
mathematics

Article

Review of the Lineal Complexity Calculation through Binomial
Decomposition-Based Algorithms

Jose Luis Martin-Navarro 1,∗ and Amparo Fúster-Sabater 2,†

����������
�������

Citation: Martin-Navarro, J.L.;

Fúster-Sabater, A. Review of the

Lineal Complexity Calculation

through Binomial

Decomposition-Based Algorithms.

Mathematics 2021, 9, 478.

https://doi.org/10.3390/math9050478

Academic Editor: Ricardo Lopez-Ruiz

Received: 29 December 2020

Accepted: 22 February 2021

Published: 26 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, School of Science, Aalto University, 02150 Espoo, Finland
2 Instituto de Tecnologías Físicas y de la Información, C.S.I.C., 28006 Madrid, Spain; amparo@iec.csic.es
* Correspondence: martinnavarroj@acm.org
† Current address: Serrano 144, 28006 Madrid, Spain.

Abstract: The ubiquity of smart devices and IoT are the main forces behind the development of
cryptographic primitives that preserve the security of this devices, with the resources constraints
they face. In this sense, the development of lightweight cryptographic algorithms, where PRNGs
are an essential part of them, provides security to all these interconnected devices. In this work,
a family of sequence generators with hard characteristics to be analyzed by standard methods is
described. Moreover, we introduce an innovative technique for sequence decomposition that allows
one to extract useful information on the sequences under study. In addition, diverse algorithms to
evaluate the strength of such binary sequences have been introduced and analyzed to show which
performs better.

Keywords: PRNG; binomial sequences; complexity; stream ciphers; IoT

1. Introduction

Sensorization is only one of the latest trends which brings a net of communications
around us, as Internet of Things (IoT), and it is said is one of main requirements for third
technological revolution. Different critical sectors such as smart-grid, e-health or industrial
automation will increase their dependence on this low-cost devices, and with the grow in
dependence will also increase the security risks [1,2].

Ubiquitous devices such as IoT are characterized by their constraints on energy
consumption, processing power, memory, and size, which makes harder to keep them
secure. Combining their network dependability with their low security features, they
became the perfect target for gaining control of the applications and systems behind
them [3]. A good example where a vulnerable IoT sensor was used to gain control over the
whole system can be found here [4].

Different approaches in research [5], 5G [6] or specific calls such as that of NIST
for lightweight cryptography primitives [7], are addressing the security of IoT, taking
into account the limited resources available on such devices. Lightweight cryptography,
with stream ciphers as his core, are the keystones on which the different protocols of
communication and orchestration are built [8].

In this work, first we will introduce Linear Feedback Shift Registers (LFSR), key com-
ponents in stream ciphers, often used as Pseudo Random Number Generators (PRNG).
Among the most recent PRNGs based on shift registers, we can list: the Grain-128AEAD [9]
a stream cipher supporting authenticated encryption with associated data that includes
both Linear and Nonlinear Shift Registers (LFSR and NFSR, respectively), the Tiny-
JAMBU [9] a family of Lightweight Authenticated Encryption Algorithms whose keyed
permutation is based on an 128-bit NLFSR or the Espresso [10] a PRNG for 5G wireless
communication systems including a 256-bit LFSR and a 20-variable nonlinear output
function. The two first generators are second-round candidates in the lightweight crypto
standardization process launched by NIST.

Mathematics 2021, 9, 478. https://doi.org/10.3390/math9050478 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4503-4189
https://orcid.org/0000-0002-8261-3550
https://doi.org/10.3390/math9050478
https://doi.org/10.3390/math9050478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9050478
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/5/478?type=check_update&version=2

Mathematics 2021, 9, 478 2 of 22

Next, we will present the generalized shelf shrinking generator, a particular family
of ciphers with strong cryptographic characteristics which remain strong to the standard
Berlekamp-Massey Algorithm [11]. Then, we improved an innovative sequence decompo-
sition introduced by Cardell et al. in [12] and will show how it can be used to analyze the
properties of binary sequences. Finally, we will compare the different algorithms based on
the sequence decomposition, including two novel algorithms based on the symmetry of
the binomial sequences and on the B-representation of binary sequences, respectively.

The study of the generalized shelf shrinking generator is not a random choice. In-
deed, it produces not only sequences that are hard to analyze by the Berlekamp-Massey
algorithm, but also it has been implemented in hardware [13] along on RFID devices [14]
and programmable logic devices [15], as a key stream generator. Studying the robustness
of these sequences could prevent vulnerabilities on the IoT devices and the services built
on them.

This work’s purpose is to effectively compare the binomial decomposition-based
algorithms, showing their strengths and possible use-cases. The first contribution of this
work is the experimental study of the number of binomial components in a binomial
decomposition (parameter r), which allows us to study the complexity of the BD algorithm.
In addition, we present the half-interval search algorithm. Despite it being based on our
previous design of the folding algorithm [16], in this work we complete the available
knowledge on such an algorithm providing a mathematical proof of its behaviour and
correctness. The matrix binomial decomposition algorithm is another novelty of this article,
which is based on a recent representation of the generalized self-shrunken sequences [17].
Finally, after completing the gaps on the algorithm definitions, the last contribution of our
work is the comparison among all the previous algorithms and the discussion about their
different use-cases. The paper is organized as follows. Section 2 includes a brief revision
of LFSRs and sequence generators based on irregular decimation, a well-known kind of
generators including the generalized self-shrinking generator. Section 3 describes the
characteristics and generalities of the binomial sequences, binary sequences that constitute
the foundations of the last algorithms above mentioned. Section 4 introduces and analyzes
four algorithms to calculate the linear complexity of binary sequences: (a) the standard
Berlekamp–Massey algorithm, (b) the binomial decomposition BS-algorithm, an improved
version of the algorithm developed in [12], which analyzes different properties of the
binary sequences, (c) the half-interval search algorithm, a novel proposal based on the
symmetry of the binomial sequences and (d) the matrix binomial decomposition or m-
BD algorithm based on the product of matrices. Section 5 includes the discussion and
extensively comparison among the four previous algorithms, including experiments that
test its performance. Finally, conclusions and future research are in Section 6.

2. Shift Registers and the Concept of Linear Complexity

Pseudo-random binary sequences have extensive applications in secure communi-
cations, e.g., wireless systems, cryptography, error-correcting codes or circuit testing.
Commonly used structures for the generation of such sequences are the Linear Feedback
Shift Registers (LFSRs) [18]. In fact, LFSRs are essential components in the design of many
sequence generators found in the literature. Good reliability, high speed and easy imple-
mentation are some of their practical advantages, which justify a so wide and generalized
use. From a theoretical point of view, LFSRs are mathematical models readily analyzable
by means of algebraic methods [18].

According to Figure 1, an LFSR is made up of the following components:

Mathematics 2021, 9, 478 3 of 22

an+L−1 an+L−2 an+L−3 · · · an+1 an

c1 c2 c3 · · · cL−1 cL

+ + · · · + +

an+L

Figure 1. A scheme of LFSR with L stages.

1. L binary stages, which are interconnected and numbered (0, 1, 2, . . . , L− 1) from left
to right. Each stage stores a unique bit.

2. The L-degree feedback or connection polynomial

p(x) = xL + c1xL−1 + c2xL−2 + . . . + cL−1x + cL

with coefficients ci defined in the binary field ci ∈ F2.
3. A non-zero initial state (stage contents) at the initial instant.

In brief, LFSRs generate sequences by means of successive linear feedbacks and shifts.
The output sequence of an LFSR is a binary sequence {an} (n = 0, 1, 2, . . .) with

an ∈ F2. When the polynomial p(x) is a primitive polynomial [18], then the output
sequence is a PN-sequence (or Pseudo-Noise sequence); besides, a PN-sequence has length
l = 2L − 1 bits where 2L−1 of them are ones and 2L−1 − 1 are zeros.

The idea of pseudo-randomness in sequences of finite length implies the difficulty of
predicting the subsequent digits of a sequence from the knowledge of the previous ones.
A measure of unpredictability is the parameter linear complexity, notated LC. Roughly
speaking, LC is related with the amount of sequence we need to process in order to recover
all the sequence. In terms of security, this amount has to be as large as possible; the
recommended value is half the length of the sequence.

The concept of linear complexity of a sequence is closely related to LFSRs. The formal
definition of LC is now introduced:

Definition 1. The linear complexity of a binary sequence {sn} (n = 0, 1, 2, . . .) with sn ∈ F2 is
the length of the shortest LFSR able to generate such a sequence.

By definition, the LC of a PN-sequence generated by a LFSR with L stages is LC = L.
Although LFSRs are in themselves excellent generators of pseudo-random sequence,

they are essentially linear structures. This is the reason any kind of non-linearity must be
introduced in the process of generation. Non-linear filters, clock-controlled generators,
combination generators or dynamic LFSR-based generators are just some of the habitual
examples of sequence generators involving non-linearity, see [19,20] and the references
cited therein. Particular attention deserves the irregular decimation of PN-sequences
as an efficient technique to erase the linearity inherent to LFSRs [21,22]. Among the
different examples of decimation-based generators we can enumerate: (1) the shrinking
generator [23] with two LFSRs for a mutual decimation, (2) the self-shrinking generator [24]
with just one LFSR that decimates itself and (3) the generalized self-shrinking generator [25]
that outputs a family of pseudo-random sequences, the so-called generalized self-shrunken
sequences (GSS-sequences). Different cryptanalytic attacks against the previous generators
can be found in the literature [26–30].

In this work, we focus on binary sequences whose length is a power of 2, characteristic
exhibited by many of the sequences from the previous generators.

An LFSR-Based Sequence Generator

A characteristic design of LFSR-based sequence generator is the generalized self-
shrinking generator (GSSG). In fact, it is the most representative element in the class of

Mathematics 2021, 9, 478 4 of 22

decimation-based generators as well as a practical design with application in low-cost
passive RFID tags, see [14].

A GSSG consists of:

(a) A PN-sequences {an} generated by an L-stage LFSR and a shifted version of such a
sequence, notated {bn}. Both sequences are related by the expression {bn} = {an+p},
p being an integer. Thus, {bn} is nothing but the PN-sequence {an} circularly rotated
p positions with (p = 0, 1, 2 . . . , 2L − 2).

(b) A simple decimation rule defined as:{
If an = 1 then bn is output,
If an = 0 then bn is discarded and no bit is output.

For every p, a new sequence {un}p = {u0, u1, u2, . . .}p is generated. Each sequence
{un}p is called the generalized self-shrunken sequence associated with the rotation p.
When p ranges in the interval [0, 1, . . . , 2L − 2], then we obtain all the elements of the family
of GSS-sequences (in total 2L − 1 elements) based on the PN-sequence {an}.

Some important facts essentially extracted from [25] are enumerated:

1. All the generalized self-shrunken sequences are balanced apart from the identically 1
sequence [25] (Theorem 1).

2. By construction, the family of generalized self-shrunken sequences consists of 2L − 1
sequences of 2L−1 bits each of them. Thus, the length of any generalized sequence
will be 2L−1 or divisors. At any rate, the length of these sequences will always be a
power of 2.

3. The family of generalized sequences plus the identically null sequence has structure
of Abelian group where the group operation is the bit-wise sum mod 2. The neu-
tral element is the identically null sequence and every sequence is its own inverse
element [25] (Theorem 2).

4. The sequence produced by the self-shrinking generator is a member of this family for
p = 2L−1, see [22].

Moreover, we can add that the LC of every GSS-sequence is upper-bounded by
2L−1 − (L− 2) [31] (Theorem 2). A simple example of GSS-sequences is next introduced.

Example 1. With a LFSR whose primitive polynomial is p(x) = x3 + x + 1 and initial state
(1, 0, 1), we can generate the GSS-sequences depicted in Table 1. Bits in bold in the sequences {bn}
represent the digits of the corresponding GSS-sequence associated with the rotation p. The PN-
sequence {an} with length l = 23 − 1 and ones in bold appears at the bottom of the table.

Table 1. Family of generalized sequences for p(x) = x3 + x + 1.

p-Rotation {bn} Sequences GSS-Sequences

0 111 0 111 111 111 0 0 1111
1 000 1 111 111 000 0 1 0110
2 111 1 111 000 000 1 0 1100
3 111 1 000 000 111 0 1 1001
4 111 0 000 111 000 1 1 1010
5 000 0 111 000 111 1 1 0101
6 000 1 000 111 111 1 0 0011

PN-sequence 111 0 111 111 111 0 0

3. Binomial Sequences

A new representation of binary sequences in terms of the so-called binomial sequences
is now introduced. Such a representation applies only to sequences whose length is
a power of 2. Next, we analyze the representation of the GSS-sequences by means of
binomial sequences.

Mathematics 2021, 9, 478 5 of 22

3.1. Introduction to Binomial Sequences

The binomial number (n
k) (n, k being non-negative integers) is the coefficient of the

power xk in the expansion of the binomial power (1 + x)n. For n ≥ 0, it is a well-known
fact that (n

0) = 1 while (n
k) = 0 for all k > n.

From the binomial coefficients reduced modulo 2, the concept of binomial sequence is
defined as follows:

Definition 2. The k-th binomial sequence
{
(n

k)
}
(n = 0, 1, 2, . . .) is a binary sequence whose

elements are binomial coefficients (n
k) reduced modulo 2, i.e.,{(

n
k

)}
n≥0

=

{(
0
k

)
,
(

1
k

)
,
(

2
k

)
, . . .

}
mod 2

,

where k is called the index of the binomial sequence.

The k first terms of the binomial sequence are zeros while the term (k
k) corresponds to

the first 1.
Table 2 shows the binomial sequences {(n

k)} (k = 0, 1, . . . , 7), with their lengths lk and
linear complexities LCk, see [32].

Table 2. Binomial sequences with their lengths lk and linear complexities LCk.

Binom. Coeff. Binomial Sequences {(n
k)} Length Linear Complexity

(n
0) {1, 1, 1, 1, 1, 1, 1, 1, . . .} l0 = 1 LC0 = 1
(n

1) {0, 1, 0, 1, 0, 1, 0, 1, . . .} l1 = 2 LC1 = 2
(n

2) {0, 0, 1, 1, 0, 0, 1, 1, . . .} l2 = 4 LC2 = 3
(n

3) {0, 0, 0, 1, 0, 0, 0, 1, . . .} l3 = 4 LC3 = 4
(n

4) {0, 0, 0, 0, 1, 1, 1, 1, . . .} l4 = 8 LC4 = 5
(n

5) {0, 0, 0, 0, 0, 1, 0, 1, . . .} l5 = 8 LC5 = 6
(n

6) {0, 0, 0, 0, 0, 0, 1, 1, . . .} l6 = 8 LC6 = 7
(n

7) {0, 0, 0, 0, 0, 0, 0, 1, . . .} l7 = 8 LC7 = 8

Different properties of the binomial sequences are next enumerated.

1. Given the binomial sequence
{
(n

k)
}

with k = 2m + i where m is a non-negative integer
and the index i takes values in the interval 0 ≤ i < 2m, then we have that [12]
(Proposition 3):

(a) The binomial sequence {(n
k)} has length l = 2m+1.

(b) The formation rule of this binomial sequence is:

{(
n

2m + i

)}
0≤n<2m+1

=

{
0 if 0 ≤ n < 2m + i,

(n
i)mod 2 if 2m + i ≤ n < 2m+1.

2. The linear complexity of the binomial sequence
{
(n

2m+i)
}

with m and i defined as
above is LC = 2m + i + 1, see [12] (Theorem 13).

3. Every binary sequence {sn}n≥0 whose length is a power of 2 can be written as linear
combination of binomial sequences [12] (Theorem 2). This combination is called the
Binomial Decomposition of {sn}n≥0. Such a decomposition allows us to analyze
fundamental properties of the sequence, e.g., length and linear complexity.

4. Given a sequence {sn}n≥0 with binomial decomposition {sn} = ∑r
i=1

{
(n

ki
)
}

, where
0 ≤ k1 < k2 < · · · < kr are integer indices, then its linear complexity is given by
LC = kr + 1, see [12] (Corollary 14).

5. Given a sequence {sn}n≥0 with binomial decomposition {sn} = ∑r
i=1

{
(n

ki
)
}

, where
0 ≤ k1 < k2 < · · · < kr are integer indices, then its length l is that of the binomial

Mathematics 2021, 9, 478 6 of 22

sequence
{
(n

kr
)
}

, i.e., the length of the binomial sequence of maximum index in its
binomial decomposition, see [32] (Theorem 1).

All these properties will be used in the algorithms that compute the LC of every binary
sequence {sn}n≥0.

In addition, the binomial sequences can be found in the diagonals of the Sierpinski’s
triangle reduced modulo 2 [12] (Section 4) as well as in certain linear cellular automata
(e.g., linear automata with rules 102 and 60) as it has been studied in [22] (Chapter 3). See
the previous references for more details.

3.2. Binomial Decomposition of GSS-Sequences

The number of binomial sequences, notated r, in the decomposition of any GSS-
sequence has not been previously analyzed in the literature. The parameter is decisive
in the comparison among the algorithms of Section 4, since the BD-algorithm complexity
depends on the number of binomial sequences. To study the asymptotic behavior of this
parameter, some experiments were carried out.

The analyzed sequences in such experiments were all the GSS-sequences coming
from LFSRs with primitive feedback polynomials of degree L with L taking values in
the interval [5, 10]. More precisely, we have considered the 6 primitive polynomials of
degree 5, the 6 primitive polynomials of degree 6, the 18 primitive polynomials of degree 7,
the 16 primitive polynomials of degree 8, the 48 primitive polynomials of degree 9 and
the 60 primitive polynomials of degree 10. For each one of these primitive polynomi-
als, the 2L − 1 GSS-sequences have been generated and decomposed in terms of their
binomial sequences. On average, we observed several binomial sequences given by 2L−2,
∀L ∈ [5, 10].

The plots corresponding to the number of binomial sequences in the decomposition of
all these GSS-sequences are depicted in Figure 2. For each chart, the x-axis represents the
number of binomial sequences in a specific decomposition (parameter r) while the y-axis
counts the number of times r occurs. For a given LFSR, each one of the colors represents all
the sequences of the GSS-family generated by such an LFSR. In brief, for each value of L
the chart represents the distribution of the parameter r for all the GSS-sequences generated
by primitive polynomials of degree L.

Version February 16, 2021 submitted to Mathematics 6 of 22

All these properties will be used in the algorithms that compute the LC of every binary sequence170

{sn}n≥0.171

In addition, the binomial sequences can be found in the diagonals of the Sierpinski’s triangle172

reduced modulo 2 [12, Section 4] as well as in certain linear cellular automata (e.g. linear automata173

with rules 102 and 60) as it has been studied in [22, Chapter 3]. See the previous references for more174

details.175

3.2. Binomial decomposition of GSS-sequences176

The number of binomial sequences, notated r, in the decomposition of any GSS-sequence has177

not been previously analyzed in the literature. The parameter is decisive in the comparison among178

the algorithms of Section 4, since the BD-algorithm complexity depends on the number of binomial179

sequences. In order to study the asymptotic behavior of this parameter, some experiments were carried180

out.181

The analyzed sequences in such experiments were all the GSS-sequences coming from LFSRs182

with primitive feedback polynomials of degree L with L taking values in the interval [5, 10]. More183

precisely, we have considered the 6 primitive polynomials of degree 5, the 6 primitive polynomials of184

degree 6, the 18 primitive polynomials of degree 7, the 16 primitive polynomials of degree 8, the 48185

primitive polynomials of degree 9 and the 60 primitive polynomials of degree 10. For each one of these186

primitive polynomials, the 2L − 1 GSS-sequences have been generated and decomposed in terms of187

their binomial sequences. On average, we observed a number of binomial sequences given by 2L−2,188

∀L ∈ [5, 10].189

Figure 2. Density of binomial sequences in the GSS-sequence decomposition

(a) L = 5 (b) L = 6

(c) L = 7 (d) L = 8

(e) L = 9 (f) L = 10

The plots corresponding to the number of binomial sequences in the decomposition of all these190

GSS-sequences are depicted in the Figure 2. For each chart, the x-axis represents the number of191

binomial sequences in a specific decomposition (parameter r) while the y-axis counts the number of192

times r occurs. For a given LFSR, each one of the colors represents all the sequences of the GSS-family193

Figure 2. Density of binomial sequences in the GSS-sequence decomposition.

Mathematics 2021, 9, 478 7 of 22

The distribution of the number of binomial sequences in the GSS-sequences follows
closely a normal distribution. Nevertheless, a smooth tail can be also noticed on the left of
the figures, which means that for some GSS-sequences the density of binomial sequences
will be lower.

The results of these experiments will be employed in some of the algorithms to
compute the LC described in next section.

4. Different Algorithms to Compute the Linear Complexity of a Sequence

In this section, we introduce different algorithms (both novel and already known
algorithms) to compute the LC of any binary sequence with length l = 2m, m being a non-
negative integer. Analysis, foundations and characteristics of each algorithm are described
in the subsequent sections.

Throughout the next sections, the following notation will be systematically used.

1. For the sake of readability, in the sequel the binomial coefficient (n
k) just denotes the

k-th binomial sequence.
2. The term (n

k)i,j represents the sub-sequence of (n
k) between the i-th and j-th bits.

3. The term (n
k)j stands for the sub-sequence corresponding to the j first bits of (n

k).

4.1. Berlekamp-Massey Algorithm

The most general and well-known method of computing the linear complexity of
binary sequences is the Berlekamp-Massey algorithm [11]. Such an algorithm can be
applied to sequences of any length, not only to sequences whose length is a power of 2.
For a fixed binary sequence, this algorithm processes bit-by-bit the successive digits until
it finds the shortest LFSR able to generate the whole sequence. At each particular step,
the Berlekamp-Massey algorithm computes the length and the feedback polynomial of
the shortest LFSR that produces the sub-sequence analyzed up to that particular bit. Both
LFSR length and feedback polynomial degree will always be greater than those of the
previous step.

To get the final value of LC, this algorithm has to process several bits equal to twice the
value of the linear complexity of the sequence under consideration. For sequences whose
LC is close to their length l, e.g., the GSS-sequences [22], the Berlekamp-Massey algorithm
will process approximately 2 ∗ l bits of each sequence with a computational complexity of
O(l2), see [33].

4.2. Binomial Decomposition Algorithm or BD-Algorithm

To compute the LC of a given sequence, the BD-algorithm [12] provides one with a
simple procedure to determine the binomial decomposition of such a sequence. The mathe-
matical results enumerated in the Section 3.1 constitute the core of this algorithm. More
precisely, two properties are taken into account:

• According to Item 3 (in Section 3.1), the sequence seq of length l = 2m can be decom-
posed into r binomial sequences of the form:

seq =

(
n
k1

)
+ · · ·+

(
n
kr

)
.

• According to Item 4 (in Section 3.1), the lineal complexity of seq is that of the binomial
sequence of maximum index (n

kr
) in its binomial decomposition. Since the indices of

the binomial sequences are written in increasing order, then LC is computed by means
of the following equation:

LC = kr + 1. (1)

The result of the previous properties is the algorithm described in Algorithm 1. Indeed,
it takes as input the sequence seq and checks for the bits that equal 1. If seqi = 1, then it
bit-wise sums the sequence seq with the binomial sequence (n

i), so that seq = seq + (n
i).

Mathematics 2021, 9, 478 8 of 22

The procedure stops when all the binomial sequences in the decomposition have been
determined or, equivalently, when the resulting sequence seq is the identically null sequence.
The algorithm outputs the binomial decomposition of the sequence under consideration as
well as the value of its LC, via the Equation (1).

Algorithm 1 The BD-algorithm.

Require: seq: the sequence to be analyzed

binom = [∅], kr = 0

for i = 0; i < length(seq); i++ do

if seqi == 1 then

seq+ = (n
i)

binom.add(i)

kr = i

end if

end for

return binom and LC = kr + 1: binomial decomposition and LC of seq.

A step-by-step application of Algorithm 1 to the binomial decomposition of seq16 =
{0001110110001011} with l = 24 is depicted in Table 3.

Table 3. A step-by-step application of the BD-algorithm to seq16.

Step Op. Seq. Bit Position

0 4 8 12

1 seq 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1
+ (n

3) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

2 = seq 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0
+ (n

4) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

3 = seq 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1
+ (n

6) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

4 = seq 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
+ (n

8) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

5 = seq 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1
+ (n

9) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

6 = seq 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
+ (n

10) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

7 = seq 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
+ (n

12) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

end = seq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

seq = (n
3) + (n

4) + (n
6) + (n

8) + (n
9) + (n

10) + (n
12)

LC = kr + 1 = 12 + 1 = 13

Recall that the BD-algorithm computes LC after processing 13 bits of seq16 while the
Berlekamp-Massey algorithm needs 2 ∗ 13 = 26 bits. In fact, the BD-algorithm performs
the bit-wise sum of two sequences of l bits, i.e., l operations, for each binomial sequence
that appears in the binomial decomposition. Thus, its computational complexity is O(r ∗ l),
where r is the number of binomial sequences in the decomposition of the analyzed sequence
with r � l.

Next, we show how the BD-algorithm can be improved and its complexity reduced.

Mathematics 2021, 9, 478 9 of 22

Improvement of the BD-Algorithm

If we avoid the sum of the sub-sequences identically null, then the performance of this
algorithm clearly improved. Due to the properties of the binomial coefficients described in
Section 3.1, we know that (n

k) = 0 for all n < k. At the same time, notice that at the i-th step
of the algorithm the ki first terms of seq are zeros.

Therefore, combining these two facts the number of operations is substantially reduced.
When the first 1 in the i-th position of seq is detected, then the algorithm bit-wise sums both
sequences exclusively between the i-th and (l − 1)-th bits, i.e., (seqi,l−1 + (n

i)i,l−1), as the
headers of both sequences (until the (i− 1)-th bit) are zeros.

In this way, the number of additions at each step is incrementally reduced:

r

∑
i=1

(l − ki) < r ∗ l.

Moreover, for sequences whose LC is upper bounded the algorithm performance
can be even improved. In fact, in that case we do not need to check any other bit after
the index corresponding to this upper bound. For example, every sequence produced by
a generalized self-shrinking generator with LFSR of length L has a LC upper bounded
by LCmax = 2L−1 − (L− 2), [31]. In that case, the maximum index kmax in its binomial
decomposition is kmax = l − log l, l = 2L−1 being the sequence length. Hence, the final
number of operations is again reduced to:

r

∑
i=1

(kmax − ki) <
r

∑
i=1

(l − ki) < r ∗ l.

The code of Algorithm 1 is just upgraded by converting the bit-wise sum of both
sequences into the expression seq = seqi,kmax + (n

i)i,kmax
, with kmax defined as before.

In brief, for this family of sequences the BD-algorithm requires l − log l bits of each
sequence to compute its LC with a computational complexity less than O(r ∗ l).

4.3. Half-Interval Search Algorithm

In this subsection a novel algorithm to compute the LC, the so-called half-interval
search algorithm, is described. Such an algorithm takes full advantage of the binomial
sequence symmetry. A preliminary version of this algorithm by the same authors was intro-
duced in [16,34]. First of all, we study the symmetry properties of the binomial sequences.

4.3.1. Symmetry of the Binomial Sequences

In fact, the symmetry of these sequences gives rise to the following results.

Theorem 1. Let (n
k)l denote the l first bits of the binomial sequence (n

k) with l = 2m, m being a
positive integer. Such a sub-sequence can be divided into two new sub-sequences of length l

2 :(
n
k

)
l
=

((
n
k

)
0, l

2−1
,
(

n
k

)
l
2 ,l−1

)
, (2)

then, two different configurations may appear:

1. If k the index of the binomial sequence is k < l
2 , then the two sub-sequences in Equation (2)

are equal.
2. If k the index of the binomial sequence is k ≥ l

2 , then the two sub-sequences in Equation (2)
are written as: (

n
k

)
l
=

(
zeros l

2
,
(

n
i

)
l
2

)
, (3)

where zeros l
2

represents the sub-sequence identically null of length l
2 and i is an integer

satisfying 0 ≤ i < 2m−1.

Mathematics 2021, 9, 478 10 of 22

Proof. Both cases are proved separately.

1. Since k < l
2 , then k can be written as k = 2j + i, where j and i are non-negative integers

such that j < m− 1 and 0 ≤ i < 2j. According to Item 1(a) in Section 3.1, the binomial
sequence (n

k) = (n
2j+i) has length l̃ = 2j+1 where the maximum length is l̃max = 2m−1

when j = m− 2 and the minimum length l̃min = 20 when j = 0. At any rate, l̃ is a
power of 2 as well as l̃ < 2m and, therefore, the first and second sub-sequences in
Equation (2) are equal.

2. Since k ≥ l
2 = 2m−1, then k can be written as k = 2m−1 + i with 0 ≤ i < 2m−1.

According to Item 1(a) in Section 3.1, the binomial sequence (n
k) = (n

2m−1+i) has length
l̃ = l = 2m. Moreover, according to Item 1(b) in Section 3.1(

n
k

)
l
2 ,l−1

=

(
n

2m−1 + i

)
l
2 ,l−1

=

(
n
i

)
l
2

.

Thus, the sub-sequence (n
k)l satisfies the Equation (3) as well as the l

2 first terms
are zeros.

In Table 4, where l
2 = 8, the binomial sequences (n

3), (
n
4) and (n

6) correspond to the
condition (1) in Theorem 1, where the eight first bits are repeated, while the binomial
sequences (n

8), (
n
9), (

n
10) and (n

12) correspond to the condition (2) in the same theorem with
k ≥ 8.

Table 4. Theorem 1 applied to the binomial decomposition of seq16.

seq 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1

(n
3)l = ((n

3) l
2
, (n

3) l
2
) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

(n
4)l = ((n

4) l
2
, (n

4) l
2
) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

(n
6)l = ((n

6) l
2
, (n

6) l
2
) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

(n
8)l = (zeros l

2
, (n

0) l
2
) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(n
9)l = (zeros l

2
, (n

1) l
2
) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

(n
10)l = (zeros l

2
, (n

2) l
2
) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

(n
12)l = (zeros l

2
, (n

4) l
2
) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

seq16 = (n
3) + (n

4) + (n
6) + (n

8) + (n
9) + (n

10) + (n
12)

Next result introduces an interesting characteristic of the sub-sequence (n
k) l

2 ,l−1, which
can be converted into another binomial sequence.

Proposition 1. The sub-sequence (n
k) l

2 ,l−1 that is the second sub-sequence of (n
k)l in Equation (2)

with k ≥ l
2 can be written as: (

n
k

)
l
2 ,l−1

=

(
n

k− l
2

)
l
2

.

Proof. According to the previous properties of the binomial sequences, we write:(
n
k

)
l
2 ,l−1

=

(
n

2m−1 + i

)
l
2 ,l−1

=

(
n
i

)
l
2

=

(
n

k− 2m−1

)
l
2

=

(
n

k− l
2

)
l
2

.

This will be the notation used in the sequel.
The sub-sequences (n

k)l can be classified into two disjoint sets depending on the value
of the index k, as explained in Algorithm 2. In the first case, only the first half of the

Mathematics 2021, 9, 478 11 of 22

sub-sequence must be computed (0 ≤ n < l
2) as the second half is exactly the same. In the

second case, it is precisely the second half of the sub-sequence which has to be computed
(l

2 ≤ n < l), since the l
2 first bits are zeros.

Algorithm 2 Classification of the binomial sequences.

Given the sub-sequence (n
k)l :

if k < l
2 then

(n
k)l := ((n

k) l
2
, (n

k) l
2
)

else

(n
k)l := (zeros l

2
, (n

k− l
2
)

l
2

)

end if

According to the previous classification, a matrix representation of the binomial
decomposition is now introduced:

(n
k1
)

...
(n

kr
)

 =



(n
k1
)

...
(n

ki−1
)

(n
ki
)

...
(n

kr
)


ki−1<

l
2≤ki

=



(n
k1
) l

2
(n

k1
) l

2
...

...
(n

ki−1
) l

2
(n

ki−1
) l

2

zeros l
2

(n
ki− l

2
)

l
2

...
...

zeros l
2

(n
kr− l

2
)

l
2


=

(
M0 M1
M2 M3

)
. (4)

The different sub-matrices of the matrix representation in (4) are described as follows:

• M0 and M1 are ((i− 1)× l
2) sub-matrices that, according to Theorem 1, satisfy the

equality M0 = M1.
• M2 is the ((r− i + 1)× l

2) identically null sub-matrix.
• M3 is the ((r− i + 1)× l

2) sub-matrix representing the decomposition of a new se-
quence of length l

2 coming from the bit-wise sum of the two halves of seq. Therefore,
from M3 the matrix representation can be extended recursively.

(
M0 M1
M2 M3

)
=

 M0 M1

M2
M3,0 M3,1
M3,2 M3,3

 =


M0 M1

M2

M3,0 M3,1

M3,2
M3,3,0 M3,3,1
M3,3,2 M3,3,3

 = . . . (5)

In fact, take M3 and repeat the same process until the length of the resulting sequence
equals 1 and, consequently, the sequence cannot be divided anymore.

Thus, the half-interval search algorithm takes fully advantage of the symmetry prop-
erties of the binomial sequences and reduces recursively the length of the sequence to be
analyzed, see Equation (5).

A numerical example of the matrix representation is next introduced.

Mathematics 2021, 9, 478 12 of 22

Example 2. For the sequence seq16 = {0001110110001011}, the matrix representation of its
binomial decomposition is:

(n
3)
(n

4)
(n

6)
(n

8)
(n

9)
(n

10)
(n

12)


=



0001 0001 0001 000 1
0000 1111 0000 111 1
0000 0011 0000 0011
0000 0000 1111 111 1
0000 0000 0101 010 1
0000 0000 0011 001 1
0000 0000 0000 111 1


=

(
M0 M1
M2 M3

)
,

where

M3 =

(
M3,0 M3,1
M3,2 M3,3

)
=


1111 111 1
0101 010 1
0011 0011
0000 1111

,

and

M3,3 =

(
M3,3,0 M3,3,1
M3,3,2 M3,3,3

)
=

(
11 11
∅ ∅

)
.

When the two halves of seq are bit-wise summed, then the binomial sequences (n
3), (

n
4) and (n

6)

with repeated sub-sequences are cancelled. Thus, we have a new seq of length l
2 = 8 including the

binomial sequences (n
8), (

n
9), (

n
10) and (n

12). When the two halves of the resulting seq are bit-wise
summed again, then we have a new seq of length l

4 = 4 and the binomial sequences (n
8), (

n
9) and

(n
10) with repeated sub-sequences are cancelled. The only resulting binomial sequence is (n

12) what
means that LC = 12 + 1.

4.3.2. Description of the Half-Interval Search Algorithm

From the symmetry properties of the binomial sequences, the half-interval search
algorithm locates the binomial sequence of maximum index to compute the LC. At each
step, it bit-wise sums both halves of the sequence. If the result is different from zero, then
it performs the same procedure with the resulting sequence. Otherwise, it takes half the
sequence obtained in the previous step to apply the same procedure. When only one bit is
left the algorithm stops.

The pseudo-code of the algorithm, for a given binary sequence of length l = 2m can
be found in Algorithm 3.

At every step, the algorithm reduces by 2 the length of seq. The total number of steps
is log l and the total number of operations for a sequence seq with length l = 2m is:

l
2
+

l
4
+

l
8
+

l
16

+ · · · =
log l

∑
i=1

l
2i ≈ l

Next, an example of how the half-interval algorithm works is introduced.

Example 3. Taking the sequence of the previous sub-sections we have:
Input: seq16 = 00011101 10001011

• Step 1:
0001 1101

+ 1000 1011
sum = 1001 0110

As sum = 1001 0110 6= zeros8, then seq = sum = 1001 0110 and k = 8.
At this step, the binomial sequences (n

3), (
n
4) and (n

6) are cancelled.

• Step 2:
10 01

+ 01 10
sum = 11 11

As sum = 11 11 6= zeros4, then seq = sum = 11 11 and k = 8 + 4 = 12.

Mathematics 2021, 9, 478 13 of 22

Algorithm 3 The half-interval search algorithm

Require: seq: sequence to be analyzed

k = 0

while length(seq) > 1 do

l = length(seq)

sum = seq0, l
2−1 + seq l

2 ,l−1

if sum 6= 0 l
2

then

seq = sum

k+ = l
2

else

seq = seq0, l
2−1

end if

end while

return k: maximum index k and LC of seq.

At this step, the binomial sequences (n
8), (

n
9) and (n

10) are cancelled.

• Step 3:
1 1

+ 1 1
sum = 0 0

As sum = zeros2, then seq = 1 1.
At this step, there is no binomial sequence cancellation and the remaining binomial sequence is
(n

12).

• Step 4:
1

+ 1
sum = 0

As sum = 0, then seq = 1.
At this step, length(seq) = 1 and the algorithm stops.

• Output: the maximum binomial sequence (n
12)⇒ LC = k + 1 = 12 + 1 = 13.

4.4. Matrix Binomial Decomposition or m-BD Algorithm

This algorithm is based on the B-representation (or Binomial representation) [17] of
a binary sequence {sn}n≥0 with length l = 2m, m being a non-negative integer. Via the
B-representation, the parameter LC of such a sequence is analyzed and computed.

We have seen that every sequence {sn} with length l = 2m can be written in terms of
its binomial decomposition as:

{sn} =
l−1

∑
i=0

ci

(
n
i

)
, (6)

where ci (0 ≤ i < l) are coefficients defined in the binary field F2 and (n
i) (0 ≤ i < l) the

corresponding binomial sequences. The greatest value of i, notated imax, for which cimax 6= 0
while ci = 0 for imax < i < l, determines the value of the LC via the Equation (1), i.e.,

LC = imax + 1. (7)

Recall that the maximum linear complexity of {sn}n≥0 with length l = 2m will be
LCmax = 2m when c2m−1 = 1 while the minimum complexity of this kind of sequences will
be LCmin = 1 when c0 = 1 and ci = 0 for ∀i in the interval 0 < i < l.

Mathematics 2021, 9, 478 14 of 22

The B-representation provides one with a matrix method of computing the binary
coefficients ci. In fact, it defines a binary matrix, the so-called binomial matrix, constructed
in a similar way to the construction of a binary Hadamard matrix.

In fact, consider H0 = [1] the binomial matrix for m = 0, i.e., a (20 × 20) matrix with a
unique entry. Next, we construct the binomial matrix for m = 1 as follows:

H1 =

[
H0 H0
0 H0

]
=

[
1 1
0 1

]
,

where H1 is a binary (21 × 21) matrix. Proceeding in the same way, we obtain the binomial
matrix for m as

Hm =

[
Hm−1 Hm−1
0m−1 Hm−1

]
,

where Hm−1 is the binomial matrix of size (2m−1 × 2m−1) as well as 0m−1 is the identically
null matrix of the same size. Moreover, the matrix Hm can be written in terms of its columns
as Hm = (h̃0, h̃1, . . . , h̃2m−1).

As {sn}n≥0 is a binary sequence of length l = 2m and given the (2m × 2m) binomial
matrix Hm, we compute the vector ccc whose 2m components are the coefficients ci by means
of the equation (see [17] (Section 3.2)):

ccc = [s0, s1, . . . , s2m−1] · Hm = [c0, c1, . . . , c2m−1]mod 2, (8)

that is, the sequence {sn} is multiplied by the successive columns h̃i (0 ≤ i < 2m) of the
binomial matrix and the resulting products reduced mod 2.

Let us see an illustrative example.

Example 4. Let seq16 = {0001110110001011} be a sequence of length 24, so we must construct
the binomial matrix for m = 4, i.e.,

H4 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

From Equation (8), we have that

ccc = [s0, s1, s2, . . . , s15] · H4 = [0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0].

Therefore, the vector ccc = [c0, . . . , c15] corresponding to the sequence seq16 will have c3 = c4 =
c6 = c8 = c9 = c10 = c12 = 1 while the remaining components equal zero. The coefficients ci = 1
correspond to the binomial sequences (n

i) that appear in the binomial decomposition of seq16.
In that case, the value of imax = 12, or equivalently cimax = c12 = 1 and the LC of seq16 is

LC = 13 as expected.

Mathematics 2021, 9, 478 15 of 22

By construction, the binomial matrix is an upper triangular matrix closely related with
the binomial sequences.

Remark 1. The columns of the binomial matrix (read from right to left) correspond to the successive
binomial sequences starting at the first 1. Thus, the binary vector ccc in Equation (8) is just the
product of the sequence {sn}, written as a vector of 2m components [s0, s1, . . . , s2m−1], multiplied
by the 2m first binomial sequences (n

i) with 0 ≤ i < 2m and n ≥ i.

4.4.1. Description of the m-BD Algorithm

To compute the LC of the sequence under consideration, the m-BD algorithm checks
the successive coefficients ci calculated in (8) starting at c2m−1 and proceeding in decreasing
order until the first coefficient ci = 1 is found. In that case, imax = i and the LC is easily
computed by means of the Equation (7).

The final pseudo-code of the algorithm, for a given binary sequence of length l = 2m

can be found in Algorithm 4.

Algorithm 4 The m-BD algorithm

Require: seq = [s0, s1, . . . , s2m−1] and the binomial matrix Hm = (h̃0, h̃1, . . . , h̃2m−1)

i = 2m − 1

imax = 0

while i > 0 do

ci = [s0, s1, . . . , s2m−1] · h̃i

if ci == 0 then

i−−
else

imax = i

i = 0

end if

end while

return LC = imax + 1: Linear complexity of seq.

At the same time, the computation of the coefficients ci in the Equation (8) allows us to
characterize the binary sequences {sn}with maximum and quasi-maximum linear complexity.

4.4.2. Sequences with Maximum LC:

The characterization of binary sequences {sn}n≥0 with maximum linear complexity is
described in the next result.

Theorem 2. Let {sn}n≥0 be a binary sequence with length l = 2m, m being a non-negative integer.
Such a sequence will have maximum linear complexity LCmax = 2m if and only if the sequence
{sn} has an odd number of ones.

Proof. (⇒) Maximum linear complexity implies that cimax = c2m−1 = 1, but c2m−1 is the
product mod 2 of the sequence [s0, s1, . . . , s2m−1] by the last column h̃2m−1 of the binomial
matrix (the identically 1 column), thus

c2m−1 =
l−1

∑
i=0

si. (9)

Mathematics 2021, 9, 478 16 of 22

Hence, c2m−1 = 1 when the number of summands equal to 1 in Equation (9) is an
odd number.

(⇐) If the number of terms si = 1 in the sequence {sn} is an odd number, then by
Equation (9) the coefficient c2m−1 = 1. Consequently, {sn} will exhibit maximum linear
complexity of value LCmax = 2m.

Two corollaries follow directly from the previous theorem.

Corollary 1. A binary sequence {sn}n≥0 with length l = 2m and an even number of ones will
never attain the maximum linear complexity LCmax = 2m as c2m−1 = 0.

Corollary 2. The linear complexity of every balanced binary sequence {sn}n≥0 with length l = 2m

is upper bounded by LC < 2m.

Recall that, although balancedness is a suitable property for cryptographic sequences,
a balanced sequence will never attain the maximum linear complexity.

4.4.3. Sequences with Quasi-Maximum LC

The characterization of binary sequences {sn}n≥0 with quasi-maximum linear com-
plexity, i.e., LC = LCmax − 1, is described in the next result.

Theorem 3. Let {sn}n≥0 be a binary sequence with length l = 2m, m being a non-negative integer.
Such a sequence will have quasi-maximum linear complexity of value LCq−max = 2m − 1 if and
only if {sn} satisfies the following conditions:

1. The sequence {sn} has an even number of ones.
2. It satisfies the equality:

l/2−1

∑
i=0

s2·i = 1.

Proof. (⇒)

1. {sn}must have an even number of ones, otherwise by Theorem 2 the sequence would
have maximum linear complexity.

2. Quasi-maximum linear complexity implies that c2m−2 = 1, but c2m−2 is the prod-
uct mod 2 of the sequence [s0, s1, . . . , s2m−1] multiplied by the column h̃2m−2 in the
binomial matrix (the 1 0 1 0 . . . 1 0 column), thus

c2m−2 =
l/2−1

∑
i=0

s2·i.

Hence, c2m−2 = 1 when the number of terms (s2·i) (terms with even indices) equal to
1 is an odd number.

(⇐)

1. If the sequence {sn} has an even number of ones, then c2m−1 = 0.
2. If {sn} satisfies the equality

l/2−1

∑
i=0

s2·i = 1,

then c2m−2 = 1.

Thus, c2m−1 = 0 and c2m−2 = 1 jointly imply quasi-maximum linear complexity of
value LCq−max = 2m − 1.

Mathematics 2021, 9, 478 17 of 22

5. Algorithm Comparison

All the algorithms explained in the previous section can be used to calculate the linear
complexity of a given sequence with length a power of two. In this section, they will be
compared in different ways. The schedule is as follows:

First of all, the different computational features of these algorithms are discussed.
Next, we describe the experiments we carried out to compare the actual performance of
such algorithms. Finally, we consider diverse scenarios apart from LC calculation where
each algorithm might be conveniently applied.

5.1. Algorithm Analysis

In Section 4, different algorithms for the computation of the linear complexity were
presented (Berlekamp-Massey, BD, half-interval search and m-BD algorithms). Now, we
will discuss the computational complexity and sequence length requirements for each one
of them as shown in Table 5.

The length requirements (twice the length of the studied sequence) and complexity
O(l2) of the Berlekamp-Massey algorithm were already studied in the literature [11,33].
It is the only algorithm, among the considered algorithms, which can be applied to every
sequence of any length, compared with the binomial decomposition methods that require
a sequence of length a power of two.

Concerning the BD-algorithm, in order to calculate the linear complexity it needs at
least l − log l bits of the original sequence and it runs with a computational complexity of
O(r · l), l being the length of the sequence and r the number of binomial components in its
decomposition. Although the parameter r has not been rigorously analyzed, in Figure 2 an
experimental analysis of r was carried out for different GSS-sequences. The results show
that such a parameter follows a normal distribution as well as it increases with the length
of the sequence.

Table 5. Algorithm comparison.

Algorithms Length Required Complexity Seq. Restrictions

Berlekamp-Massey algorithm 2 ∗ l O(l2) None

BD-algorithm l − log l O(r · l) Length power of 2

Half-interval search algorithm l − log l O(l) Length power of 2

m-BD algorithm l O(l2) - Ω(l) Length power of 2

On the other hand, the half-interval search algorithm does not depend neither on the
parameter r nor on the decomposition of the sequence. In fact, this algorithm just requires
the same number of bits as that of the BD-algorithm, but it works in a binary search fashion.
Consequently, its complexity is linear in the length of the sequence, which means the best
performance among all the algorithms that can calculate LC.

The main difference between BD and half-interval search algorithms is that the latter
does not depend on the number of binomial sequences in its binomial decomposition. That
means that its performance will be better than that of the BD-algorithm, in particular when
the length of the sequence increases and so does the value of the parameter r.

Finally, the m-BD algorithm computes the successive products between two binary
vectors until it gets the value of LC. Nevertheless, the worst case would occur whether it
needed to check all the columns of the binomial matrix. That is the reason we included in
Table 5 both worst and best cases of computational complexity.

Although the Berlekamp-Massey algorithm is able to calculate the linear complexity
of any sequence, it is not the best choice for particular sequences as the GSS-sequences
with O(l2). It is under such circumstances when the binomial decomposition algorithms
can be really useful.

Mathematics 2021, 9, 478 18 of 22

5.2. Experimental Results

To support the understanding of these algorithms and test them, we ran all the
algorithms described in the previous section.

The setup of the experiments is as follows: we used Jupyter Labs as a running
environment in a Windows 10 machine with Intel Core i7-1065G7 as CPU. The algorithms
were implemented in Python 3. They ran to calculate the LC for the same sequences several
times in order to get the performance metric of such algorithms.

The results of the experiments can be seen in Figures 3 and 4. Indeed, in Figure 3 where
all algorithms are compared, we can see how as far as the length of the sequence increases,
both the half-interval algorithm and the matrix binomial decomposition algorithm improve
the performance exhibited by the Berlekamp-Massey algorithm. This proves that the
binomial decomposition technique can be useful and a good alternative in the study of
sequences that are particularly hard to be analyzed by the Berlekamp-Massey algorithm.

Figure 3. Comparison between the algorithms in the LC calculation for all the possible GSS-sequences
of a given length (Half-Interval scale).

About the Berlekamp-Massey and the Binomial Decomposition algorithm, there is a
bounce in their performance depending on the length of the sequences of the experiment.
According to the study of the BD complexity, it is known that its performance depends on
the parameter r, or in other words, it depends on the number of binomial sequences in the
decomposition for each sequence. After the preliminary study on the parameter r, seen in
Figure 2, the parameter r is expected to behave in a normal distribution fashion. Altogether
this means that the BD algorithm can slightly change its performance depending on the r
value of the sequences it is studying.

In addition, the theoretical improvement of the half-interval algorithm studied in the
previous section is confirmed. The huge performance gap between Berlekamp-Massey
algorithm, BD-algorithm, m-BD and the half-interval search algorithm can be seen in
Figures 3 and 5. Recall that this gap is particularly remarkable when the length of the
sequence studied increases. For that reason we included Figure 3, scaled for a better
comparison with the half-interval results (the best performant algorithm), and Figure 5,
for a better comparison with m-BD (a novel contribution of this article).

Mathematics 2021, 9, 478 19 of 22

Figure 4. Comparison between half-interval search and m-BS algorithms.

Furthermore, we wanted to compare the half-interval algorithm with the new m-
BD algorithm, which has not been previously studied neither its performance is known.
In Figure 4, a logarithmic scaled graph is depicted. We see how the half-interval search
algorithm outperforms the m-BD algorithm provided that the length of the sequence
studied is increased. This behaviour seems to reveal that the increment in the sequence
length makes worse the m-BD algorithm performance, since m-BD requires more tries to
calculate the LC.

Figure 5. Comparison between the algorithms in the LC calculation for all the possible GSS-sequences
of a given length (m-BD scale).

Although it is not the purpose of this work, it is worth noticing that the half-interval
search algorithm can be parallelized in the computation of LC while the BD-algorithm
performs the computation in a sequential way.

Another point that was not covered in the experiments is how the m-BD algorithm can
take profit of some optimizations in the computation of matrix operations, which explain
its great speed when the sequences are not too long. In addition, it could be enhanced
while running in environments specially designed for it such as MATLAB.

Mathematics 2021, 9, 478 20 of 22

5.3. Different Use-Cases

After the analysis and the experiments to test the performance of the algorithms,
it is also worth exploring different application scenarios, not only the linear complexity
calculation. All the algorithms that use the binomial decomposition calculate the LC with
the maximum binomial component.

A different case for these algorithms could be the study in depth of other types of
binary sequences. In fact, having their full decomposition can help to analyze more param-
eters related to the security of the sequences, e.g., to calculate the density of components
in the decomposition or the balancedness of such sequences. It is in this case where the
BD-algorithm outperforms the others, since the way it calculates the LC is by means of the
computation of all the binomial components.

Another interesting use-case for these algorithms is, for instance, processing a large
amount of sequences in order to discern as fast as possible which ones have better/worse
security. In that case, the m-BD algorithm is the best one, because it can determine whether
the highest binomial component is present in the binomial decomposition previously to
complete the LC calculation. So the m-BD algorithm may not be the fastest algorithm
to calculate the LC of a particular sequence but it may be used to quickly detect which
sequence has a LC lower than the others.

Finally, the m-BD algorithm could be of great use if the range of the linear complexity
is known. In that case, this parameter would avoid unnecessary tries of the algorithm,
which otherwise will profit from the matrix optimizations that modern libraries support.

6. Conclusions

In this work, different algorithms to compute the linear complexity of binary sequences
were introduced and analyzed. In general, they exhibit better performances than the well-
known Berlekamp-Massey algorithm when applied to sequences suitable for cryptography.

Concerning the half-interval search algorithm presented in this article, it shows excel-
lent results in both computational complexity and amount of sequence required. It was
also tested in comparison with other algorithms by applying it to GSS-sequences, showing
an improved performance when the length of the sequences increases.

The matrix binomial decomposition algorithm showed a good performance with short
sequences. Nevertheless, its main characteristic, i.e., the way in which it identifies the
binomial components of a sequence, can be useful in other scenarios apart from the LC
calculation, e.g., to discern between a large amount of sequences which ones have a better
complexity than the others.

Moreover, the binomial decomposition of binary sequences seems to be an innovative
technique to extract information from a given sequence. In particular, the fractal character
of the binomial sequences can be employed to calculate diverse parameters of a sequence
without knowing the whole sequence.

In brief, the analysis of these algorithms is quite useful to find weaknesses in this type
of binary sequences. Indeed, detecting such weaknesses in a cipher with practical applica-
tions could compromise the corresponding IoT device and, consequently, the services that
rely on it.

Author Contributions: Conceptualization, J.L.M.-N. and A.F.-S.; methodology, J.L.M.-N. and A.F.-
S.; software, J.L.M.-N.; validation, A.F.-S.; formal analysis, A.F.-S.; investigation, J.L.M.-N.; re-
sources, A.F.-S.; data curation, J.L.M.-N. and A.F.-S.; writing—original draft preparation, A.F.-S.;
writing—review and editing, J.L.M.-N. and A.F.-S.; visualization, J.L.M.-N.; supervision, A.F.-S.;
project administration, A.F.-S.; funding acquisition, J.L.M.-N. and A.F.-S. All authors have read and
agreed to the published version of the manuscript.

Funding: Research partially supported by Ministerio de Economía, Industria y Competitividad,
Agencia Estatal de Investigación, and Fondo Europeo de Desarrollo Regional (FEDER, UE) un-
der project COPCIS (TIN2017-84844-C2-1-R) and by Comunidad de Madrid (Spain) under project
CYNAMON (P2018/TCS-4566), also co-funded by European Union FEDER funds.

Mathematics 2021, 9, 478 21 of 22

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Chin, W.L.; Li, W.; Chen, H.H. Energy big data security threats in IoT-based smart grid communications. IEEE Commun. Mag.

2017, 55, 70–75. [CrossRef]
2. Meyer, D.; Haase, J.; Eckert, M.; Klauer, B. New attack vectors for building automation and IoT. In Proceedings of the

IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017;
pp. 8126–8131.

3. Gallegos-Segovia, P.L.; Bravo-Torres, J.F.; Argudo-Parra, J.J.; Sacoto-Cabrera, E.J.; Larios-Rosillo, V.M. Internet of things as an
attack vector to critical infrastructures of cities. In Proceedings of the 2017 International Caribbean Conference on Devices,
Circuits and Systems (ICCDCS), Cozumel, Mexico, 5–7 June 2017; pp. 117–120.

4. Rouf, I. Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case Study. In
Proceedings of the USENIX Security Symposium, Washington, DC, USA, 11–13 August 2010; Volume 10.

5. Cynthia, J.; Sultana, H.P.; Saroja, M.; Senthil, J. Security protocols for IoT. In Ubiquitous Computing and Computing Security of IoT;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–28.

6. Mavromoustakis, C.X.; Mastorakis, G.; Batalla, J.M. Internet of Things (IoT) in 5G mobile technologies; Springer: Berlin/Heidelberg,
Germany, 2016; Volume 8.

7. NIST Lightweight Cryptography Project. Available online: https://csrc.nist.gov/Projects/Lightweight-Cryptography (accessed
on 15 February 2021).

8. McGinthy, J.M. Solutions for Internet of Things Security Challenges: Trust and Authentication. Ph.D. Thesis, Virginia Tech,
Blacksburg, VI, USA, 2019.

9. NIST Lightweight Cryptography Project Round 2 Candidates. Available online: https://csrc.nist.gov/Projects/lightweight-
cryptography/round-2-candidates. (accessed on 15 February 2021).

10. Dubrova, E.; Hell, M. Espresso: A stream cipher for 5G wireless communication systems. Cryptogr. Commun. 2017, 9, 273–289.
[CrossRef]

11. Massey, J. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127. [CrossRef]
12. Cardell, S.D.; Fúster-Sabater, A. Binomial Representation of Cryptographic Binary Sequences and Its Relation to Cellular

Automata. Complexity 2019. [CrossRef]
13. Chang, K.Y.; Lee, M.K.; Lee, H.R.; Hong, D.W.; Kang, J.S.; Cho, H.S.; Chung, K.I. Method and Apparatus for Generating

Keystream. US Patent 7,587,046, 8 September 2009.
14. Kang, Y.S.; Kim, H.W.; Chung, K.I. Apparatus and Method for Protecting RFID Data. US Patent 8,386,794, 17 February 2013.
15. Falk, R.; Merli, D. Programmable Logic Device, Key Generation Circuit and Method for Providing Security Information. EP Patent

3146520, 11 May 2016.
16. Martin-Navarro, J.L.; Fúster-Sabater, A. Folding-BSD Algorithm for Binary Sequence Decomposition. Computers 2020, 9, 100.

[CrossRef]
17. Cardell, S.D.; Climent, J.J.; Fúster-Sabater, A.; Requena, V. Representations of Generalized Self-Shrunken Sequences. Mathematics

2020, 8, 1006. [CrossRef]
18. Golomb, S.W. Shift Register Sequences; Aegean Park Press: Walnut Creek, CA, USA, 1967.
19. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 1996.
20. Paar, C.; Pelzl, J. Understanding Cryptography; Springer: Berlin, Germany, 2010.
21. Cardell, S.D.; Fúster-Sabater, A. The t-Modified self-shrinking generator. In International Conference on Computational Science (ICCS

2018); Springer: Berlin/Heidelberg, Germany, 2018; pp. 653–663.
22. Cardell, S.D.; Fúster-Sabater, A. Cryptography with Shrinking Generators: Fundamentals and Applications of Keystream Sequence

Generators Based on Irregular Decimation; Series: Briefs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2019.
23. Coppersmith, D.; Krawczyk, H.; Mansour, Y. The shrinking generator. In Annual International Cryptology Conference; Springer:

Berlin/Heidelberg, Germany, 1993; pp. 22–39.
24. Meier, W.; Staffelbach, O. The self-shrinking generator. In Communications and Cryptography; Springer: Berlin/Heidelberg,

Germany, 1994; pp. 287–295.
25. Hu, Y.; Xiao, G. Generalized self-shrinking generator. IEEE Trans. Inf. Theory 2004, 50, 714–719. [CrossRef]
26. Mihaljevic, M.J. A faster cryptanalysis of the self-shrinking generator. In Proceedings of the Information Security and Privacy,

First Australasian Conference, ACISP’96, Wollongong, Australia, 24–26 June 1996; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 1996; Volume 1172, pp. 182–189. [CrossRef]

27. Simpson, L.; Golic, J.D.; Dawson, E. A Probabilistic Correlation Attack on the Shrinking Generator. In Proceedings of the
Information Security and Privacy, Third Australasian Conference, ACISP’98, Brisbane, Australia, 13–15 July 1998; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1438, pp. 147–158. [CrossRef]

28. Caballero, P.; Fúster-Sabater, A.; Pazo, M.E. New Attack Strategy for the Shrinking Generator. J. Res. Pract. Inf. Technol. 2009,
23, 171–180.

http://doi.org/10.1109/MCOM.2017.1700154
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
http://dx.doi.org/10.1007/s12095-015-0173-2
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1155/2019/2108014
http://dx.doi.org/10.3390/computers9040100
http://dx.doi.org/10.3390/math8061006
http://dx.doi.org/10.1109/TIT.2004.825256
http://dx.doi.org/10.1007/BFb0023298
http://dx.doi.org/10.1007/BFb0053729

Mathematics 2021, 9, 478 22 of 22

29. Fúster-Sabater, A.; Pazo, M.E.; Caballero, P. A Simple Linearization of the Self-Shrinking Generator by Means of Linear Cellular
Automata. Neural Netw. 2010, 23, 461–464. [CrossRef]

30. Cardell, S.D.; Fúster-Sabater, A.; Ranea, A.H. Linearity in decimation-based generators: An improved cryptanalysis on the
shrinking generator. Open Math. 2018, 16, 646–655. [CrossRef]

31. Fúster-Sabater, A.; Cardell, S.D. Linear complexity of generalized sequences by comparison of PN-sequences. Rev. De La Real
Acad. De Cienc. Exactas, Físicas Y Naturales. Ser. A. Matemáticas 2020, 114, 79. [CrossRef]

32. Fúster-Sabater, A. Generation of cryptographic sequences by means of difference equations. Appl. Math. Inform. Sci. 2014,
8, 475–484. [CrossRef]

33. Cusick, T.W.; Stanica, P. Cryptographic Boolean Functions and Applications; Academic Press: Cambridge, MA, USA, 2017.
34. Martin-Navarro, J.L.; Fúster-Sabater, A. Folding-BSD Algorithm for Binary Sequence Decomposition. In International Conference

on Computational Science and Its Applications (ICCSA 2020); Springer: Berlin/Heidelberg, Germany, 2020; pp. 345–359.

http://dx.doi.org/10.1016/j.neunet.2009.12.008
http://dx.doi.org/10.1515/math-2018-0058
http://dx.doi.org/10.1007/s13398-020-00807-5
http://dx.doi.org/10.12785/amis/080204

	Introduction
	Shift Registers and the Concept of Linear Complexity
	Binomial Sequences
	Introduction to Binomial Sequences
	Binomial Decomposition of GSS-Sequences

	Different Algorithms to Compute the Linear Complexity of a Sequence
	Berlekamp-Massey Algorithm
	Binomial Decomposition Algorithm or BD-Algorithm
	Half-Interval Search Algorithm
	Symmetry of the Binomial Sequences
	Description of the Half-Interval Search Algorithm

	Matrix Binomial Decomposition or m-BD Algorithm
	Description of the m-BD Algorithm
	Sequences with Maximum LC:
	Sequences with Quasi-Maximum LC

	Algorithm Comparison
	Algorithm Analysis
	Experimental Results
	Different Use-Cases

	Conclusions
	References

