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Abstract: A nonempty subset D ⊂ V of vertices of a graph G = (V, E) is a dominating set if every
vertex of this graph is adjacent to at least one vertex from this set except the vertices which belong to
this set itself. D ⊆ V is a total k-dominating set if there are at least k vertices in set D adjacent to every
vertex v ∈ V, and it is a global total k-dominating set if D is a total k-dominating set of both G and
G. The global total k-domination number of G, denoted by γ

g
kt(G), is the minimum cardinality of a

global total k-dominating set of G, GTkD-set. Here we derive upper and lower bounds of γ
g
kt(G), and

develop a method that generates a GTkD-set from a GT(k− 1)D-set for the successively increasing
values of k. Based on this method, we establish a relationship between γ

g
(k−1)t(G) and γ

g
kt(G), which,

in turn, provides another upper bound on γ
g
kt(G).

Keywords: global total domination; total k-domination number

1. Introduction

We start by introducing the basic notation. Suppose we are given a simple graph
G = (V, E) with |V| = n (n is called the order of graph G) and |E| = m (m is called the
size of graph G). Given D ⊆ V (D 6= ∅) and vertex v ∈ V, let ND(v) be the set of all
vertices from set D, adjacent to vertex v (also called the neighbors of vertex v from set
D); we will use ND(v) for the set of vertices in set D which are not neighbors of vertex v
(ND[v] = ND(v) ∪ {v}). We let ND[v] = ND(v) ∪ {v}, and we call δD(v) = |ND(v)| the
degree of vertex v in set D. We denote by δD(v) the cardinality of set ND(v) (δD(v) =
|ND(v)|). We will use more compact notation N(v), N[v], δ(v), N(v) and N[v] instead of
NG(v), NG[v], δG(v), NG(v) and NG[v], respectively, when this will cause no confusion.
The minimum (the maximum, respectively) degree in graph G is traditionally denoted by δ
(∆, respectively). G[S] and G, respectively, will stand for the subgraph of graph G induced
by S ⊆ V and the complement of graph G, respectively.

Let X and Y be subsets of set V. We denote by E(X, Y) the set of all the edges in graph
G joining a vertex x ∈ X with a vertex y ∈ Y. Let u and v be vertices from set V. Then
the distance between these two vertices d(u, v) is the length (the number of edges) of a
minimum u− v-path. The length of the longest u− v path, for any u and v, is called the
diameter of graph G, denoted by diam(G). The girth of graph G is the length of the shortest
cycle in that graph and is denoted by g(G).

Let D ⊆ V be a nonempty subset of set V. Then D is called a total k-dominating set for
graph G if there are at least k vertices in set D adjacent to every vertex v ∈ V (we will also
say that vertex v is totally k-dominated by set D). The cardinality of a total k-dominating set
in graph G with the minimum cardinality is called the total k-domination number of graph
G and is denoted by γkt(G). We will refer to a total k-dominating set with cardinality γkt(G)
as a γkt(G)-set. A total 1-dominating set is normally referred to as a total dominating set,
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and the total 1-domination number is referred to as the total domination number, denoted
by γt(G). We refer the reader to [1–9] for more detail on these definitions.

Given again a non-empty set D ⊆ V, D is called a global total k-dominating set of
graph G (GTkD set for short) if D is a total k-dominating set of both graphs G and G.
The global total k-domination number of G, denoted by γ

g
kt(G), is the cardinality of a

global total k-dominating set with the minimum cardinality. A global total k-dominating
set of cardinality γ

g
kt(G) will be referred to as a γ

g
kt(G)-set. Again, if k = 1, a global total

1-dominating set is a global total dominating set (see [10,11]).
As it is well-known and also easily be seen,

2k + 1 ≤ γ
g
kt(G) ≤ n,

for any graph G with order n. Here we shall exclusively deal with the connected graphs
due to a known fact that if G1, G2, . . . , Gr (r ≥ 2) are the connected components in graph
G, then

γ
g
kt(G) =

r

∑
i=1

γkt(Gi)

(see [12]).
The main goal of this paper is to complete the current study of global total k-domination

number in graphs. First, we give upper and lower bounds on γ
g
kt(G), and then we develop

a method that generates a GTkD-set from a GT(k− 1)D-set for the successively increasing
values of k. Based on this method, we establish a relationship between γ

g
(k−1)t(G) and

γ
g
kt(G), which, in turn, provides another upper bound on γ

g
kt(G).

The rest of the paper is organized as follows. In the next section, we present known
results and give some remarks. In Sections 3 and 4, we derive upper and lower bounds,
respectively, for global total k-domination number. In the Section 5, we provide our method
that obtains a global total (k + 1)-dominating set from a global total k-dominating set.

2. Relations between γ
g
kt(G) and γkt(G)

Clearly, the definition of a GTkD set gives us an implicit lower bound for the parame-
ter γ

g
kt(G):

Observation 1. Let G be a graph; then γ
g
kt(G) ≥ max{γkt(G), γkt(G)}.

The above lower bound is not necessarily attainable, as we illustrate in the following
figure: we depict graph G and its complement G, and the corresponding minimum total
2-dominating set in both graphs (black vertices); see Figure 1.

Figure 1. Graph G and its complement G, which satisfy γ2t(G) = 5, γ2t(G) = 5 and γ
g
2t(G) = 6.

The following proposition was proved in [12].

Proposition 1. Let G be a graph,

(i) If γkt(G) > ∆(G) + k, then γ
g
kt(G) = γkt(G).

(ii) If γkt(G) ≤ ∆(G) + k, then γ
g
kt(G) ≤ ∆(G) + k + 1.
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Corollary 1. Let G be a graph with maximum degree ∆. Then, γ
g
kt(G) ≤ max{γkt(G), ∆+ k+ 1}.

Proposition 2. Let G be a graph with order n and maximum degree ∆. If n > ∆(∆+k)
k , then

γ
g
kt(G) = γkt(G).

Proof. If n > ∆(∆+k)
k , then ∆ + k < kn

∆ ≤ γkt(G); consequently, ∆ + k + 1 ≤ γkt(G).
By Corollary 1 we have γ

g
kt(G) = γkt(G).

Theorem 1. For any graph G, γ
g
kt(G) = γkt(G) if and only if there exists a minimum total

k-dominating set D such that any subset D′ of D with |D| − k + 1 vertices is not included in any
star in the graph—that is, and only if there is not a vertex v ∈ V such that D′ ⊆ N[v].

Proof. Let D be a minimum total k-dominating set which is also a global total k-dominating
set, and let D′ be a subset of D with cardinality |D| − k + 1. If there exists a vertex v ∈ V
such that D′ ⊆ N[v], then v ∈ D′ and it is adjacent to |D| − k vertices in D′, so v has less
than k non-adjacent vertices in D, or v /∈ D′, and it is adjacent to |D| − k + 1 vertices in D′,
so v has less than k non-adjacent vertices in D. In both cases we have a contradiction with
the fact that D is a global total k-dominating set.

On the other hand, we take a minimum total k-dominating set D such that for any
subset D′ of D with |D| − k + 1 vertices and every vertex v ∈ V, we have D′ 6⊆ N[v]. Then,
for any vertex v ∈ D we have |N(v)| < |D| − k, so v has, at least, k non-neighbors in
D. If v ∈ V \ D we have |N(v)| < |D| − k + 1, so v has, at least, k non-neighbors in D.
Therefore, D is a global total k-dominating set.

3. Upper Bounds for the Global Total k-Domination Number

In this section, we obtain some upper bounds for the global total k-domination number
in a graph. Bermudo et al. in [12] showed a characterization when the global total k-
domination number is equal to the order of the graph, but we give here that characterization
in a more specific way. To do that, in the following proposition we give a condition to
guarantee that the global total k-domination number is less than n.

Proposition 3. Let G be a graph with order n, minimum degree δ and maximum degree ∆.
If k < min{δ, n− ∆− 1}, then γ

g
kt(G) ≤ n− 1.

Proof. Let us see that, for any v ∈ V, the set D = V \ {v} is a GTkD set of G. We have
that δD(v) = δ(v) ≥ δ > k and δD(v) = n− 1− δ(v) ≥ n− 1− ∆ > k. For every u ∈ D
we have δD(u) ≥ δ(u)− 1 ≥ δ− 1 ≥ k and δD(u) ≥ n− 1− δ(u)− 1 ≥ n− 2− ∆ ≥ k.
Therefore, D is a GTkD set of G.

Proposition 3 is not an equivalence, as we can see if we consider a triangle and
we add a leaf to every vertex of the triangle. In such a case γ

g
1t(G) ≤ n − 1 = 5 and

k = 1 = min{δ, n− ∆− 1}.
Now, in order to present the characterization of all graphs having a global total k-

domination number equal to the number of vertices, we need to define the following set.
Given a graph G and an integer i, let Ti(G) = {v ∈ V(G) : δ(v) = i} (i.e., the set of vertices
in graph G with the degree i).

Theorem 2. Given graph G with order n and the minimum and the maximum degrees δ and ∆,
γ

g
kt(G) = n if and only if one of the conditions (a)–(c) below hold

(a) k = δ < n− ∆− 1 and V =
⋃

v∈Tδ(G)

N(v).

(b) k = n− ∆− 1 < δ and V =
⋃

w∈T∆(G)

(V \ N[w]).
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(c) k = δ = n− ∆− 1 and V =

 ⋃
v∈Tδ(G)

N(v)

 ∪
 ⋃

w∈T∆(G)

(V \ N[w])

.

Proof. (a) If k = δ < n− ∆− 1 and V =
⋃

v∈Tδ(G)

N(v), we consider D = V \ {u} for any

u ∈ V. We note that there exists v ∈ N(u) such that δ(v) = k; this implies that δD(v) < k.
Thus, D is not a GTkD set of G. Hence, γ

g
kt(G) = n.

(b) If k = n − ∆ − 1 < δ and V =
⋃

w∈T∆(G)

(V \ N[w]), for any u ∈ V there ex-

ists w ∈ V such that δ(w) = ∆ and u /∈ N[w]. If we consider D = V \ {u}, then
δD(w) ≤ n− ∆− 2 < k; thus, D is not a GTkD set of G. Therefore, γ

g
kt(G) = n.

(c) If k = δ = n − ∆ − 1 and V =

 ⋃
v∈Tδ(G)

N(v)

 ∪
 ⋃

w∈T∆(G)

(V \ N[w])

, using

(a) or (b), we obtain that V \ {u} is not a GTkD set of G, for any u ∈ V. Consequently,
γ

g
kt(G) = n.

Finally, if we assume that γ
g
kt(G) = n, by Proposition 3 we have that k ∈ {δ, n−∆− 1}.

For every vertex v ∈ V, we note that D = V \ {v} is not a GTkD set of G, so there
exists u ∈ D such that δD(u) < k or δD(u) < k. If k = δ < n − ∆ − 1, since δD(u) ≥
n− 2− δ(u) ≥ n− 2−∆ ≥ k, then we have that δD(u) < k = δ; this implies that u ∈ Tδ(G)
and v ∈ N(u). If k = n− ∆− 1 < δ, since δD(u) ≥ δ(u)− 1 ≥ δ− 1 ≥ k, then we have
that n− 2− δ(u) ≤ δD(u) < k = n− ∆− 1; that is, n− 2− δ(u) = δD(u) = n− ∆− 2, so
u ∈ T∆(G) and v ∈ V \ N[u]. If k = δ = n− ∆− 1, since δD(u) < k or δD(u) < k, we have
that u ∈ Tδ(G) and v ∈ N(u), or u ∈ T∆(G) and v ∈ V \ N[u].

The following corollary was directly obtained from Theorem 2.

Corollary 2. Let G be a graph with minimum degree δ, maximum degree ∆ and order n 6=
∆ + δ + 1. Then γ

g
kt(G) = n if and only if one of the following condition holds.

(a) k = δ < n− ∆− 1 and γkt(G) = n.

(b) k = n− ∆− 1 < δ and γkt(G) = n.

Corollary 3. Let G be a graph of order n, minimum degree δ and maximum degree ∆. If one of the
following conditions holds:

(a) k = δ < n− ∆− 1 and |Tδ(G)| ≥ n− δ.

(b) k = n− ∆− 1 < δ and |T∆(G)| ≥ ∆ + 1

(c) k = δ = n− ∆− 1 and |Tδ(G)| ≥ n− δ or |T∆(G)| ≥ ∆ + 1,

then γ
g
kt(G) = n.

Proof. Since γ
g
kt(G) = γ

g
kt(G), ∆ = n − δ − 1, T∆(G) = Tδ(G) and V \ NG[w] = N(w),

it is enough to check that |T∆(G)| ≥ ∆ + 1 implies V =
⋃

w∈T∆(G)(V \ N[w]). However,
for any vertex v ∈ V, if |T∆(G)| ≥ ∆ + 1, then there exists a vertex w ∈ T∆(G) which is not
a neighbor of v, so v ∈ ⋃w∈T∆(G)(V \ N[w]).

It was proved in [12] that γ
g
kt(G) ≤ min

{
γkt(G) + ∆, γkt(G) + γkt(G)

}
. It would be

convenient to characterize the graphs G such that γ
g
kt(G) = γkt(G) + ∆, and the graphs

G such that γ
g
kt(G) = γkt(G) + γkt(G). On the other hand, the invariants of a graph are

important when characterizing them; below we use some of them such as diameter and
girth. The following proofs use the ideas showed in [11].
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Theorem 3. If G is a graph such that diam(G) ≥ 5, every total k-dominating set is a GTkD set
of G.

Proof. Let D be a total k-dominating set and u, v ∈ V such that d(u, v) ≥ 5. Since δD(u) ≥ k
and δD(v) ≥ k, there exist {u1, . . . , uk} ⊆ D∩N(u) and {v1, . . . , vk} ⊆ D∩N(v). For any
vertex w ∈ V we know that δD(w) ≥ k. If ui ∈ N(w) for some i ∈ {1, . . . , k}, then

w /∈
k⋃

i=1

N[vi]; that means, δD(w) ≥ k. Therefore, D is a GTkD set of G.

Corollary 4. If G is a graph such that diam(G) ≥ 5, then γ
g
kt(G) = γkt(G).

According to the idea given in [11], we obtain the following result.

Proposition 4. If G is a graph such that diam(G) = 4 and there exist {u, v1, . . . , vk} ⊆ V such
that dist(u, vj) = 4 for every j ∈ {1, . . . , k}, then γ

g
kt(G) ≤ γkt(G) + k.

Proof. Let D be a minimum total k-dominating set of a graph; then there exists the vertex
set {u1, . . . , uk} ⊆ D such that {u1, . . . , uk} ⊆ N(u). For any vertex w ∈ V and i ∈
{1, . . . , k}, w cannot be adjacent to both ui and vi, so D ∪ {v1, . . . , vk} is a global total
k-dominating set.

In Figure 2 we can see an example where the equality in Proposition 4 for k = 2
is attained. Taking into account that any neighbor of a vertex of degree 2 must belong
to any total 2-dominating set (grey vertices), we show in that figure the minimum total
2-dominating set (b) and the minimum global total 2-dominating set (c).

u

w

v1

v2

u

w

v1

v2

u

w

v1

v2

(a) (b) (c)

Figure 2. (a) Grey vertices are neighbors of vertices of degree 2. (b) Minimum total 2-dominating set
and (c) minimum global total 2-dominating set.

For a graph G, we let δ∗(G) = min{δ(G), δ(G)}.

Proposition 5. Let G be a graph of order n and minimum degree δ; then γ
g
kt(G) ≤ n− δ∗(G) + k.

Proof. Let us see that every set D ⊆ V such that |D| ≥ n − δ∗(G) + k is a global total
k-dominating set. Since |D| ≥ n− δ+ k, every vertex v satisfies δV\D(v) ≤ δ− k, δD(v) ≥ k.
Since |D| ≥ n− δ + k, every vertex v satisfies δV\D(v) ≤ δ− k, so δD(v) ≥ k.

4. Lower Bounds for the Global Total k-Domination Number

We know that any graph G satisfies γ
g
kt(G) ≥ 2k + 1, and a characterization for graphs

satisfying the equality was given in [12]. Additionally, in that work the authors showed
the following inequality.

Remark 1. Let G be a graph with order n, minimum degree δ and maximum degree ∆. Then,

γ
g
kt(G) ≥ max

{
kn
∆

,
kn

n− δ− 1

}
For example, the lower bound given above can be reached in the graph shown in

Figure 3.



Mathematics 2021, 9, 480 6 of 13

Figure 3. A graph G with order n = 10, δ = 5 and γ
g
2t(G) = 2n

n−δ−1 .

Theorem 4. Let G be a graph of order n, maximum degree ∆ and size m. Then

γ
g
kt(G) ≥ 2m + n(2k− ∆) + (2k + 1)2

n + 2k
.

Proof. Let D be a γkt(G)-set. Since every vertex in V \ D cannot have more that |D| − k
neighbors in D, we have E(D, V \ D) ≤ (n− |D|)(|D| − k), so

m = E(D, D) + E(D, V \ D) + E(V \ D, V \ D)

≤ |D|∆(G)− E(D, V \ D)

2
+ E(D, V \ D) +

(∆− k)(n− |D|)
2

≤ |D|∆ + (n− |D|)(|D| − k) + (∆− k)(n− |D|)
2

=
|D|∆ + (n− |D|)(|D| − 2k + ∆)

2

=
−|D|2 + (n + 2k)|D|+ n∆− 2kn

2
,

which implies that

(2k + 1)2 + 2m ≤ |D|2 + 2m ≤ (n + 2k)|D|+ n∆− 2kn,

then

|D| ≥ 2m + n(2k− ∆) + (2k + 1)2

n + 2k
.

Theorem 5. Let G be a graph with order n, maximum degree ∆ and size m. Then,

γ
g
kt(G) ≥ 2m + n(∆− 2k)

n + k− ∆
.

Proof. We suppose that D is a γkt(G)-set and |D| ≥ 2r+ 1 for some r ≥ 2, and |D| ≥ 2k+ 2.
Since D is minimal, for any vertex v1 ∈ D there exists a vertex wv1 such that one of the
following conditions holds.

(1) wv1 ∈ D, v1 ∈ N(wv1) and δD(wv1) = k,

(2) wv1 ∈ D, v1 /∈ N(wv1) and δD(wv1) = |D| − k− 1,

(3) wv1 ∈ V \ D, v1 ∈ N(wv1) and δD(wv1) = k,

(4) wv1 ∈ V \ D, v1 /∈ N(wv1) and δD(wv1) = |D| − k.

Now, in cases (1) and (3), we take v2 ∈ D \ N(wv1), and in cases (2) and (4), we take
v2 ∈ D ∩ N(wv1), and we know that there exists a vertex wv2 6= wv1 such that one of the
above conditions holds. Since |D| ≥ 2r + 1 we can obtain wv1 , . . . , wvr vertices satisfying
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one of the conditions above. We suppose that there exist i, j− i, s and r− j− s vertices
satisfying (1), (2), (3) and (4), respectively. Then,

E(D, D) ≤ ik + (j− i)(|D| − k− 1) + (|D| − j)(|D| − k− 1)
2

=
ik− i(|D| − k− 1) + |D|(|D| − k− 1)

2

=
i(2k− |D|+ 1) + |D|(|D| − k− 1)

2
,

E(D, V \ D) ≤ sk + (r− j− s)(|D| − k) + (n− |D| − r + j)(|D| − k)
2

=
sk− s(|D| − k) + (n− |D|)(|D| − k)

2

=
(n− |D|)(|D| − k) + s(2k− |D|)

2
,

and

E(V \ D, V \ D) ≤ s(∆− k) + (r− j− s)(∆− |D|+ k)
2

+
(n− |D| − r + j)(∆− k)

2

=
s(∆− k) + (r− j− s)(∆− k− |D|+ 2k)

2

+
(n− |D| − r + j)(∆− k)

2

=
(∆− k)(n− |D|) + (r− j− s)(2k− |D|)

2
;

therefore,

m ≤ E(D, D) + E(D, V \ D) + E(V \ D, V \ D)

≤ i(2k− |D|+ 1) + |D|(|D| − k− 1)
2

+
(n− |D|)(|D| − k) + s(2k− |D|)

2

+
(∆− k)(n− |D|) + (r− j− s)(2k− |D|)

2

=
i(2k− |D|+ 1) + |D|(|D| − k− 1)

2

+
(n− |D|)(|D| − 2k + ∆) + (r− j)(2k− |D|)

2

=
|D|(n + k− ∆) + n(−2k + ∆) + (i + r− j)(2k− |D|) + i

2

≤ |D|(n + k− ∆) + n(−2k + ∆)
2

;

then

|D| ≥ 2m + n(∆− 2k)
n + k− ∆

.

Let us see another lower bound using the algebraic connectivity. Given a graph
G, its adjacency matrix A and the diagonal matrix D whose entries are the degrees of
all vertices in the graph, the Laplacian matrix is defined as L = A − D. The algebraic
connectivity of G, denoted by µ is the second smallest eigenvalue of the Laplacian matrix.
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The algebraic connectivity of G = (V, E) with order n satisfies the following equality given
by Fielder [13].

µ = 2n min

{
∑vivj∈E(wi − wj)

2

∑vi∈V ∑vj∈V(wi − wj)2 : w 6= αj for α ∈ R
}

,

where j = (1, 1, . . . , 1) and w ∈ Rn.

Theorem 6. Let G be a graph with order n and algebraic connectivity µ. Then,

γ
g
kt(G) ≥ kn

n− µ
.

Proof. Let D be a γkt(G)-set. It can be found that if we take

w =

{
1 if v ∈ D
0 if v /∈ D

in the set given above, since µ is the minimum, we have

µ ≤
n ∑v∈D δD(v)
|D|(n− |D|) ≤

n(n− |D|)(|D| − k)
|D|(n− |D|) =

n(|D| − k)
|D| ;

therefore, |D| ≥ kn
n−µ .

Theorem 7. Let G be a graph of order n and maximum degree ∆. If k ≥ min
{

∆
2 , n−δ−1

2

}
, then

γ
g
kt(G) ≥

√
4kn + 1 + 1

2
.

Proof. Let D be a γkt(G)-set. For every v ∈ D, if we suppose that k ≥ ∆
2 , we have

δD(v) ≥ δD(v), then

|D|(|D| − k− 1) ≥ ∑
v∈D

δD(v) ≥ ∑
v∈D

δD(v) ≥ (n− |D|)k,

which implies that |D|2 − |D| ≥ kn, or equivalently, that
(
|D| − 1

2

)2
≥ kn + 1

4 ; that is,

|D| ≥
√

4kn+1+1
2 .

If n−δ−1
2 ≤ k < ∆

2 , since γ
g
kt(G) = γ

g
kt(G) and ∆ = n − δ − 1, we can obtain the

same result.

The lower bound given in Theorem 7 is attained, for instance, in the graph given in
Figure 4.

Figure 4. A graph G such that γ
g
2t(G) ≥

√
8n+1+1

2 .



Mathematics 2021, 9, 480 9 of 13

In graph theory, it is common to analyze graphs obtained by some transformation
from an originally given graph. An example of such a transformation is the elimination of
one or more edges of the graph. Given a graph G, it is natural to think about what happens
if you add or delete edges on the graph. We note that removing an edge in G is equivalent
to adding an edge to graph G. Therefore, it suffices to study just one of these cases.

Proposition 6. Let G be a graph with order n, minimum degree δ and maximum degree ∆, and let
k < min{δ, n− ∆− 1}. Then the following inequalities are satisfied (for an edge e):

γ
g
kt(G− e) ≤ γ

g
kt(G) + 2,

γ
g
kt(G + e) ≤ γ

g
kt(G) + 2.

Proof. Let G be a graph and D be a γ
g
kt(G)-set, and we consider e ∈ E. Notice that

e ∈ E(V \ D, V \ D), e ∈ E(D, V \ D) or e ∈ E(D, D); we will divide the proof into three
cases and we denote G′ = G− e.

Case 1: If e ∈ E(V \D, V \D). Note that every vertex in V(G′) has at least k neighbors
and k non-neighbors in D. Therefore, γ

g
kt(G

′) ≤ |D| = γ
g
kt(G) < γ

g
kt(G) + 2.

Case 2: If e ∈ E(D, V \ D). Let e = uv, where u ∈ D and v ∈ V \ D. We note that
for every w ∈ V(G) − {v}, δD(w) ≥ k and δD(w) ≥ k. On the other hand, note that
δD(v) > k in G′, and if δD(v) ≥ k in G′, then γ

g
kt(G

′) ≤ |D| = γ
g
kt(G) < γ

g
kt(G) + 2. Now,

if δD(v) = k− 1 in G′, then there exists w ∈ V(G′) \ D such that w ∈ NG′(v). Therefore,
D ∪ {w} is a GTkD set of G′, so γ

g
kt(G

′) ≤ |D ∪ {w}| = γ
g
kt(G) + 1 < γ

g
kt(G) + 2.

Case 3: If e ∈ E(D, D). Let e = uv where u, v ∈ D. We note that for every w ∈ V(G)−
{u, v}, δD(w) ≥ k and δD(w) ≥ k. In the worst case δD(u) < k and δD(v) < k; the others
cases are solved as the above; there exists w, p ∈ V(G′) \ D such that w ∈ NG′(u) and
p ∈ NG′(v). Now, if w = p then D ∪ {w} is a GTkD set of G′ and γ

g
kt(G

′) ≤ |D ∪ {w}| =
γ

g
kt(G) + 1 < γ

g
kt(G) + 2; otherwise, w 6= p and then D ∪ {w, p} is a GTkD set of G′; hence

γ
g
kt(G

′) ≤ |D ∪ {w, p}| = γ
g
kt(G) + 2.

Thus, the first inequality is satisfied: γ
g
kt(G− e) ≤ γ

g
kt(G) + 2. Now, as we say above

for this problem, removing an edge in G is analogous to adding an edge in G. Since G− e
and G + e are complementary graphs and it is known that γ

g
kt(G) = γ

g
kt(G), it is verified

that γ
g
kt(G − e) = γ

g
kt(G + e). Hence, by the first inequality γ

g
kt(G + e) = γ

g
kt(G − e) ≤

γ
g
kt(G) + 2 = γ

g
kt(G) + 2. So, γ

g
kt(G + e) ≤ γ

g
kt(G) + 2.

Let S be a subset of set V such that the maximum degree of the subgraph induced
by the vertices from set S is no more than k − 1. Then set S will be referred to as a
k-independent set of vertices. The cardinality of a k-independent set of the maximum
cardinality will be referred to as the k-independence number in graph G and will be
denoted by βk(G). The lower k-independence number ik(G) is the minimum cardinality of
a maximal k-independent set in graph G.

Proposition 7. Let D be a global total k-dominating set in G and let V \ D be a maximum
(∆− k)-independent. Then,

n− β∆−k(G) ≤ |D| ≤ min{n− γ(G), n− i∆−k(G)}.

Proof. Since V \ D is a maximal (∆− k)-independent set, V \ D is a dominating set; thus,
n− |D| ≥ γ(G). Moreover, i∆−k(G) ≤ n− |D| ≤ β∆−k(G).

5. Deriving Upper Bounds for γ
g
(k+1)t(G) from γ

g
kt(G)

It is intuitively clear that the greater k is, the more difficult is to find a global total
k-dominating set of graph G = (V, E) with the minimum cardinality. In particular, the fol-
lowing relationship is easy to see: γ

g
1t(G) ≤ γ

g
2t(G) ≤ γ

g
3t(G) ≤ . . . ≤ γ

g
kt(G), for every
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k ≤ min{δ, n−∆− 1}. Ideally, one would wish to have a method that obtains a GT(k+ 1)D
set of minimum cardinality from a GTkD set with the minimum cardinality. It is clear
that this is not an easy task. In this next section we develop a method that generates a
GT(k+ 1)D set from a GTkD, based on which we establish a relationship between minimum
cardinality GTkD and GT(k + 1)D sets—more precisely, between γ

g
kt(G) and γ

g
(k+1)t(G),

which, in turn, provides upper bounds for γ
g
(k+1)t(G).

We first need to introduce some necessary definitions. Given D ⊆ V, a subset of the
set of vertices V, let N(D) be the set of vertices from V \ D having at least one neighbor in
D; that is, N(D) = {x ∈ V \ D | ∃ y ∈ D such that x ∈ NG(y)}. Similarly, we denote by
N(D) the set of vertices from V \ D having at least one non-neighbor in D.

Now let A and B be subsets of set V. We will say that a subset D ⊆ A is a relative
dominating set of B from set A if for every x ∈ B there exists at least one vertex v ∈ D
such that v ∈ N(x) or v ∈ B. Correspondingly, we call the minimum cardinality of such
a relative dominating set the relative domination number of set B from set A and denote
it by γ′(A, B). We abbreviate by γ′(A, B)-set a relative dominating set of B from set A of
cardinality γ′(A, B).

Finally, γ′(A, B) is the relative domination number of B from set A in graph G and
γ′(A, B)-set is a relative dominating set of B from set A in graph G with cardinality γ′(A, B);
see an example in Figure 5.

Lemma 1. Let G be a graph with diam(G) = 2 and g(G) = 4, and let S be an induced subgraph
isomorphic to C4. Let B = V \ (N(S) ∪ S) and A = N(B). Then γ

g
1t(G) ≤ γ′(A, B) + 4.

Proof. Let D′ be a γ′(A, B)-set, D = S ∪ D′ and v ∈ V. Note that since diam(G) = 2,
D′ ⊆ A ⊆ N(S). Thus, we can see that v ∈ N(S), v ∈ B or v ∈ S. If v ∈ N(S), then it has at
least one neighbor in S and hence also in D. On the other hand, if v ∈ B, then v must have
at least one neighbor in D′ and hence also in D. If v ∈ S, then v has at least one neighbor in
S, and hence also in D. Therefore, D is a total 1-dominating set of G.

If v ∈ S, then there exists one non-neighbor vertex of v in S, and hence also in D.
If v ∈ B, then the four vertices in S are non-neighbors of v, and hence vertex v has at least
one non-neighbor in set D. If v ∈ N(S), since g(G) = 4, v it has at most two neighbors
in S; thus, it has at least two non-neighbors in S and hence also in D. Therefore, D is
a global 1-dominating set of G. Finally, D is a global total 1-dominating set of G, so
γ

g
1t(G) ≤ γ′(A, B) + |S| = γ′(A, B) + 4.

u v

Figure 5. In the depicted graph G, the set S is formed by the white vertices, set A is formed by the
black vertices and set B is formed by the gray vertices. Note that γ′(A, B) = 2 (the set {u, v} is a
γ′(A, B)-set) and γ

g
1t(G) = 6.

Corollary 5. Let G be a graph with diam(G) = 2 and g(G) = 4; let S be an induced subgraph
isomorphic to C4, B = V \ (N(S) ∪ S) and A = N(B). Then the following conditions hold.

• If B = ∅, then γ
g
1t(G) = 4.

• Since γ′(A, B) ≤ |B|, γ
g
1t(G) ≤ |B|+ 4.
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• If |N(x) ∩ S| = 2, ∀x ∈ A, then γ
g
2t(G) ≤ 2|B|+ 4.

Let k be a positive integer with 1 ≤ k < min{δ, n− ∆− 1}, and D be a γ
g
kt(G)-set for

graph G. Below we define special sets of vertices that will be used in future derivations.

• H = V(G) \ D.
• Z = {x ∈ H | δD(x) ≥ k + 1 and δD(x) ≥ k + 1} are all vertices in H which are global

total (k + 1)-dominated.
• X = Tk(G[D]) are all vertices in D with only k neighbors.
• Y = T|D|−k−1(G[D]) are all vertices in D with only k non-neighbors.
• X′ = N(X) ∩ H are all the vertices in H which have at least one neighbor in set X.
• N = γ′(X′, X)-set, a relative dominating set of X from set X′.
• Y′ = N(Y) ∩ H are all the vertices in set H which have at least one non-neighbor in

set Y.
• R = γ′(Y′, Y)-set, a relative dominating set of X from set X′ in G.
• P = H \ Z are all the vertices in set H which are not yet global total (k + 1)-dominated.
• M = γ′(H, P)-set ∪ γ′(H, P)-set;
• S = D ∪ N ∪ R ∪M;

Now we show that the set S obtained as above is a global total (k + 1)-dominating set
given a γ

g
kt(G)-set D.

Theorem 8. Let G be a graph and D be an arbitrary γ
g
kt(G)-set. Then the set S obtained as above

is a global total (k + 1)-dominating set of graph G.

Proof. Let D be an arbitrary γ
g
kt(G)-set, H = V \ D, Z = {x ∈ H: δD(x) ≥ k + 1 and

δD(x) ≥ k + 1}, X = Tk(G[D]) and Y = T|D|−k−1(G[D]). Further, let P = H \ Z, E be
a γ′(H, P)-set, F be a γ′(H, P)-set and M = E ∪ F (all these sets being constructed as
above specified). If X = ∅ and Y = ∅, then every vertex from D ∪ Z has at least k + 1
adjacent and k + 1 non-adjacent vertices in set D. Besides, note that every vertex v ∈ P
has at least k + 1 adjacent and k + 1 non-adjacent vertices in set D ∪M. Additionally, since
V = D ∪ Z ∪ P, D ∪M is a global total (k + 1)-dominating set of graph G.

Assume now that X 6= ∅ and Y = ∅, and let X′ = N(X)∩ H and N be a γ′(X′, X)-set
(notice that by the construction of the set X′, there always exists the set N). Observe that
every vertex from set D ∪ Z has at least k + 1 adjacent and k + 1 non-adjacent vertices in
set D ∪ N. Besides, every vertex v ∈ P has at least k + 1 adjacent and k + 1 non-adjacent
vertices in set D ∪M. Since V = D ∪ Z ∪ P, D ∪ N ∪M is a global total (k + 1)-dominating
set of G.

The case X = ∅ and Y 6= ∅ is analogous to the above case. We obtain that D ∪ R ∪M
is a global total (k + 1)-dominating set of G, where Y′ = N(Y) ∩ H and R is a γ′(Y′, Y)-set.

Finally, assume that X 6= ∅ and Y 6= ∅. Let X′ = N(X) ∩ H, Y′ = N(Y) ∩ H, N be a
γ′(X′, X)-set and R be a γ′(Y′, Y)-set. Using a similar arguments as above, we again obtain
that S is a global total (k + 1)-dominating set of graph G.

In the next proposition we derive an upper bound on the cardinality of the global total
(k + 1)-domination number. In the same lemma, we give a necessary condition when the
global total (k + 1)-domination number is equal to the total (k + 1)-domination number.

Proposition 8. Let G be a graph with δ ≥ k and D be a γ
g
kt(G)-set. Then the following condi-

tions hold:

(a) γ
g
(k+1)t(G) ≤ γ

g
kt(G) + |N ∪ R ∪M|.

(b) If |N ∪M| > ∆ + k− γ
g
kt(G), then γ

g
(k+1)t(G) = γ(k+1)t(G).

Proof. (a) By Theorem 8, S is a global total (k + 1)-dominating set of G; hence, the bound
trivially holds.
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(b) Recall that |S| = γ
g
kt(G) + |N ∪ R ∪M|. Additionally, it is easy to see that S \ R

is a total (k + 1)-dominating set of G. In [12] it is proved that if γkt(G) > ∆ + k, then
γ

g
kt(G) = γkt(G) (see Proposition 2.10). Hence, if |S| ≥ γ

g
kt(G) + |N ∪M| ≥ γ(k+1)t(G) >

∆ + k + 1, then γ
g
(k+1)t(G) = γ(k+1)t(G). Hence, if |N ∪ M| > ∆ + k + 1− γ

g
kt(G) then

γ
g
(k+1)t(G) = γ(k+1)t(G).

Using the definition of the above introduced sets and Theorem 8 and Proposition 8,
we can obtain a global total k-domination set for any k = 2, . . . , min{δ, n− ∆− 1}. As a
side-result, we also obtain the corresponding upper bounds to a global total k-domination
number. Finally, we note that this procedure provides a global total k-dominating set of
minimum cardinality, 2 ≤ k ≤ min{δ, n− ∆− 1}, for some graphs; see Figure 6.

v1 v2

v3v4

v5

v6

v7

v8

Figure 6. A graph G with γ
g
1t(G) = 4, γ

g
2t(G) = 6 and γ

g
3t(G) = 8. Note that if D = {v1, v2, v3, v4}

a γ
g
1t(G)-set, then S = {v1, v2, v3, v4, v5, v7} which is a γ

g
2t(G)-set. Likewise, from S we construct

S′ = {v1, v2, v3, v4, v5, v6, v7, v8} which is a γ
g
3t(G)-set.

6. Conclusions

We studied the global total k-domination number in general graphs. In particular, we
presented new upper and lower bounds using the algebraic connectivity in graphs. We also
established a relationship between the global total k-domination numbers of the originally
given graph G and the transformed ones. Then we derived an explicit relationship between
a γ

g
kt(G)-set and a γ

g
(k+1)t(G)-set, which allowed us to obtain another upper bound for the

global total k-domination number in a recurrent fashion, starting from k = 1. We gave
an example of a graph G for which a γ

g
kt(G)-set, for every k = 2, . . . , min{δ, n− ∆− 1}

is provided. For future work, the global total k-domination number could be studied on
unitary operations in graphs, such as edge subdivision, edge contraction, path contraction
and removal of a vertex. It would be a challenging task to adopt the proposed method as
such and also extend it for a wider class of graphs.
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