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Abstract: In order to obtain the aerodynamic loads of the vibrating blades efficiently, the eXterme Gra-
dient Boosting (XGBoost) algorithm in machine learning was adopted to establish a three-dimensional
unsteady aerodynamic force reduction model. First, the database for the unsteady aerodynamic
response during the blade vibration was acquired through the numerical simulation of flow field.
Then the obtained data set was trained by the XGBoost algorithm to set up the intelligent model of
unsteady aerodynamic force for the three-dimensional blade. Afterwards, the aerodynamic load
could be gained at any spatial location during blade vibration. To evaluate and verify the reliability of
the intelligent model for the blade aerodynamic load, the prediction results of the machine learning
model were compared with the results of Computation Fluid Dynamics (CFD). The determination
coefficient R2 and the Root Mean Square Error (RMSE) were introduced as the model evaluation
indicators. The results show that the prediction results based on the machine learning model are in
good agreement with the CFD results, and the calculation efficiency is significantly improved. The
results also indicate that the aerodynamic intelligent model based on the machine learning method is
worthy of further study in evaluating the blade vibration stability.

Keywords: machine learning; eXterme Gradient Boosting; Computation Fluid Dynamics; blade
vibration; unsteady aerodynamic model

1. Introduction

With the development of high load and high efficiency in compressors, the centrifugal
load and aerodynamic load are endured by the blade due to the strong unsteady flow in the
field. Also, the problem of blade vibration has become increasingly prominent. Therefore,
the accurate prediction of the internal flow and blade aerodynamic force in the compressor
is of great significance for evaluating the reliability of blade vibration in the design stage.

The traditional Computation Fluid Dynamics (CFD) technology can perform a high-
fidelity simulation of the linear or non-linear blade vibration in the flow field [1–3]. How-
ever, it requires high computational expenses for the large-scale calculation. This is not
suitable for the rapid evaluation of blade vibration reliability. To overcome the shortcom-
ings of calculation costs [4], the reduced order models of unsteady flow field are proposed
here based on the CFD model [5–12]. Proper Orthogonal Decomposition (POD) and Dy-
namic Mode Decomposition (DMD) are two typical modal decomposition methods, which
are based on the flow field feature extraction technology. The complex unsteady flow
field is represented with a set of characteristic modes of low-dimensional variables [5–9].
Another kind of reduced-order model based on the system identification technique has
been used for the fluid problem [10–12]. Simple mathematical mapping was employed to
describe the relationship between flow disturbances and aerodynamic characteristics.

In recent years, research on knowledge extraction and data visualization has promoted
the exploration of artificial intelligence methods for crossing with fluid mechanics. Machine
learning builds a powerful information processing framework with accurate algorithms and
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generalization capabilities. Efforts have been made for the application of machine learning
in fluid mechanics [13–21]. The interaction of fluid mechanics and machine learning is
summarized by Brunton [13], as well as the development trend of the interdisciplinary
approach. It is believed that the application of machine learning can enhance the current
fluid mechanics research. Deep Neural Networks (DNN) were stated to play a key role on
modeling complex flow by Kutz [14]. A reduction model by DNN was designed based on
the data of Direct Numerical Simulation (DNS) by Zhang [15]. The results show that DNN
can predict the anisotropic Reynolds stress effectively. Chen [16] proposed the use of a
deep Convolutional Neural Network (CNN) to extract flow information, and established a
composite network to solve the problem of input with different variables. The hybrid deep
neural network framework was used by Han [17] to directly capture the characteristics of
unsteady flow in the field. The field predicted by DNN was in agreement with the result
calculated by CFD solver. Hasegawa [18] constructed a reduced-order model combined
with a CNN auto encoder and Long Short-Term Memory network (LSTM). The model
proved to be able to predict the unsteady flow of bluff bodies. Also, the multi-core neural
network was adopted by Kou [19] to achieve the correction from the low-order model to
the high-fidelity results. A model was constructed with a combination of the Adaptive
Simulated Annealing algorithm (ASA) and Recursive Radial Basis Function neural network
(RRBF) for the cascade by Hu [20]. It was proven that the ASA-RRBF model has a higher
accuracy than the single RRBF model.

The data-driven optimization of machine learning and the application of regression
technology can map a high-dimensional flow field to a low-dimensional space, which can
effectively solve the high-dimensional nonlinear problems. The ability of machine learning
could simplify the treatment of the exploration and visualization of the high-dimensional
database, which can greatly improve performance optimization and reduce the conver-
gence cost [13]. The intelligent method provides a useful technology to extract relevant
information, which promotes a rapid development of flow dynamics. The constructed
reduced-order aerodynamic force model based on the machine learning can predict the
unsteady aerodynamic force of the blade with a reasonable accuracy and a low computation
cost [21].

Note that the current applications of artificial intelligence method in the fluids are
mostly focused on the modeling of flow characteristics, while the modeling of blade
aerodynamic force in vibration rarely involves the intelligence method. For this paper, the
XGBoost algorithm was applied for the first time to the aerodynamic modeling of an actual
compressor blade. A reduced-order intelligent model of the three-dimensional unsteady
aerodynamic force of the blade was established for consideration of machine learning
and CFD. By learning a small amount of CFD sample data, the trained low-dimensional
XGBoost model could effectively capture the characteristics of the unsteady flow. The
aerodynamic load of the compressor blade during the vibration process can be obtained by
the intelligence model through the input and output mathematical mapping. Compared
with the deep learning, the XGBoost model is suitable for data with a small number of
variables. It has the advantages of model interpretability and invariance of input data.
Also, it is convenient for parameter adjustment to achieve default predictions through
automatic iteration. Under the premise of ensuring the accuracy, this reduced-order model
presented can greatly reduce the calculation costs.

2. Description of the Machine Learning Algorithm

The eXtreme Gradient Boosting algorithm is an integrated machine learning algorithm
based on a decision tree, which is in the foundation of gradient boosting framework. It is
proposed to build an efficient and flexible algorithm by Chen [22] according to the second-
order information [23]. This algorithm is a scalable machine learning system in the lifting
method, which is integrated by multiple regression trees to form a strong classifier. The
problem of overfitting in tree model can be effectively avoided [24]. After parallelization,
it is more than one order of magnitude faster than similar algorithms under the same
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conditions [25]. The excellent performance in high-dimensional data analysis shows a
strong ability in modeling the complex process [26]. Because of its high performance and
low requirement, XGBoost has been widely used in disease prediction, credit debt default
risk prediction, driving evaluation, route planning and so on [27–30].

The principle of its algorithm is to update iteratively the parameters of the previous
classifier to reduce the gradient of the loss function and generate a new classifier [31]. By
reducing the error of prediction through several regression trees, the regression tree group
is guaranteed to have the maximum generalization ability. The regular term is added
to the loss function of the model. Then the second-order Taylor expansion of the loss
function is solved to determine the split node on the basis of the minimum loss function.
The second-order derivative information and the addition of regularization method have
improved the performance of generalization and calculation [32]. The structure of the
XGBoost algorithm is indicated in Figure 1.

Figure 1. The Structure of the eXterme Gradient Boosting (XGBoost) Algorithm.

The given sample data set is:

η= {( xi_CFD, yi_CFD)} (i = 1, 2, · · · , n, xi_CFD ∈ Rm, yi_CFD ∈ R) (1)

where xi_CFD represents the i-th feature value of the sample data, yi_CFD represents the
experiment value of the i-th label of the sample data and xi−Pre represents the predicted
value of the i-th label of the model. Define the loss functions of yi_CFD and yi_Pre:

l(yi_CFD, yi_Pre) = (yi_CFD − yi_Pre)
2 (2)

Where yi_Pre is the prediction in the integration model of the XGBoost system, which
uses the sum of the predicted value of each tree (the total number of trees is K) for the
sample. Assuming that the tree model to be trained in the k-th iteration is fk(x), the
prediction function was defined as follows:

yi_Pre =
K
∑

k=1
fk(xi), fk ∈ Γ

Γ= f(x) = ωq(x) (q : Rm → T, ω ∈ RT)
. (3)

As Γ is the space of Classification and Regression Trees (CART) numbers, q represents
the score of the structure of each tree mapping each sample to the corresponding leaf node;
ωq(x) represents the set of scores for all leaf nodes of tree q. The optimized parameter
in the XGBoost algorithm is defined as the function of f (x). While a tree is added into
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the model each time, the loss of the objective function was expected to be decreased. The
iteration functions could then be expressed as:

yi_Pre
(0) = 0

yi_Pre
(1) = f1(xi) = yi_Pre

(0) + f1(xi)

yi_Pre
(2) = f1(xi) + f2(xi) = yi_Pre

(1) + f2(xi)
· · ·

yi_Pre
(t) =

t
∑

k=1
fk(xi) = yi_Pre

(t−1) + ft(xi)

. (4)

The objective function could then be expressed as:

obj =
n
∑

i=1
l(yi_CFD, yi_Pre) +

K
∑

i=1
Ω( fi)

Ω( f ) = γT + 1
2 λ‖ω‖2

, (5)

where
K
∑

i=1
Ω( fi) indicates the regularization term of the loss function, which is the sum of

the complexity of all K trees. The number of leaf nodes T is limited with a penalty term Ω( fi)
so as to prevent overfitting. ω represents the set of scores for all the leaf nodes of each tree,
while γ and λ represent the coefficients. In order to solve the optimal objective function,
the second-order Taylor expansion of the t-th tree ft(xi) in Equation (4) is performed with
bringing into the objective function. As the loss function l(yi_CFD, yi_Pre

(t−1)) is a constant,
it can be ignored. And the leaf nodes of all trees can be regrouped. Then the node number
and leaf weights are used to optimize the regularization term of the loss function. All
samples xi of leaf nodes are divided into a sample set, denoted as Ij = {i|q(xi) = j}. The
objective function could be rewritten as:

obj =
n
∑

i=1
[l(yi_CFD, yi_Pre

(t−1)) + gi ft(xi) +
1
2 hi f 2

t (xi)] + Ω( ft) + cons tan t

≈
n
∑

i=1
[gi ft(xi) +

1
2 hi f 2

t (xi)] + Ω( ft)

=
n
∑

i=1
[gi ft(xi) +

1
2 hi f 2

t (xi)] + γT + 1
2 λ

T
∑

j=1
ω2

j

=
n
∑

i=1
[giωq(xi) +

1
2 hi iω

2
q(xi)] + γT + 1

2 λ
T
∑

j=1
ω2

j

=
T
∑

j=1
[( ∑

i∈Ij

gi)ωj +
1
2 ( ∑

i∈Ij

hi + λ)ω2
j ] + γT

=
T
∑

j=1
[Gjωj +

1
2 (Hj + λ)ω2

j ] + γT

, (6)

where gi =
∂l(yi_CFD ,yi_Pre

(t−1))

∂yi_Pre
(t−1) , hi =

∂2l(yi_CFD ,yi_Pre
(t−1))

∂(yi_Pre
(t−1))

2 , Gj = ∑
i∈Ij

gi, Hj = ∑
i∈Ij

hi, f (t) = ωq(x),

ω ∈ RT q : Rd → {1, 2, · · · , T} .
The smaller the value of the objective function is, the smaller the prediction error is,

with a better generalization ability and robustness of the model. By using the highest value
formula of the quadratic function, the weight ωj∗ of each leaf node could be obtained. The
optimal objective function can then be expressed as:

ωj∗ = −
Gj

Hi + λ
, obj = −1

2

T

∑
j=1

G2
j

Hi + λ
+ γT. (7)

The modeling advantage of in XGBoost method can be concluded to the adjunction
of regularization items displayed in the objective function. The regularization items are
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related to the number and the value of leaf nodes in the tree. In addition, the sparse value
of the training data in the XGBoost algorithm should be noted. The default direction of
the branch is specified for missing values, which greatly improves the efficiency of the
algorithm [33]. As an advanced machine learning method developed in recent years, this
method has a good performance in processing high-dimensional data with the reduction
of the overfitting.

3. Methodology of Aerodynamic Intelligent Model
3.1. Data Collection for Machine Learning

The high accuracy data is the key to establishing an accurate unsteady aerodynamic
model of blade in compressor. The training process of the XGBoost model in this paper was
mainly driven by the database obtained from the CFD fluid-structure coupling computation.
The research object was a 1.5 stage axial compressor, including struts, inlet guide vanes,
first stage rotor and stator. Detailed introductions for the rig are presented in Zhang [34].

The unsteady flow field in the compressor was solved by using the numerical solu-
tion of 3-D Navier-Stokes equations adopted in software ANSYS Package. The spatial
discretization of the flow governing equations was employed on an upwind scheme, and
a second-order backward differencing was integrated for the time-accurate solution [35].
Boundary conditions imposed on the inlet consist of total pressure and total temperature. A
specified average static pressure was implemented at the exit boundary. Smooth, adiabatic
and no-slip wall boundary conditions were applied for the flow field solution [36]. While
considering the fluid-structure interaction, the blade vibration was computed under the
response to the flow. The detail simulation process of the compressor is described in refer-
ence [34]. The structural equations for mechanical blade were solved by the finite element
method. Within each time step, the flow equations and the structural equations were solved
simultaneously, exchanging information on the fluid-structure interface. This procedure
was repeated until the flow and displacements were converged, before proceeding to the
next time step. The numerical model of the 1.5-stage turbocompressor is shown in Figure 2.

Figure 2. Numerical Model of the 1.5 Stage Turbocompressor.

After the convergence of the simulation, the results computed by the commercial
CFD software were used for the current data learning, including the spatial unsteady
flow data and aerodynamic force on blade surface in time domains. The snapshot data of
the unsteady flow was captured at each time step, including pressure and aerodynamic
force of the blades at modal coordinates. The data set for training/testing was composed
with five variables, such as Cartesian coordinates, pressure and aerodynamic force. The
three-dimensional coordinate (X, Y, Z) of the structure space was taken as an input, and
the aerodynamic force was taken as an output to form the sample data S = (X, Y, Z, Force).
The flow snapshot data extracted from CFD was arranged in time series as a sequence
{S 1, S2, S3, · · · , SN}, where Si =

{
Xij, Yij, Zij, Forceij

}
, i = 1, 2, · · · , N, j = 1, 2, · · · , n. The

distribution of the aerodynamic force on the blade surface is shown in Figure 3, which
was extracted in the CFD fluid-structure coupling simulation at a single time. It can be
seen that the distribution of aerodynamic force was not uniform on both the pressure side
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(PS) and suction side (SS). Because of the unsteady flow in the field, the aerodynamic force
that acted on the blade appears in a non-linear state, which resulted in the vibration blade
indicating complex dynamic behaviors.

Figure 3. Distribution of the aerodynamic force on the blade.

3.2. Procedure of Aerodynamic Modeling Based on the XGBoost Algorithm

In this part, the methodology of aerodynamic modeling based on XGBoost algorithm
is introduced in detail. The procedure can be concluded as follows.

Step 1: Data preprocessing.
After the data collection from CFD, the features of acquired data may have different

magnitudes. When the gradient is updated, it may oscillate back and forth, and take
a long time to reach the local optimal value or the global optimal value. In order to
improve the training efficiency and avoid the numerical error caused by the size difference
of the features, the data were handled in normalization. This ensured that the same
dimension was achieved for different features, so that the descent of gradient could be a
quick convergence. The normalized function form used in this article is shown as follows:

X =
xk − xmin

xmax − xmin
. (8)

In machine learning algorithms, feature engineering is an important step in the process
of modeling. The original data were transformed into the training data with feature
engineering, providing the training model with a better robustness and generalization
ability. This paper provides three characteristics of index, distance and average value of
three-dimensional coordinates based on data information.

Step 2: Training set construction.
The training set was used to estimate the parameters in the intelligent model. As

a result, the accuracy and efficiency of the model were determined by the selection of
the training set. In order to optimize the effect of the model, the dichotomy process was
adopted to partition the training set. That is to say for N samples, each segment was divided
into the length of [C/2], where C = [N], [N/2], [N/22], · · · , 2. Then take a representative
data set from each segment to form a training set. Taking into account of the accuracy
and running time in calculation, two snapshots as {S 1, S[N/2]

}
were selected to form the

training set to train the model in this paper.
Step 3: Training process.
The training set after data preprocessing was substituted into the initial XGBoost

model established for training. The effect of prediction by the model was evaluated by
the comparison to the [N/2] + 1 snapshot data, which were selected as the test set. The
establishment of the model required the setting of hyper-parameters. The hyper-parameters
used in this article were defined as: Max-depth (the maximum depth of the tree), Learning-
rate (the learning rate), n-estimators (the number of sub-models) and objective (the given
loss function). The hyper-parameters for the initialization model are given in Table 1.
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Table 1. Parameters for XGBoost Model Initialization.

Max-Depth Learning-Rate n-Estimators Objective

40 0.35 60 Reg:gamma

Step 4: Parameter Adjustment.
The adjustment of the hyper-parameters in the XGBoost model played a key role in af-

fecting the training performance of the XGBoost algorithm. So, the GridSearchCV function
was employed to adjust the parameters of the XGBoost model. The hyper-parameters after
seeking are shown in Table 2.

Table 2. Parameters in XGBoost Model after Adjustment.

Max-Depth Learning-Rate n-Estimators Objective

19 0.1 160 Reg:gamma

Step 5: Evaluation Criteria.
The indicators as the coefficient of determination R2 and the root mean square error

(RMSE) were introduced to evaluate the accuracy of the established XGBoost model.
The fitness of the prediction to the observation can be represented by the coefficient of
determination R2, which was defined as the ratio of the regression sum of squares to the
total sum of squares. This coefficient is often used to evaluate the merits and demerits of
a regression model. If the coefficient of determination R2 is calculated to be close to 1, it
indicates that the regression model is effective. RMSE is the square root of the ratio, which
is the square sum of the errors of prediction values to the number of observations. The
optimal parameters of the model and the optimal prediction results were obtained through
model training

R2 = 1−
∑
i
(CFDi − Prei)

2

∑
i
(CFDi − CFDi)

2 , (9)

RMSE =

√√√√√ n
∑

i=1
(CFDi − Prei)

2

num
, (10)

where CFDi represents the i-th label in the sample data which is captured from CFD
simulation, CFDi represents the average value of the label in the sample set, and Prei
represents the predicted value of the i-th label in the XGBoost model. And prediction error
is defined as: error = Pre− CFD, which is the difference between the prediction of the
XGBoost model and the CFD result. The whole procedure of aerodynamic modeling based
on the XGBoost algorithm is shown in Figure 4.
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Figure 4. Procedure of Aerodynamic Modeling.

4. Modeling of Blade Aerodynamic Pressure Based on Machine Learning

In this section, the intelligent modeling is first performed for the three-dimensional
unsteady pressure of the blade during the vibration process. Also, the effectiveness and
accuracy of the model are evaluated based on the XGBoost algorithm. The three-dimension
coordinate (X, Y, Z) of the state space in blade vibration was taken as the input, and the
pressure data was taken as the output to form sample data S = (X, Y, Z, Pressure). According
to the procedure of aerodynamic modeling described above, the gradient descent method
was used to find the optimal solution. After the dimensionless processing on pressure data,
the training set was collected to train the XGBoost model. Also, the test set was brought
into the trained optimal prediction model for comparison. Finally, the prediction on the
blade aerodynamic pressure was obtained with the XGBoost model established.

The prediction results of the aerodynamic pressure of blade are shown in Figure 5 at a
certain time. The predicted values of pressure in the XGBoost model were compared with
the data in CFD simulation at 80% of the blade span. It can be seen that the curves predicted
are in good accordance with each other, indicating the accuracy of the XGBoost model.

Figure 5. Comparison between XGBoost Model and Computation Fluid Dynamics (CFD).

We unfolded the three-dimensional compressor blade along the leading edge, and
displayed the pressure surface (PS Side) and suction surface (SS Side) of the compressor
blade on the same coordinate plane. The pressure contour predicted by the XGBoost model
is exhibited in Figure 6, as well as the result simulated by CFD. The two contours look
almost the same, but there are still errors located under 40% of span, which are revealed in
Figure 7. In addition, under the program running with 0.3 s, the coefficient of determination
R2 was computed to be 0.99947. The RMSE was obtained as 1012.4 by the model, which is
approximately a 0.3% error rate to the average pressure of the blade. Compared with CFD
simulation data, the three-dimensional aerodynamic pressure model of the blade based on
the XGBoost intelligent method reflects a good accuracy and efficiency. The current study
demonstrates that it is sufficient to predict the blade aerodynamic force by capturing the
characteristic of flow based on the machine learning method.
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Figure 6. Pressure Contours of the Blade: (a) CFD; (b) XGBoost Model.

Figure 7. Error Contour for Pressure.

5. Modeling of Blade Aerodynamic Force Based on Machine Learning

Under the verification for the effectiveness of the intelligent modeling method, the
XGBoost algorithm was then used to model the unsteady aerodynamic force for the three-
dimensional blade in this section. The aerodynamic force on the blade surface was obtained
based on the integral of the pressure over the mesh grid area in CFD. Because of the micro
size of grid at the blade edge, the value of force at the blade edge was much smaller. In
order to restore the distribution of force on the blade, the process of dimensionless was
performed for the aerodynamic force Df on the blade surface

D f =
F

S× P
, (11)

where F is the aerodynamic force data on the blade surface in CFD, S is the average area
of the blade surface mesh and P equals the standard atmospheric pressure. Next, the
distribution of aerodynamic force on the blade surface was predicted by the XGBoost
model at any position during the vibration process.

The predicted values of aerodynamic force in the XGBoost model were chosen here to
compare with the data in CFD simulation at 3%, 80% and 90% of the blade span, respectively,
as shown in Figure 8. It can be seen that the aerodynamic force of the blade increases
sharply from the leading edge, and decreases at the trailing edge. It was found that the
values of aerodynamic force appear to have significant differences along the variation
of the blade span. The aerodynamic forced distributed along the direction of the blade
spanwise presents a nonlinear characteristic.

This appearance can also be observed at the distribution of force at the three-dimension
surface of the blade. The 3D plots are adopted here to show the distribution of aerodynamic
force at a blade modal location. As indicated from Figure 9, it can be seen that the distribu-
tion of the aerodynamic force predicted by the XGBoost model is accordant with the CFD
data on the pressure surface of the blade. The load of blade is mainly concentrated in the
middle part of the blade, corresponding to the region of high aerodynamic force. Because
of the non-linear feature, the unsteady force is not easy to express. According to the errors
displayed in Figure 10, the nodes of aerodynamic force modeling by XGBoost method
show good agreement with the CFD data. Although the existence of error was discovered
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at certain points, the effectiveness of the aerodynamic force model is still verified through
the comparison.

Figure 8. Unsteady aerodynamic value of the blade section.

Figure 9. Aerodynamic Force at the Blade Pressure Side: (a) CFD; (b) XGBoost Model.

Figure 10. Aerodynamic Force Error on Blade.

The dimensionless aerodynamic force contour predicted by the XGBoost model is
expressed in Figure 11, along with the contour simulated by CFD. The two aerodynamic
clouds coincide exactly with each other. Also, the errors inevitably appear in the compari-
son of XGBoost model with CFD, as indicated in Figure 12. But it can be seen that the errors
emerge mostly in the region with a large gradient. The values of error oscillate around 0
with the maximum value as 0.06, which is relatively small in contrast to the dimensionless
aerodynamic force of the blade. At the running of program with 0.23 s, the coefficient of
determination R2 of the XGBoost model was computed to be 0.99998, which is very close to
1. Also, the RMSE was obtained as 0.005846 by the model, which is approximately a 0.1%
error to the average dimensionless aerodynamic force of the blade. With the comparison
to the CFD simulation data, this shows a good accuracy and reliability of predicting the
aerodynamic force by the three-dimension aerodynamic force model of the blade based on
the XGBoost intelligent method.
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Figure 11. Aerodynamic Force on the Blade: (a) CFD; (b) XGBoost Model.

Figure 12. Error Contour for Aerodynamic Force.

To check the generalization ability and robustness of the XGBoost model, snapshot
data sets with the blade vibration at different times were used as the testing set. The trained
XGBoost model was also used to predict the aerodynamic force of each snapshot data in the
testing set. The results of prediction are revealed in Figure 13, as represented by the coeffi-
cient of determination R2 and RMSE for different testing data. For the trained aerodynamic
force XGBoost model, the prediction accuracy also shows a slight discrepancy compared to
different positions of blade vibration. The maximum coefficient of determination R2 of the
prediction model is 0.99999, with the minimum value as 0.99987. The maximum RMSE
value is 0.01852, with the minimum value to be 0.00519. The coefficients of determination
R2 are all above 0.9998, and the RMSE values are all less than 0.0186. This means that
the XGBoost model reflects a good generalization ability with high robustness. From all
analysis above, it can be concluded that the three-dimension aerodynamic model based on
the XGBoost algorithm can accurately predict the aerodynamic force of the blade on the
basis of any spatial position in the blade vibration process.

Figure 13. Graphs of Error at different testing data: (a) CFD; (b) XGBoost Model.

6. Discussion

With the assistance of CFD technology, the unsteady flow field simulation of the
compressor is considered as a full-order solution to the system. Although the data obtained
is regarded as being accurate, it is not convenient for the rapid qualitative analysis of the
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system with a high time cost and low efficiency [4]. With the simple control equation of the
reduced-order model, the data can significantly reduce computation expenses and improve
calculation efficiency [10]. The mathematical mapping between the input and output can
be set up by solving the complex Navier-Stokes equations once for training. Then the
fluid-structure coupled solution in the CFD solver can be replaced by the intelligent model.

Recently there has been research conducted on the aerodynamic reduction modeling
of wings by artificial intelligent methods. But there are considerable differences between
blades and wings. Compared with isolated wings, there is an obvious unsteady aerody-
namic interference effect in the blade row [36]. Therefore, the aeroelastic analysis of blades
is different from the traditional vibration analysis of wings in outflow. Since the internal
flow is a very complex full three-dimensional unsteady viscous flow field, the aerodynamic
interference between the blades is very prominent. It is impossible to use theory to predict
the unsteady aerodynamic force of vibrating blades with so many parameters [37]. In non-
linear dynamic analysis, it is assumed that the blade is flat with no thickness, reducing the
real three dimensions to two dimensions. However, an efficient and accurate aerodynamic
model of the three-dimension blade is the basis for the analysis of the nonlinear dynamic
system. The vibration modeling of the actual three-dimensional blades was rarely used in
the previous research.

In this paper, the XGBoost algorithm of machine learning was used to establish a
reduced-order model of the unsteady aerodynamic force for a vibrating blade. By learning
from the high-fidelity sample data, the aerodynamic distribution of a three-dimensional
blade could be quickly predicted accurately at any spatial position of the blade during
the vibration process. This provides a basis for the further nonlinear dynamic analysis
of the blade. But how to incorporate this into the nonlinear dynamics equations with an
appropriate format remains a question. It is also worth conducting further integration with
fluid mechanics to evaluate the blade vibration stability.

7. Conclusions

The internal field of the compressor is essentially a three-dimensional unsteady flow.
The flow around the blade is very complex. In order to achieve an unsteady aerodynamic
load on the blade, a reduced-order intelligent model of the three-dimensional blade in
compressor was established in this paper based on a machine learning algorithm for the
first time. The main conclusions are as follows:

(1) With the combination of the intelligent algorithm in machine learning and CFD
technology, the modeling for the aerodynamic force can be performed for a three-
dimensional blade of compressor in vibration. Also, the procedure for aerodynamic
modeling based on the XGBoost algorithm was established, which is described as
data collection, data preprocessing, training set construction, model training and
parameter adjustment.

(2) The high-fidelity data for model training can be set up by solving the complex Navier-
Stokes equations once for the flow field. Then the information of the unsteady flow
can be effectively captured based on the XGBoost model training for the mathematical
mapping between the input and output. The rapid identification was achieved for
the three-dimensional aerodynamic force on the blade, which improves the efficiency
of calculation.

(3) Based on the data of blade vibration in CFD simulation, an intelligent model based
on the XGBoost algorithm was established for the prediction of the three-dimensional
unsteady aerodynamic pressure and force. With the comparison to the CFD data, it
showed a good accuracy and reliability on the prediction in the XGBoost intelligent
method. The distribution of an unsteady aerodynamic load on the blade can be
accurately predicted on the basis of any spatial position in the blade vibration process.
It provides a new perspective for the analysis of blade nonlinear dynamics. The
aerodynamic intelligent model based on the machine learning is worthy of further
integration with fluid mechanics for evaluating the blade vibration stability.
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The following abbreviations are used in this manuscript:
XGBoost eXterme Gradient Boosting
CFD Computation Fluid Dynamics
R2 the Coefficient of Determination
RMSE the Root Mean Square Error
POD Proper Orthogonal Decomposition
DMD Dynamic Mode Decomposition
DNN Deep Neural Networks
DNS Direct Numerical Simulation
CNN Convolutional Neural Network
LSTM Long Short-Term Memory network
ASA Adaptive Simulated Annealing
RRBF Recursive Radial Basis Function network
CART Classification and Regression Trees
PS Pressure Side
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