of the ($n, 3$)-arcs in PG(2,7). J. Geom. 2004, 80, 179-184. [CrossRef]
4. Bouyukliev, I.; Cheon, E.J.; Maruta, T.; Okazaki, T. On the $(29,5)$-Arcs in PG(2, 7) and Some Generalized Arcs in PG(2, q). Mathematics 2020, 8, 320. [CrossRef]
5. Casse, L.R.A. (15;3)-arcs of $S_{2,7}$. In Proceedings of the First Australian Conference on Combinatorial Math, Newcastle, 10-12 June 1972; pp. 193-196.
6. Dodunekov, S.; Landgev, I. On near-MDS codes. J. Geom. 1995, 54, 30-43. [CrossRef]
7. Yahya, N.Y.K. A Geometric Construction of Complete $(k, r)-\operatorname{arcs}$ in $\operatorname{PG}(2,7)$ and the Related projective $[n, 3, d]_{7}$ Codes. AL-Rafidain J. Comput. Sci. Math. 2018, 12, 24-40. [CrossRef]
8. Retkin, H.; Stein, E. On the symmetric (15,3)-arcs of the finite projective plane of order 7. Rend. Mater. 1965, 24, 392-399.
9. Hirschfeld, J.W.P. Projective Geometries over Finite Fields, 2nd ed.; Clarendon Press: Oxford, UK, 1998.
10. Singer, J. A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 1968, 43, 377-385. [CrossRef]
