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Abstract: A more realistic way to describe a model is the use of intervals which contain the required
values of the parameters. In practice we estimate the parameters from a set of data and it is natural
that they will be in confidence intervals. In the present study, we study Non-Homogeneous Markov
Systems (NHMS) processes for which the required basic parameters are in intervals. We call such
processes Non-Homogeneous Markov Set Systems (NHMSS). First we study the set of the relative
expected population structure of memberships and we prove that under certain conditions of
convexity of the intervals of the parameters the set is compact and convex. Next, we establish
that if the NHMSS starts with two different initial distributions sets and allocation probability sets
under certain conditions, asymptotically the two expected relative population structures coincide
geometrically fast. We continue proving a series of theorems on the asymptotic behavior of the
expected relative population structure of a NHMSS and the properties of their limit set. Finally, we
present an application for geriatric and stroke patients in a hospital and through it we solve problems
that surface in an application.
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1. Introduction

The class of stochastic processes called Non-Homogeneous Markov Systems (NHMS)
was first defined in [1] The class of NHMS provided a general framework for many applied
probabilities models used to model populations of a wide diversity of entities. The primary
motive was to provide a general framework for a wide class of stochastic models in social
processes ([2]). They also include as special cases non-homogeneous Markov chain models
in manpower systems such as [3–5]. The literature on NHMS has flourished since then to a
large extent and presently exist a large volume of theoretical results as well a variety of
applications. In Section 2 of the present we provide a definition and a concise description
of a NHMS. As we will discuss in Section 2, it is important for the reader to have in mind
that actually the well-known non-homogeneous Markov chain is a special case of a NHMS.

In many stochastic processes and so naturally in Markov chains and specifically in
non-homogenous Markov chains and NHMS, the values of the various parameters are
assumed to be exact while in practice these are estimated from the data. Therefore, actually
the values of the parameters is more realistic to be viewed as being contained in intervals
with the desired probability confidence. This approach has been used in systems of linear
equations and in this case the solutions are given as the set of all possible solutions. Two
books have been written on this topic by [6,7]. For the analogous problem for differential
equations a book was written by [8]. For homogeneous Markov chains with this approach
a book was written see [9].

In Section 3 of the present we will now add some additional assumptions on a NHMS
in our way to define a non-homogeneous Markov set system (NHMSS). In this way now
a NHMSS will be a NHMS whose basic parameters will be assumed to be in compact
convex intervals.

The NHMSS is a stochastic system which has a population of members which increases
at every point in time. I addition the initial members need not to be the same entities at
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different time points since there is wastage from the system. The members of the population
move among the different states, exit from the system (population) and new members are
coming into the population (system) as replacements or to expand the system. In the case
of non-homogeneous Markov set chains we have only one particle in the population, which
never leaves the system and no procedure to replace this particle exists. Mathematically
now the NHMSS has more elements in the one step in time equation with more parameters
introduced in the stochastic difference equation. As the equation is applied recursively we
end up with series of components which interact together with more parameters being
in an interval. Hence, the problems to be solved are a lot harder, and new strategies and
tools must be used, than the simple case of the Markov set chain. The introduction of the
concept of a membership is crucial in dealing with the different individual members as time
progress. The tool of Minkowski sum of vectors and its properties for convex combination
of compact sets will play a vital role which was not needed in the case of Markov set chains.
One of the hard problems which we encounter which does not exist in the Markov set
chains is finding the range of infinite series. The Hausdorff metric for compact sets and the
coefficient of ergodicity together with properties of appropriate norms introduced and the
manipulation of infinite series will help to provide the following:

In Section 4, we establish in the form of a theorem, using the Minkowski sum of two
sets, under which conditions in a NHMSS the set of all possible expected relative population
structures at a certain point in time is a convex set. Also, we establish a Theorem where we
provide conditions under which the set of all expected relative population structures at a
certain point in time is a convex polygon.

In Section 5 we study the asymptotic behavior of an NHMSS, a problem that has
been of central importance for homogeneous Markov chains, non-homogeneous Markov
chains, NHMS and homogeneous Markov set chains. In Theorem 4, with the use of the
coefficient of ergodicity and the Hausdorff metric we prove the following: Let that in an
NHMSS the sets of initial structures are different but compact and convex; also, the sets
of allocation probabilities of the memberships are different but convex and compact; the
inherent non-homogeneous Markov set chain is common; then the Hausdorff metric of
the two different sets of all possible expected relative structures asymptotically goes to
zero geometrically fast. This is equivalent with concluding that the two sets asymptotically
coincide geometrically fast. In Theorem 5 we prove that in an NHMSS if the total population
of memberships converges in a finite number geometrically fast, and the sets of initial
structures and allocation probabilities of memberships are compact and convex, then the set
of all possible expected relative population structure converges to a limit set geometrically
fast. These two theorems have important consequences for a NHMS process also. The first
is Theorem 6 which relaxes important assumptions of the basic asymptotic theorem for
NHMS which is provided as Theorem 7. The second labeled as Theorem 8 answers a novel
question for NHMS, i.e., provides conditions under which two different NHMS, with the
same number of states and population, but different initial states and different allocation
probabilities of memberships if they have the same transition probabilities sequence of
memberships, they converge in the same relative population structure geometrically fast.

In Section 6 we study properties of the limit set of expected relative population
structures. In Theorem 10 we prove the first property, that under some mild conditions the
limit set of the expected relative population structures of an NHMSS remains invariant if
any selected transition probability matrix of the inherent non-homogeneous Markov chain
from the respective interval is multiplied by it from the right. We also prove that the limit
set is the only set with this property if the interval of selection of transition probabilities
of the inherent non-homogeneous Markov chain is product scrambling. In Theorem 11
the second property is established, i.e., let two different NHMSS in the sense that they
have different sets of selecting initial distributions, different sets of selecting allocation
probabilities and different intervals of selecting the transition probabilities of the inherent
non-homogeneous Markov chains. What they have in common is that their respective
intervals are uniformly scrambling with a common bound and they have the same total
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population of memberships. We prove that the Hausdorff metric of the limit sets of the
expected relative population structures of the two NHMSS is bounded by the multiplication
of a function of the Hausdorff metric of the two tight intervals of selection of the stochastic
matrices of the inherent non-homogeneous Markov set chains and the bound of their
uniform coefficients of ergodicity.

In Section 7 we present a representative application for geriatric and stroke patients
in a hospital. Through this application we provide solutions in problems arising in an
application by providing respective Lemmas and a general Algorithm with computational
geometry procedures which are applicable to any population system.

2. The Non-Homogeneous Markov System

Consider a population which has T(t) memberships at time t. These memberships
could be held by any kind of entities, i.e., human beings, animals, T-cells in a biological
entity, fish in an organized area in the sea, cars on a highway etc. We assume that T(t) is
known for every t, for example in a hospital the memberships are the beds for patients
and from the management of the hospital’s planning the number of beds are known. Let
that the population is stratified into classes which we call states and let that there are a
finite number of states, i.e., the state space is S ={1, 2, . . . , k}. We assume that the evolution
of the population is in discrete time, i.e., t = 1, 2, ... and we call the vector of random
variables N(t) = [N1(t), N2(t), . . . , Nk(t)] where Ni(t) is the number of memberships in
state i at time t, the population structure of the NHMS. Define by q(t) = N(t)/T(t) to be the
relative population structure. At every time instant t = 1, 2, ..., we have internal transitions of
members among the states in S with probabilities which we collect in the k× k matrix P(t);
we have wastage from all the states with probabilities which we collect in the 1× k vector
pk+1(t) = [p1,k+1(t), p2,k+1(t), . . . , pk,k+1(t)]; finally, we have recruitment or allocation
probabilities of replacements or new entrants in the various states at time t which we
collect in the 1× k stochastic vector p0(t) = [p01(t), p02(t), . . . , p0k(t)]. We assume that the
system is expanding, i.e., ∆T(t) = T(t)− T(t− 1) ≥ 0. During the time interval (t− 1, t]
a member of the system in state i either moves internally to another state j of the system
with probability pij(t) or leave the system and his membership remains at the exit of the
system. New entrants to the system are of two types, those to replace leavers and those
needed to be added in the system to meet the target of T(t) total memberships. The new
entrant gets his membership at the entrance and he is being allocated or recruited at state j
with probability p0j(t). Hence, the probability of movement of a membership from state
i to state j at time t is qij(t) = pij(t) + p0j(t)pi,k+1(t). We collect these probabilities in the
k× k matrix Q(t) = P(t) + p>k+1(t)p0(t) which apparently is a stochastic matrix. We call
the Markov chain defined by the sequence of matrices {Q(t)}∞

t=0 the imbedded or inherent
non-homogeneous Markov chain of the NHMS.

It is of interest the expected relative population structure. Let Xt be the random variable
representing the state that a membership of the system is at time t. Define by

q(s, t) = [q1(s, t), q2(s, t), . . . , q2(s, t)],

where
qj(s, t) = P[Xt = j | q(s)] for s ≤ t, (1)

then from ([10] p. 140) we get that

E[q(s, t)] = a(t− 1)E[q(t− 1)]Q(t) + b(t− 1)p0(t), (2)

where

a(t− 1) =
T(t− 1)

T(t)
and b(t− 1) =

T(t)− T(t− 1)
T(t)

, (3)
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from which we get that

E[q(0, t)] =
T(0)
T(t)

q(0)Q(0, t)+

1
T(t)

t

∑
τ=1

∆T(τ)p0(τ)Q(τ, t), (4)

where Q(s, t) = Q(s + 1)Q(s + 2) . . . Q(t) for (s ≤ t). We set Q(s, t) = I the identity
matrix for s ≥ t. Please note that we set q(s, t) = 0 for s > t. We call any such process as
described above a Non-homogeneous Markov process in discrete time and discrete state space.
It is important for the reader to realize that the well-known ordinary Markov chain is a
very special case of a NHMS with T(t) = 1, p0(t) = 0, pk+1(t) = 0 and Q(t) = P.

As we mentioned in the Introduction the stochastic process NHMS was first introduced
in [1] as a discrete time, discrete state space stochastic process with motives which have
their roots in actual applications in manpower systems see for example [1,2,11], and also
the review papers [12,13]. Since then, a large literature on theoretical developments
on many aspects of a NHMS were published which also included the developments
in [14,15] of NHMS’s in a general state space. In [16] there appeared the link between
the theory of NHMS and martingale theory. Lately, also another area of large interest
has been the Law of Large Numbers in NHMS ([17]) which has its roots as a motive the
study of Laws of Large numbers on homogeneous Markov chains by Markov himself.
Also, many applications in areas with great diversity have also appeared in the literature.
For example we could selectively refer to some of them. Let as start with [18–20] which are
applications in the evolution of the HIV virus on the T-cells of the human body; population
consisting with patients with asthma was studied in [21]; reliability studies were presented
in [22]; applications in biomedical research appeared in [23,24]; various applications for
human populations [25–29]; interesting application to consumption credit [30] infections of
populations [31]; a very interesting application in DNA and web navigation [32]; interesting
ecological applications [33]; results in Physical Chemistry [34]. Finally, there are a large
number of publications by the research school of Prof McClean in hospital systems which
are large manpower systems [35–39].

3. Non-Homogeneous Markov Set System

In Section 2 we defined the NHMS process and we will now define for the first time
ever the non-homogeneous Markov set system. So far in the well developed theory of
NHMS’s the various perimeters are assumed to be exact while in practice they are naturally
estimated by the data. Therefore, it is more realistic to be viewed as being contained in
intervals with the desired probability confidence. In summary as we will see bellow a
NHMSS is a NHMS for which its parameters are defined in intervals. In addition the study
of NHMSS provides a new area of theoretical research with different mathematical tools in
many instances than the corresponding theory of NHMS and a potential to be applied in
other stochastic processes.

The practical advantages of NHMSS’s are rather apparent since the assumptions on
the parameters are less restrictive. The assumption of the parameters being in appropriate
intervals absorbs in a way the errors of point estimates which increase their variability.
In addition it provides the tools to study NHMS’s whose parameters will be in “desired”
intervals which increases considerably the control of the system since we could choose poli-
cies of the systems in intervals with desired outcomes for the expected relative population
structures or to avoid trouble some situations.

We will start with the definition of an interval for a stochastic vector following [9]
who first defined Markov set chains. Denote by Mn(R) or simply Mn the set of all n× n
matrices with elements from the field R.
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Definition 1. Let SM1n the set of all 1× n stochastic vectors. Also let λ and µ be non-negative
1× n vectors with λ ≤ µ componentwise. Then define the corresponding interval in SM1n by

[λ, µ] = {p : p ∈ SM1,n with λ ≤ p ≤ µ},

where λ,µ are chosen such that [λ, µ] 6= ∅.

Example 1. It is sometimes helpful to view mathematics geometrically. Let SM1,3 the set of all 1× 3
stochastic vectors, then it is easy to see that this is the convex hull of the vectors e1 =

(
1 0 0

)
,

e2 =
(
0 1 0

)
and e3 =

(
0 0 1

)
in R3. Now, all the non-negative vectors x such that

λ ≤ x ≤ µ are within and the surface of a rectangle the coordinates of which are determined
by λ, µ. The interval [λ, µ] will be the intersection of the two above described spaces. We can
visualize this more easily if we consider the triangle e1e2e3 in R2. Let λ =

(
0.1 0.2 0.3

)
and

µ =
(
0.5 0.7 0.8

)
then the interval [λ, µ] could be easily designed in the following way. Draw

two parallel lines to the line e2e3 at the points λ1 = 0.1 and µ1 = 0.5; also draw two parallel lines
to the line e1e3 at the points λ2 = 0.2 and µ2 = 0.7; finally draw two parallel lines to the line
e1e2 at the points λ3 = 0.3 and µ3 = 0.8. Then the interval [λ, µ] is the common area between
these lines.

Tight intervals are important in what follows:

Definition 2. Let [λ, µ] be an interval, then if

λi = min
x∈[λ,µ]

xi and µi = max
x∈[λ,µ]

xi,

then λi, µi are called tight, respectively. If λi, µi are tight for all i, then the interval [λ, µ] is
called tight.

Intervals can be tested for tightness using the following Lemma ([9]). Also, with the
use of this Lemma an interval which is not tight, we can tighten it up using an algorithm
without actually changing it. That is the new interval, the tightened one will contain the
same stochastic vectors.

Lemma 1. ([9]). Let [λ, µ] be an interval. Then for each coordinate i

(i) λi is tight if and only if λi + ∑
k 6=i

µk ≥ 1.

(ii) µi is tight if and only if µi + ∑
k 6=i

λk ≥ 1.

We now need the following definition of when in a tight interval a vector is called free.

Definition 3. Let [λ, µ] be a tight interval and p ∈ [λ, µ]. Then if λi < pi < µi for some
coordinate i, then the coordinate pi in p is called free.

Tight intervals and convex sets are well linked and play an important role in the
preservation of many properties. In this respect, the following Lemma is very useful.

Lemma 2. ([9]). Let [λ, µ] be a tight an interval . Then [λ, µ] is a convex polytope. A vector
p ∈ [λ, µ] is a vertex of [λ, µ] if and only if p has at most one free component.

We will now extend the definition of an interval of a vector to an interval of a matrix
and to a tight interval of a matrix.
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Definition 4. Let SMn the set of all 1× n stochastic matrices. Also let Λ and M be non-negative
n× n matrices with Λ ≤ M componentwise. Then define the corresponding interval in SMn by

[Λ, M] = {P : P ∈ SMn with Λ ≤ P ≤ M},

where Λ, M are chosen such that [Λ, M] 6= ∅.

We now proceed to define a tight interval of matrices:

Definition 5. Let [Λ, M] be an interval of matrices. If

λij = min
P∈[Λ,M]

pij and µij = max
P∈[Λ,M]

pij,

for all i and j, then [Λ, M] is called tight.

The interval [Λ, M] can be constructed also by rows, i.e.,

[Λ, M] =

{
P : pi ∈ [λi, µi] for all i, with pi, λi, µi

being the rows of the respective matrices P, Λ, M

}
.

In what follows we will define a non-homogeneous Markov set system. We will keep
the entire notation introduced in Section 2 for a NHMS and we will build on that.

Let [M] =
[
Q̌, Q̂

]
be an interval of k× k stochastic matrices with Q̌ ≤ Q(t) ≤ Q̂ for

every t ∈ Nwhich is tight, i.e.,

[M] =
{

Q(t) : is an k× k stochastic matrix with Q̌ ≤ Q(t) ≤ Q̂
}

with
q̌ij = min

Q(t)∈[Q̌,Q̂]
qij(t) for every t ∈ N,

q̂ij = max
Q(t)∈[Q̌,Q̂]

qij(t) for every t ∈ N,

and the notation
[
Q̌, Q̂

]
will be taken to imply that

[
Q̌, Q̂

]
6= ∅.

We will make now the following basic assumptions:

Assumption 1. Let that the imbedded non-homogeneous Markov chain of the NHMS has all its
probability matrices in [M].

We call [M] the probability transition matrix set (PTMS) of the imbedded non-homogeneous
Markov chain.

Now define by [
M2
]
= {Q(0)Q(1) : Q(0), Q(1) ∈ [M]},

. . .

. . .

. . .

[Mn] = {Q(0)Q(1)...Q(n− 1) : Q(0), . . . , Q(n− 1) ∈ [M]}.

We call the sequence {[Mn]}∞
n=1 the inherent or imbedded non-homogeneous Markov set

chain.
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Assumption 2. Let [S0] be the set of 1× k stochastic vectors from which the initial distribution
q(0) is chosen.

[S0] = [q̌0, q̂0] = {q(0) : is a stochastic vector with q(0) ∈ [S0]}.

Assumption 3. Let [R0] be the set of 1× k stochastic vectors from which the allocation probabilities
p0(t) are being selected. That is

[R0] = [p̌0, p̂0] = {p0(t) : is a stochastic vector with p0(t) ∈ [R0] for every t}.

We call a NHMS whose parameters are assumed to be in intervals as in Assumptions 1–3 a
Non-homogeneous Markov Set System (NHMSS).

Note that it is apparent by now that Markov set chains that were initiated by [9,40–43]
are special cases of a NHMSS.

4. The Set of the Expected Relative Population Structures of a NHMSS

In geometry the Minkowski sum (also known as dilation) of two sets of position
vectors A and B in Euclidean space is formed by adding each vector in A to each vector in
B. That is

A+B ={a + b : a ∈ A, b ∈ B}.

Example 2. If we have two sets A and B consisting of three position vectors (informally, three
points) representing the vertices of two triangles in R2 with coordinates

A ={(1, 0), (0, 1), (0,−1)} and B ={(0, 0), (1, 1), (1,−1)},

then their Minkowski sum is

A+B ={(1, 0), (2, 1), (2,−1), (0, 1), (1, 2), (0,−1), (1,−2)},

which comprises the vertices of a hexagon.

For Minkowski addition, the zero set containing only the zero vector 0, is an identity
element for every subset V of a vector space, i.e., V+{0} = V.

The empty set is important in Minkowski addition because the empty set annihilates
every other subset for every subset V of a vector space, its sum with the empty set is empty,
i.e., V+∅ = ∅.

We are now in a position to state the following Lemma ([44])

Lemma 3. IfV is a convex set then µV+�V is also a convex set and furthermore µV+�V =(µ + λ)V
for every λ, µ > 0. Conversely, if this "distributive property" holds for all non-negative real numbers λ, µ > 0
then the set is convex.

Remark 1. For two convex polygons V1 and V2 in the plane with m and n vertices, their
Minkowski sum is a convex polygon with at most m + n vertices and may be computed in time
O(m + n) by a very simple procedure.

We need the following sets for the Lemma that follows

Rng(q) = {y : y = qQ for some Q ∈ [M] and any q ∈ SM1,n}.

Also

Rng(S) = ∪q∈SRng(q) = {y : y = qQ for some Q ∈ [M] and some q ∈ S}.
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Lemma 4. Let an NHMSS with T(t) ≥ 0 and finite and which is expanding (∆T(t) ≥ 0). Also
let [S0] the set from which the initial distribution of memberships is drawn, [R0] the set from which
the allocation probabilities in the various states are chosen at every time step and finally let [M] the
set to which all the transition probability matrices of the inherent Markov chain of memberships
belong. Then the set Rngt(S0,R0) of all possible expected relative population structures at time t is
given by

Rngt(S0,R0) = {E[q(0, t)] : E[q(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S0] q(0)
[
Mt] (5)

+
1

T(t)

t

∑
τ=1

∆T(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ

]
},

with
[
M0] = [M] and

[
M−1] = {I}.

Proof. Following the relevant proofs that lead to Equations (2.1), (2.2) and (3.4) in [10] or
Equations (2) and (4) in the present, we could easily prove (5).

We will need the following Lemma from ([9] p. 39):

Lemma 5. In a non-homogeneous Markov set chain let the set of initial distributions [S0] be convex
and let [M] be a tight interval from which the transition probability sequence of matrices is being
selected. Then the set [St] of all possible probability distributions at the various states at time t is a
convex set.

In the next theorem we show under which conditions the set of all possible expected
relative population structures in a NHMSS is a convex set.

Theorem 1. Let an NHMSS with T(t) finite and which is expanding (∆T(t) ≥ 0). If [S0], [R0]
are convex sets and [M] a tight interval then the set of all possible expected relative population
structures is a convex set.

Proof. Define {E[q̊(0, t)]} be the set of all possible expected relative structures of the initial
memberships then from Lemma 4 we have

{E[q̊(0, t)]} = {E[q̊(0, t)] : E[q̊(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S0] q(0)
[
Mt]}, (6)

since T(0)
T(t) ≥ 0, [S0] is a convex set and [M] a tight interval, from Lemma 4 and 5 we get

that {E[q̊(0, t)]} is a convex set. Also, the set

{E[rτ ]} = {E[rτ ] : E[rτ ] ∈ ∆T(τ) ∪p(τ)∈[R0] p0(τ)
[
Mt−τ

]
},

is the set of all possible expected structures of new memberships at time t which entered in
the system at time τ. Now, since the system is expanding, i.e., ∆T(τ) ≥ 0, [R0] is a convex
set and [M] a tight interval, then with the same reasoning as in (6), we get that {E[rτ ]} is a
convex set. Also, from Remark 1 we get that the Minkowski sum of sets

1
T(t)

t

∑
τ=1
{E[rτ ]},

is a convex set. Hence, since the two sets in the right-hand side of Equation (5) are convex
and then according to Remark 1 their Minkowski sum Rngt(S0,R0) is a convex set.

We will now borrow the following Theorem from ([9] p. 40).
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Theorem 2. In a non-homogeneous Markov set chain let the set of initial distributions [S0] be a
convex polytope and let [M] be a tight interval from which the transition probability sequence of
matrices is being selected. Then the set [St] of all possible probability distributions at the various
states at time t is a convex polytope with vertices of the form EiEi1 ...Eik for some vertices Ei of [S0]
and some vertices Eij of [M].

In the next theorem we show under which conditions the set of all possible expected
relative population structures in a NHMSS is a convex polytope.

Theorem 3. Let an NHMSS with T(t) finite and which is expanding (∆T(t) ≥ 0). If [S0], [R0]
are convex polytopes and [M] a tight interval then the set of all possible expected relative population
structures is a convex polytope.

Proof. The proof follows the steps of the proof of Theorem 1 using Theorem 2.

5. Asymptotic Behavior of NHMSS

The problem of asymptotic behavior has been one of central importance for, homoge-
neous Markov chains, non-homogeneous Markov chains, NHMS, and non-homogeneous
Markov set chains. In the present section we will prove a series of theorems with which we
establish the asymptotic behavior of NHMSS.

Since Markov himself and his student Dobrushin the coefficient of ergodicity T (Q)

of a k× k stochastic matrix Q =
{

qij
}k

i,j=1, has been a fundamental tool in the study of
Markov chains. We have

T (Q) =
1
2

max
ij

k

∑
l=1

∣∣∣qil − qjl

∣∣∣, (7)

thus 0 ≤ T (Q) ≤ 1. We clarify in here that if T (Q) < 1 the stochastic matrix Q is called
scrambling. Scrambling matrices are regular, but not all regular matrices are scrambling.
Yet if Q is a regular stochastic matrix then some power of Q, say Qn is scrambling. We
define by

T̄ ([M]) = max
Q∈[Q̌,Q̂]

T (Q), (8)

if T̄ ([M]) < 1 we say that [M] is uniformly scrambling. More on uniform scrambling and
the interpretation of the coefficient of ergodicity of a matrix A ∈ Rn×n as a matrix norm
when the norm is restricted to a specified subspace could be found, in [45]. For explicit
forms for ergodicity coefficients and properties see also [46,47]. In what follows we will
use the following norm for a matrix A ∈ Mn(R)

‖A‖ = max
i

k

∑
j=1

∣∣aij
∣∣

We will use the concept of T̄ ([M]) < 1 to study asymptotic behavior in a NHMSS. It
is important to note that if we consider as

([
MC], ‖.‖) the space of non-empty compact

subsets of ([M], ‖.‖) then
([
MC], ‖.‖) is a metric space ([48]). This space can be topologized

using the Hausdorff metric d(., .) defined by

d(S1,S2) = max{δ(S1,S2), δ(S2,S1)}, (9)

where
δ(S1,S2) = max

Q1∈S1
min

Q2∈S2
‖Q1 −Q2‖ and S1,S2 ∈

[
MC
]
, (10)

From [48] we get also that
([
MC], d(., .)

)
is a metric space.

We will need the following Lemmas
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Lemma 6 ([49]). The following statements are equivalent:

(i) Sequence {∆T(t)}∞
t=0 converges to zero with geometrical rate;

(ii) Sequence {T(t)}∞
t=0 converges to T with geometrical rate,

Lemma 7 ([50] p. 541). Suppose that {
∆T(t)
T(t)

}∞

t=0

converges to zero as t→ ∞ geometrically fast with T(t) ≥ T(t− 1). Then {T(t)}∞
t=0 converges

geometrically fast.

Remark 2. The restriction

lim
t→∞

∆T(t)
T(t)

= 0,

is a general assumption with the physical interpretation that the proportional growth rate vanishes
in the limit. This assumption allows limt→∞T(t) = ∞.

We will now study what happens asymptotically to the two sets of the expected
relative population structures when the initial structures belong to two different sets as
well as the allocation probabilities in the respective cases.

Theorem 4. Let an NHMSS for which [M] is a tight interval which is uniformly scrambling.
Assume that {

∆T(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Also, assume that [S], [R0] are compact and convex. Let S1,S2 ⊆
[
SC] and R1,R2 ⊆[

RC
0
]

then
d(Rngt(S1,R1), Rngt(S2,R2))→t→∞ 0 geometrically fast.

Proof. From (5) we get that

Rngt(S1,R1) = {E[q(0, t)] : E[q(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S1]
q(0)

[
Mt]+ (11)

1
T(t)

t

∑
τ=1

∆T(τ) ∪p0(τ)∈[R1]
p0(τ)

[
Mt−τ

]
},

and from (11) if we replace q(0) with q̄(0), [S1] with [S2]; p0(τ) with p̄0(τ); [R1] with [R2]
and E[q(0, t)] with E[q̄(0, t)] we get Rngt(S2,R2). Since[S1], [R1] are compact and [M] is a
tight interval, it is not difficult to show that Rngt(S1,R1) is compact. The same applies for
Rngt(S2,R2) since [S2], [R2] are also compact. Hence, we may take their Hausdorff metric.
Now, we have that

δ(Rngt(S1,R1), Rngt(S2,R2)) (12)

= max
q(0)∈[S1],p0(τ)∈[R1],

Q(t)∈[M] for all τ,t

min
q̄(0)∈[S2],p̄0(τ)∈[R2]

Q̄(t)∈[M] for all τ,t

‖E[q(0, t)]−E[q̄(0, t)]‖.

by continuity of
f (E[q̄(0, t)]) = min‖E[q(0, t)]−E[q̄(0, t)]‖
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then for some q∗(0) ∈ [S1], p∗0(τ) ∈ [R1] for every τ ∈ [1, t], Q∗(t) ∈ [M] for every t ∈ [0, t]
and by denoting with

E[q∗(0, t)] =
T(0)
T(t)

q∗(0)Q∗(0, t) +
1

T(t)

t

∑
τ=1

∆T(τ)p∗0(τ)Q
∗(τ, t), (13)

we get
δ(Rngt(S1,R1), Rngt(S2,R2)) = (14)

min
q̄(0)∈[S2],p̄0(τ)∈[R2]

Q̄(t)∈[M] for all τ,t

‖E[q∗(0, t)]−E[q̄(0, t)]‖

≤ ‖E[q∗(0, t)]−E[q̄∗(0, t)]‖,

where E[q̄∗(0, t)] is given by (13) if we replace q∗(0) with any q̄∗(0) ∈ [S2], p∗0(τ) with any
p̄∗0(τ) ∈ [R2] for every τ ∈ [1, t]. Now, from (13) and (14) we get that

δ(Rngt(S1,R1), Rngt(S2,R2)) ≤
T(0)
T(t)
‖[q∗(0)− q̄∗(0)]Q∗(0, t)‖

+
1

T(t)

t

∑
τ=1

∆T(τ)‖p∗0(τ)Q
∗(τ, t)− p̄∗0(τ)Q

∗(τ, t)‖

≤ T(0)
T(t)
T (Q∗(0, t))‖[q∗(0)− q̄∗(0)]‖

+
1

T(t)

t

∑
τ=1

∆T(τ)T (Q∗(τ, t))‖p∗0(τ)− p̄∗0(τ)‖

(since [M] is uniformly scrambling T̃ = max
Q∗(t)∈ [M]

T (Q∗(t)) < 1)

≤ T(0)
T(t)
T̃ t‖[q∗(0)− q̄∗(0)]‖

+
1

T(t)

t

∑
τ=1

∆T(τ)T̃ t−τ‖p∗0(τ)− p̄∗0(τ)‖

≤ T(0)
T(t)
T̃ tδ(S1,S2) +

1
T(t)

t

∑
τ=1

∆T(τ)T̃ t−τδ(R1,R2). (15)

Since
{

∆T(t)
T(t)

}∞

t=0
converges to zero geometrically fast, from Lemmas 6 and 7 we get

that there are c1, c2 > 0 and 0 < b1, b2 < 1 such that∣∣∣∣ 1
T(t)

− 1
T

∣∣∣∣ ≤ c1bt
1 and

∣∣∣∣∆T(t)
T(t)

∣∣∣∣ ≤ c2bt
2. (16)

From (15), (16) we get that

δ(Rngt(S1,R1), Rngt(S2,R2)) ≤ T(0)
(

1
T
+ c1bt

1

)
T̃ tδ(S1,S2)

+δ(R1,R2)

(
1
T
+ c1bt

1

) t

∑
τ=1

c2bτ
2 T̃ t−τ ,

(assuming T̃ <b2)

≤ T(0)
(

1
T
+ c1bt

1

)
T̃ tδ(S1,S2) + δ(R1,R2)

(
1
T
+ c1bt

1

)
c2bt−1

2

t

∑
τ=1

(
T̃
b2

)t−τ
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≤ T(0)
(

1
T
+ c1bt

1

)
T̃ tδ(S1,S2) + δ(R1,R2)

(
1
T
+ c1bt

1

)
c2bt−1

2

(
1− T̃

b2

)−1

. (17)

From (17) we conclude that δ(Rngt(S1,R1), Rngt(S2,R2)) converges to zero geomet-
rically fast. Similarly, we get the same conclusion if T̃ >b2.

Now, in a similar way we may prove that δ(Rngt(S2,R2), Rngt(S1,R1)) converges to
zero geometrically fast. Thus, we arrive at the desired conclusion.

We will now establish under what conditions the convergence to the limiting set in a
NHMSS is geometrically fast.

Theorem 5. Let an NHMSS for which [M] is a tight interval which is uniformly scrambling.
Assume that {

∆T(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Also, let that [S], [R0] are compact and convex. Then we have that

d(Rngt(S,R0), Rng∞(S,R0)→ 0, geometrically fast. (18)

Proof. We will first show that

Rng(Rngt(S,R0)) = Rngt+1(S,R0). (19)

By the evaluation of the function Rng(., .) given in Lemma 4 we get that

Rng(Rngt(S,R0)) =
T(t)

T(t + 1)
∪E[q(0,t)]∈Rngt(S,R0) E[q(0, t)][M]

+
1

T(t + 1)
∆T(t + 1) ∪p0(t)∈[R0] p0(t) =

T(t)
T(t + 1)

T(0)
T(t)

∪q(0)∈[S] q(0)
[
Mt][M]+

T(t)
T(t + 1)

1
T(t)

t

∑
τ=1

∆T(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ

]
[M]

+
1

T(t + 1)
∆T(t + 1) ∪p0(t)∈[R0] p0(t)

=
T(0)

T(t + 1)
∪q(0)∈[S] q(0)

[
Mt+1

]
+

1
T(t + 1)

t+1

∑
τ=1

∆T(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ+1

]
= Rngt+1(S,R0).

Now, we will show that

Rngt(Rng∞(S,R0)) = Rng∞(S,R0). (20)

Assume that E[q(∞)] is an element of Rng∞(S,R0) then from Lemma 4 we get that

Rng(Rng∞(S,R0)) =
T
T
∪E[q(∞)]∈Rng∞(S,R0) E[q(∞)][M]+

1
T
(T − T) ∪p0(∞)∈[R0] p0(∞) = Rng∞(S,R0)[M] = Rng∞(S,R0), (21)

where the last equality will be proved in Theorem 10. From (21) we recursively get (20).
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Since the conditions of Theorem 4 hold in the present theorem we get that

d(Rngt(S1,R1), Rngt(S2,R2))→ 0 geometrically fast. (22)

Now, in (22) replace Rngt(S1,R1) with Rngt(Rng∞(S,R0)) and Rngt(S2,R2) with
Rngt(S,R0), then we get that

d(Rngt(Rng∞(S,R0)), Rngt(S,R0))→ 0, geometrically fast. (23)

From (20), (23) we arrive at

d(Rngt(S,R0), Rng∞(S,R0)→ 0, geometrically fast.

The above Theorems 4 and 5 have an important consequence since it provides a
generalization, by relaxing important assumptions, of the basic asymptotic theory for an
NHMS. The theorem is the following and could be proved by just following the analogous
steps as in the proofs of Theorems 4 and 5 and Theorem 3.3 in [11]:

Theorem 6. Consider an NHMS and assume that{
∆T(t)
T(t)

}∞

t=0
converges geometrically fast.

Let {Q(t)}∞
t=0 be the sequence of transition matrices and {p0(t)}

∞
t=0 be the sequence of

allocation probabilities. If supt T̃ (Q(t)) < 1 then

lim
t→∞

E(q(0, t)) = q(∞) geometrically fast,

where q(∞) is the row of the stable matrix Q(∞) = limt→∞ Q(0, t).

The basic asymptotic theorem for an NHMS and which has been used in many papers
to provide further results is:

Theorem 7. Let an NHMS and let that (a) limt→∞‖Q(t)−Q‖ = 0 and Q a regular stochastic
matrix; (b) limt→∞‖p0(t)− p0‖ = 0;and (c) limt→∞[∆T(t)/T(t)] = 0. Then

lim
t→∞
‖E(q(0, t))− q(∞)‖ = 0

where q(∞) is the row of the stable matrix Q(∞) = limt→∞ Qt.

Theorem 7 has been used extensively in the theory of NHMS to produce further results
see for example [10–12,17,51], and the relaxation of the necessary conditions in Theorem 6
is apparent.

Another consequence is that Theorem 4 provides conditions under which two different
NHMS, with the same number of states and population, but different initial states and dif-
ferent allocation probabilities of memberships if they have the same transition probabilities
sequence of memberships (PTMS of the embedded Markov chains), they converge in the
same expected relative population structure geometrically fast. This is stated in detail in
the following theorem which could be proved by just following the analogous steps as in
the proof of Theorems 4 and 5.
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Theorem 8. Let two NHMS a and b which have the same number of states, a common sequence
of transition probability matrices of memberships {Q(t)}∞

t=0 and the same total population of
memberships. Assume that{

∆T(t)
T(t)

}∞

t=0
converges geometrically fast.

Let qa(0) and qb(0) be their initial relative population structures respectively, and {pa(t)}
∞
t=0

and {pb(t)}
∞
t=0 their sequences of allocation probabilities. If supt T̃ (Q(t)) < 1 then

lim
t→∞

E(qa(0, t)) = lim
t→∞

E(qb(0, t)) = q(∞) geometrically fast,

where q(∞) is the row of the stable matrix Q(∞) = limt→∞ Q(0, t).

6. Properties of the Limit Set

In the present section we establish some important properties of the limit set Rng∞(S,R0).
We start with the following definition:

Definition 6. Let n be an integer such that T (Q1Q2...Qn) < 1 for all Q1, Q2, ..., Qn ∈ [M].
Then [M] is said to be product scrambling and n its scrambling integer.

We will make use of the following Theorem 3.3 in [9]:

Theorem 9. ([9]). Let x, y be non-compact subsets of SM1,n. Then using the Hausdorff metric
we have

d(xM, yM) ≤ T (M)d(x, y).

We will now establish with a Theorem some important properties of the limit set.

Theorem 10. Consider an NHMSS for which [M] is an interval which is uniformly scrambling.
Assume that T(t) ≥ T(t− 1) > 0 for all t = 1, 2, ... and{

∆T(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Also, assume that [S0], [R0] are compact and convex. Then if we define by

Rng∞(S0,R0) = lim
t→∞

Rngt(S0,R0) = ∩∞
t=1Rngt(S0,R0),

the limit set Rng∞(S0,R0) satisfies

Rng∞(S0,R0) = Rng∞(S0,R0)[M].

If in addition [M] is product scrambling with integer n then it is the unique set that has
this property.

Proof. For the first part of the Theorem 10 since Rng∞(S0,R0) is compact, it is sufficient to
show that

d(Rng∞(S0,R0), Rng∞(S0,R0)[M]) = 0.

In this respect
δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) =

max
q(0)∈[S0],
p0(τ)∈[R0]

Q(t)∈[M] for all τ,t

min
q(0)∈[S0],
p0(τ)∈[R0]

Q(t)∈[M] for all τ,t

∥∥∥∥ lim
t→∞
{E[q(0, t + 1)]} − lim

t→∞
{E[q(0, t)]}[M]

∥∥∥∥,
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where

{E[q(0, t + 1)]} = ∪q(0)∈[S0]
T(0)

T(t + 1)
q(0)

[
Mt+1

]
+

1
T(t + 1)

t+1

∑
τ=1

∆T(τ) ∪p0(τ)∈[R0] p0(τ)
[
Mt−τ+1

]
.

Now there exists a q∗(0) ∈ [S0], Q∗(t) ∈ [M] for t ∈ [0, t], p0(τ) ∈ [R0] for τ ∈ [1, t],
i.e.,

E[q(0, t + 1)] =
T(0)

T(t + 1)
q∗(0)Q∗(0, t + 1)+

1
T(t + 1)

t+1

∑
τ=1

∆T(τ)p∗0(τ)Q
∗(τ, t + 1),

such that
δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) =

min
q(0)∈[S0],p0(τ)∈[R0],

Q(t)∈[M] for all τ,t

∥∥∥∥ lim
t→∞

E[q∗(0, t + 1)]− lim
t→∞
{E[q(0, t)]}[M]

∥∥∥∥. (24)

Now, for any values of the parameters of E[q(0, t)] that does not maximize it, the dif-
ference above is still greater or equal than the ones which minimize E[q(0, t)]. Thus, we
are free to choose the parameters q∗(0) ∈ [S0], Q∗(0, t) ∈

[
Mt] and p∗0(τ) ∈ [R0] for every

τ ∈ [0, t]. With the same reasoning we could choose Q∗(t) in the place of [M]. Thus, we
get that

δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) =

≤ lim
t→∞

∥∥∥∥ T(0)
T(t + 1)

q∗(0)Q∗(0, t + 1)− T(0)
T(t)

q∗(0)Q∗(0, t + 1)
∥∥∥∥

+ lim
t→∞
‖ 1

T(t + 1)

t+1

∑
τ=1

∆T(τ)p∗0(τ)Q
∗(τ, t + 1)−

1
T(t)

t

∑
τ=1

∆T(τ)p∗0(τ)Q
∗(τ, t + 1)‖

≤ lim
t→∞

∣∣∣∣ T(0)
T(t + 1)

− T(0)
T(t)

∣∣∣∣‖q∗(0)‖1‖Q∗(0, t + 1)‖+

lim
t→∞

∣∣∣∣ 1
T(t + 1)

− 1
T(t)

∣∣∣∣
∥∥∥∥∥ t

∑
τ=1

∆T(τ)p∗0(τ)Q
∗(τ, t + 1)

∥∥∥∥∥
+ lim

t→∞

∣∣∣∣ ∆T(t)
T(t + 1)

∣∣∣∣‖p∗0(t)‖. (25)

Since [M] is uniformly scrambling we have that T̄ =maxt∈NT (Q∗(t)) < 1 and thus
‖Q∗(τ, t)‖ < T̄ t−τ and∥∥∥∥∥ t

∑
τ=1

∆T(τ)p∗0(τ)Q
∗(τ, t + 1)

∥∥∥∥∥ ≤ t

∑
τ=1

∆T(τ)T̄ t−τ+1,

which goes to zero as t→ ∞ . Hence

δ(Rng∞(S0,R0), Rng∞(S0,R0)[M]) = 0.

In a similar way we could prove that

δ(Rng∞(S0,R0)[M], Rng∞(S0,R0)) = 0,
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which lead us to the conclusion

d(Rng∞(S0,R0)[M], Rng∞(S0,R0)) = 0.

For the second part of the theorem in addition we have that [M] is product scrambling
with index n. Assume that there is a second Rng∗∞(S0,R0) which is compact for which

Rng∗∞(S0,R0)[M] = Rng∗∞(S0,R0).

Then we get that

d(Rng∗∞(S0,R0), Rng∞(S0,R0)) = d(Rng∗∞(S0,R0)[Mn], Rng∞(S0,R0)[Mn])

≤ (by Theorem 9 )

≤ T [Mn]d(Rng∗∞(S0,R0), Rng∞(S0,R0)),

and since T [Mn] < 1 we get

d(Rng∗∞(S0,R0), Rng∞(S0,R0)) = 0

from which we conclude that Rng∗∞(S0,R0) and Rng∞(S0,R0) are the same set.

We will now establish an interesting result, that under certain conditions if we have
two different inherent Markov set chains for two NHMSS, then the Hausdorff metric of
the two sets of all possible expected relative structures of the NHMSS is less than the
multiplication of a function of the common bound of the two uniform coefficients of
ergodicity of the two intervals and the Hausdorff metric of the two intervals. We will need
the following Lemma from ([9] p. 70), or [52].

Lemma 8. Let q(0), q̃(0) be stochastic vectors and Q(t) ∈ [M];Q̃(t) ∈
[
M̃
]

for t = 1, 2, ... for
T (M) ≤ T <1 and T

(
M̃
)
≤ T <1. Then∥∥q(0)Q(1, t)− q̃(0)Q̃(1, t)

∥∥ ≤ T t‖q(0)− q̃(0)‖1 +
(
T t−1 + ... + 1

)
D

where D = maxn
∥∥Q(n)− Q̃(n)

∥∥.

Theorem 11. Let two NHMSS with inherent Markov set chains with two different tight intervals
[M] and

[
M̃
]

which have a common bound, i.e., T (M) ≤ T <1 and T
(
M̃
)
≤ T <1. Let that

for the first NHMSS we have q(0) ∈ [S1] and p0(τ) ∈ [R1] for τ = 1, . . . , t where [S1], [R1] are
convex and compact. For the second NHMSS we assume that q̃(0) ∈ [S2] and p̃0(τ) ∈ [R2] for
τ = 1, . . . , t where [S2], [R2] are convex and compact. Let that the two NHMSS have common total
population of memberships {T(t)}∞

t=0which is known. Assume that T(t) ≥ T(t− 1) > 0 and{
∆T(t)
T(t)

}∞

t=0
converges to zero geometrically fast.

Denote by Rngt(S1,R1,M) the set of all possible expected relative population structures for
the first NHMSS and Rngt

(
S2,R2, M̃

)
for the second one, respectively. Then the Hausdorff metric

of the two limit sets of expected relative population structures is bounded by

d
(

Rng∞(S1,R1,M), Rng∞
(
S2,R2, M̃

))
≤ (1− T )−1d

(
M, M̃

)
.

Proof. From Lemma 4 we get that

Rngt(S1,R1,M) = {E[q(0, t)] : E[q(0, t)] ∈ T(0)
T(t)

∪q(0)∈[S1]
q(0)

[
Mt]+
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+
1

T(t)

t

∑
τ=1

∆T(τ) ∪p0(τ)∈[R1]
p0(τ)

[
Mt−τ

]
}, (26)

and an analogous description is valid for the set Rngt
(
S2,R2, M̃

)
. Since [S1], [R1], [S2], [R2]

are convex and compact and [M] and
[
M̃
]

are tight intervals from Theorem 1 we get that
the sets Rngt(S1,R1,M) and Rngt

(
S2,R2, M̃

)
are convex and compact, hence there is a

meaning to get their Hausdorff metric

d
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
=

max {δ
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
, (27)

δ
(

Rngt
(
S2,R2, M̃

)
, Rngt(S1,R1,M)

)
}.

Now, we have that

δ
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
=

max
q(0)∈[S1],p0(τ)∈[R1],

Q(t)∈[M] for all τ,t

min
q̃(0)∈[S2],p̃0(τ)∈[R2],

Q̃(t)∈[M̃] for all τ,t

‖E[q(0, t)]−E[q̃(0, t)]‖. (28)

There exists some q∗(0) ∈ [S1], p∗0(τ) for every τ ∈ [1, t], Q∗(t) ∈ [M] for every
t ∈ [0, t] which determines a E[q∗(0, t)]; also for any q̃∗(0) ∈ [S2], any p̃∗0(τ) for every
τ ∈ [1, t], and finally any Q̃∗(t) ∈

[
M̃
]

for every t ∈ [0, t] which determines a E[q̃∗(0, t)]
for which we have

δ
(

Rngt(S1,R1,M), Rngt
(
S2,R2, M̃

))
≤ ‖E[q∗(0, t)]−E[q̃∗(0, t)]‖

≤ T(0)
T(t)

∥∥q∗(0)Q∗(0, t)− q̃∗(0)Q̄∗(0, t)
∥∥ (29)

+
1

T(t)

t

∑
τ=1

∆T(τ)
∥∥∥p∗0(τ)Q

∗(τ, t)− p̃∗0(τ)Q̃
∗
(τ, t)

∥∥∥.

Using Lemma 8 we get that

T(0)
T(t)

∥∥∥q∗(0)Q∗(0, t)− q̃∗(0)Q̃∗(0, t)
∥∥∥ ≤

T(0)
T(t)
T t‖q∗(0)− q̃∗(0)‖+ T(0)

T(t)

∥∥∥T t−1 + ... + 1
∥∥∥max

t

∥∥∥Q∗(t)− Q̃∗(t)
∥∥∥

≤ T(0)
T(t)
T tδ(S1,S2) +

T(0)
T(t)

∥∥∥T t−1 + ... + 1
∥∥∥δ
(
M, M̃

)
. (30)

Similarly, we have

1
T(t)

t

∑
τ=1

∆T(τ)
∥∥∥p∗0(τ)Q

∗(τ, t)− p̃∗0(τ)Q̃
∗
(τ, t)

∥∥∥
≤ 1

T(t)

t

∑
τ=1

∆T(τ)δ(R1,R2)T t−τ+

1
T(t)

t

∑
τ=1

∆T(τ)
(
T t−1 + ... + 1

)
δ
(
M, M̃

)
. (31)

From (29), (30) and (31) as t→ ∞ we get that

δ
(

Rng∞(S1,R1,M), Rng∞
(
S2,R2, M̃

))
≤ (1− T )−1δ

(
M, M̃

)
, (32)
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since

lim
t→∞

1
T(t)

t

∑
τ=1

∆T(τ)
(
T t−1 + ... + 1

)
δ
(
M, M̃

)
= lim

t→∞

1
T(t)

δ
(
M, M̃

) t

∑
τ=1

∆T(τ)
t−1

∑
k=τ

T t−k ≤

lim
t→∞

1
T(t)

(1− T )−1δ
(
M, M̃

) t

∑
τ=1

∆T(τ) =
[

1− T(0)
T

]
(1− T )−1δ

(
M, M̃

)
,

also

lim
t→∞

T(0)
T(t)
T tδ(S1,S2) + lim

t→∞

T(0)
T(t)

∥∥∥T t−1 + ... + 1
∥∥∥1δ
(
M, M̃

)
=

T(0)
T

(1− T )−1δ
(
M, M̃

)
and finally

lim
t→∞

1
T(t)

t

∑
τ=1

∆T(τ)δ(R1,R2)T t−τ+1 = 0,

as we have seen in the proof of Theorem 8. Similarly, as we proved (32) we could prove
that

δ
(

Rng∞
(
S2,R2, M̃

)
, Rng∞(S1,R1,M)

)
≤ (1− T )−1δ

(
M̃,M

)
. (33)

From (32) and (33) we arrive at the conclusion of the Theorem.

7. An Illustrative Representative Example

In the present section we present an illustrative representative example to a Geriatric
and Stroke Patients system and through it we will present the methodology in terms of
computational geometry algorithms needed for an application to any population system.
The NHMS model used is a general Coxian phase type model, special forms of which
has been used by the school of research by McClean and her co-authors [38,53–59]. We
distinguish three states which are called hospital pathways. For the system of Geriatric
and Stroke Patients these stages are labeled as “Acute Care”, the “Rehabilitative” and the
“Long Stay”. From each stay we have movements outside the hospital due to discharge or
death. Also, geriatric patients may be thought of as progressing through stages of acute
care, rehabilitation and long-stay care, where most patients are eventually rehabilitated
and discharged. Geriatric medical services are an important asset in the care of elderly and
their quality is certainly an indication of the level of civilization in a society. At the same
time their funding could be easily reduced due to political pressure on savings in health
care expenditure.

It is apparent that the number of pathways could be increased as much as it is needed
to accommodate any important characteristics of any patients systems. However, there is
no need to consider in here a larger number of states due to the restriction of space. Also,
the internal movements in a population of patients could be of any number to accommodate
any important characteristics.

Consider a hospital which starts with T(0) = 400 patients and in a very short time
reaches its full capacity of 435 patients, i.e., T(1) = 420, T(2) = 430, T(3) = 435. As-
sume three hospital pathways and let that the initial relative population structure be any
stochastic vector which lies in the set

S0 = {[0 0 0], [1 1 1]}.

The physical meaning of selecting S0 as above is that the initial relative structure
could be any stochastic vector, i.e., S0 contains all possible initial structures. For example
q(0) =

[
0.2 0.3 0.5

]
means that 20% of the patients are in pathway 1, 30% are in

pathway 2, and 50% are in pathway 3. Now, there are some initial structures which
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might not be acceptable for the management of the hospital, such as for example let say
q(0) =

[
0 0 1.0

]
. In this case in the initial design of the hospital measures should be

taken that such a situation will be avoided in cooperation with other nearby hospitals.
Then S0 could be chosen to be

S0 = {[0 0 0], [0.1 1 0.9]}.

This is a convex set which excludes the initial relative structure q(0) =
[
0 0 1.0

]
.

However, it also needs to be tight . How to make it tight is explained below with the use of
the Algorithm 1. Naturally, we could exclude more than one relative structure from the
chosen initial relative structure but the procedure will be the same.

Most new patients enter the system in hospital pathway one, either by taking an
empty place or as a virtual replacement of a discharged patient. Hence, letR0 be the convex
set from which allocation probabilities are drawn and let it be the interval

R0 = {[0.5 0.2 0.1], [0.7 0.4 0.1]}.

The set of stochastic vectors of allocation probabilities that are in the above interval
is a convex set with vertices r1 = [0.7 0.2 0.1] and r2 = [0.5 0.4 0.1]. How to find the
vertices will be explained below. The physical meaning of the above interval is that any
stochastic vector that belongs in the interval R0 is a candidate to represent a registration
policy for the hospital. Naturally, we can restrict our interval R0 to an interval which will
contain the desired recruitment policies of the hospital management and find in this way
using the results of the present paper the consequences of these policies. The recruitment
vectors are the best control variables for human populations ([2]), as are the hospitals in
this case. Methods of control by recruitment could be found in [50,60–62]. However, the
interval R0 needs to be tight and how to make it tight is explained below with the use of
the Algorithm 1.

Now, by observing past data it is not difficult to determine an interval of matrices
[M] =

[
Q̌, Q̂

]
where all stochastic transition matrices of the movements of memberships

lie. Please note that the fact that the matrices Q̌, Q̂ are not necessarily stochastic matrices
makes this task easy. We need that [M] =

[
Q̌, Q̂

]
should be tight. In order to test that

interval [M] is tight we use Lemma 1 and Definition 5
We chose [M] to be

Q̌ =

0.5 0.2 0.1
0.2 0.6 0.2
0.3 0.2 0.3

 and Q̂ =

0.7 0.4 0.1
0.2 0.6 0.2
0.5 0.5 0.3

,

in order that [M] is tight every row should be tight hence using Lemma 1 we could see
that the interval is tight. Hence, the stochastic matrices that belong to [M] is a convex
polytope and we need to find its vertices. The same applies for S0 and R0 which are tight,
and we need to find the vertices of the convex polytope on which all stochastic vectors of
the interval lie.

Applying Lemma 1 we find that the set S0 is tight and applying Algorithm 1 we get
that S0 is convex with vertices υ1 = (1 0 0), υ2 = (0 1 0) and υ3 = (0 0 1). The physical
meaning of the set S0 in here is that at the start of our study at time 0 we allow that
the hospital could have any relative population structure. Applying Lemma 1 we find
that the set R0 is tight and applying Algorithm 1 we get that R0 is convex with vertices
r1 = (0.7 0.2 0.1), r2 = (0.5 0.4 0.1).
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Algorithm 1 ([9]) Finding the vertices of a tight interval [p, q].
For each i = 1, 2, 3 construct the vectors:

For i = 1 and the vector p

[p1 p2 p3] , [p1 p2 q3] , [p1 q2 p3] , [p1 q2 q3],

replace p1 with p̃1 such that the above vectors will become stochastic.
If any of the four resulting stochastic vectors

[ p̃1 p2 p3] , [ p̃1 p2 q3] , [ p̃1 q2 p3] , [ p̃1 q2 q3],

belongs in the interval [p, q] then it is a vertex.
Do the same for the vector q.
END.

To find the vertices of the convex set of stochastic matrices that belong to the tight
interval [M] we apply Algorithm 1 for each row vector in

[
Q̌, Q̂

]
and we find that the

vertices are

V1 =

0.7 0.2 0.1
0.2 0.6 0.2
0.5 0.2 0.3

 , V2 =

0.7 0.2 0.1
0.2 0.6 0.2
0.3 0.4 0.3

,

V3 =

0.5 0.4 0.1
0.2 0.6 0.2
0.5 0.2 0.3

 , V4 =

0.5 0.4 0.1
0.2 0.6 0.2
0.3 0.4 0.3

.

Now we compute all the row vectors υiV j for i = 1, 2, 3 and j = 1, 2, 3, 4 :(
0.7 0.2 0.1

)
,
(
0.7 0.2 0.1

)
,
(
0.5 0.4 0.1

)
,
(
0.5 0.4 0.1

)
,(

0.2 0.6 0.2
)
,
(
0.2 0.6 0.2

)
,
(
0.2 0.6 0.2

)
,
(
0.2 0.6 0.2

)
(
0.5 0.2 0.3

)
,
(
0.3 0.4 0.5

)
,
(
0.5 0.2 0.3

)
,
(
0.3 0.4 0.3

)
.

These 12 stochastic vectors belong to a convex set, hence using any of the computa-
tional geometry methods in [61] we find that the vertices of the convex hull of these vectors
are

ω1 =
(
0.7 0.2 0.1

)
, ω2 =

(
0.5 0.4 0.1

)
, ω1 =

(
0.2 0.6 0.2

)
,

ω4 =
(
0.5 0.2 0.3

)
, ω5 =

(
0.3 0.4 0.3

)
.

Hence

Rng1(S0,R0) =
T(0)
T(1)

conv{ω1, ω2, ω3, ω4, ω5}+

1
T(1)

[T(1)− T(0)]conv{r1, r2},

from which we get that Rng1(S0,R0) is the convex set with vertices given by the above
Minkowski sum thus(

0.7 0.2 0.1
)
,
(
0.51 0.39 0.1

)
,
(
0.22 0.58 0.2

)
,
(
0.51 0.2 0.29

)
,(

0.32 0.39 0.29
)
,
(
0.69 0.21 0.1

)
,
(
0.5 0.4 0.1

)
,(

0.21 0.59 0.2
)
,
(
0.5 0.21 0.29

)
,
(
0.31 0.4 0.29

)
,(

0.51 0.2 0.29
)
.

Taking into account the rounding errors done with all the multiplications and additions
we compute the vertices with one decimal point of accuracy and we get that Rng1(S0,R0)
is the convex hull of the vertices



Mathematics 2021, 9, 471 21 of 25

(
0.7 0.2 0.1

)
,
(
0.5 0.4 0.1

)
,
(
0.2 0.6 0.2

)
,
(
0.5 0.2 0.3

)
,

and
(
0.3 0.4 0.3

)
.

This result verifies Theorem 1. With now the vertices of the convex set Rng1(S0,R0)
we repeat the previous process to find Rng2(S0,R0).

Now, in this way at every point in time we have the convex compact space Rngt(S0,R0)
of all possible expected population structures. If any of these are problematic in some way
then apparently the hospital has a lead time to adapt new policies and an instrument to
visualize their consequences.

To verify that a tight interval of transition probability matrices is uniformly scram-
bling we need a sufficient condition as a criterion. This is given in the following easily
proved Lemma.

Lemma 9. Let [M] =
[
Q̌, Q̂

]
then [M] is uniformly scrambling if the following holds T

(
Q̂− Q̌

)
< 1.

Let [M] be the interval of the application we are working so far, then it is easy to check
that T

(
Q̂− Q̌

)
< 1 and hence any stochastic matrix selected from [M] will be scrambling.

We select as Q(1), Q(2), Q(3), Q(4) the four vertices of the convex set of stochastic matrices
in [M] and as Q(6), Q(7) any convex combination of them. We also select as q(0) =(
0.5 0.25 0.25

)
and as vectors of allocation probabilities we select p0(1) =

(
0.6 0.3 0.1

)
and p0(2) =

(
0.5 0.4 0.1

)
which both belong to R0. Then we compute

E[q(0, 1)] =
(
0.5 0.3 0.2

)
E[q(0, 2)] =

(
0.48 0.36 0.16

)
E[q(0, 3)] =

(
0.4 0.43 0.17

)
E[q(0, 4)] =

(
0.34 0.48 0.18

)
E[q(0, 5)] =

(
0.35 0.46 0.19

)
E[q(∞)] =

(
0.4 0.4 0.2

)
.

Hence the expected relative population structure converges in six steps, that is
geometrically fast which verifies Theorem 6. Also, it is easy to see that

E[q(∞)]V1 =
(
0.4 0.4 0.2

)0.7 0.2 0.1
0.2 0.6 0.2
0.5 0.2 0.3

 =
(
0.4 0.4 0.2

)
,

and the same happens with all the vertices of [M] which was proved in Theorem 10.
The hospital now has beforehand knowledge with a good lead time where its policies

and tendencies of the hospital system will converge in terms of relative expected population
structure. Hence it is able to decide if this is a desirable situation; to find out if it can cope
with the resources available in doctors, nurses and medical material; if its medical facilities
are adequate; it can also have an estimate of the cost of the system see [62,63].

Consider now that the previous NHMS is system a and let b be a second NHMS
with initial population structure q(0) =

(
0.6 0.2 0.2

)
; allocation probabilities p0(1) =(

0.5 0.4 0.1
)

and p0(2) =
(
0.7 0.2 0.1

)
and the remaining parameters the same. Then

the asymptotically relative population structure is again E[q(∞)] =
(
0.4 0.4 0.2

)
which

verifies Theorem 8. The physical meaning of the previous result is that when the hospital is at
full capacity for some time, then with different initial structures and allocation probabilities
the expected relative population structure remains unchanged under the condition that the
maximum ergodicity coefficient of the transition probability matrices is less than one.

To be able to use for the benefit of the hospital the last theorem, that is Theorem 11,
we need a way to find a numerical value that will replace d

(
M, M̃

)
. The following Lemma,

which is not difficult to be proved, provides a solution to the problem.
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Lemma 10. LetM, M̃ be two tight intervals of transition probability matrices for the memberships.
Let V1, V2, . . . , V m be the vertices of the convex setM, and U1, U2, . . . , Un be the vertices of the
convex set M̃. Then

δ
(
M, M̃

)
= ‖a∗1V1 + a∗2V2 + ... + a∗mV m − [b∗1U1 + b∗2U2 + ... + b∗nUn]‖,

where a∗1 , a∗2 , . . . , a∗m is the solution of the optimization problem

max[a1V1 + a2V2 + ... + amV m] with

a1 + a2 + ... + am = 1, a1 ≥ 0, a2 ≥ 0, . . . , am ≥ 0.
and b∗1 ,b∗2 ,..., b∗n is the solution of the optimization problem

min[b1U1 + b2U2 + ... + bnUn] with

b1 + b2 + ... + bn = 1, b1 ≥ 0, b2 ≥ 0, . . . , bm ≥ 0.

In what follows we summarize in Algorithm 2 for convenience of the interest readers the
previous steps which are necessary for using the present results in any population system.

Algorithm 2
Use Lemma 1 to check that [S0] is tight.
Apply Algorithm 1 to find the vertices of the convex set [S0] :

υ1, υ2, . . . , υs.

Use Lemma 1 to check that [R0] is tight.
Apply Algorithm 1 to find the vertices of the convex set [R0] :

r1, r2, . . . , rπ .

Use Lemma 1 to check that each row in
[
Q̌, Q̂

]
is tight. If yes then [M] is tight.

Apply Algorithm 1 for each row vector in
[
Q̌, Q̂

]
to find the vertices of [M] :

V1, V2, . . . , V m.

Compute all the raw vectors

υiV j for all i = 1, 2, . . . , s; j = 1, 2, . . . , m.

Use any of the computational geometry methods in [64].
to find the vertices of the convex hull of the vectors υiV j for all i = 1, 2, . . . , s; j = 1, 2, . . . , m.

Let that
ω1, ω2, . . . , ων,

the vertices found. Compute using properties of the Minkowski sum of vectors

Rng1(S0,R0) =
T(0)
T(1)

conv{ω1, ω2, ω3, ω4, ω5}+

1
T(1)

[T(1)− T(0)]conv{r1, r2}.

Repeat the process until Rng∞(S0,R0) geometrically fast, i.e., in 6 to 8 steps.
Use Lemma 9 to verify that [M] =

[
Q̌, Q̂

]
is uniformly scrambling, i.e., T

(
Q̂− Q̌

)
< 1.

Use Lemma 10 to find bounds for

δ
(
M, M̃

)
< µ and δ

(
M̃,M

)
< µ̃.

Set
d
(
M, M̃

)
< max(µ, µ̃).
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8. Conclusions

The concept of the non-homogeneous Markov set system was introduced which is
a NHMS with its parameters in an interval. It was established under which conditions
in a NHMSS the set of all possible expected relative population structures at a certain
point in time is a convex set and a convex polygon. Then it was founded that if in an
NHMSS the sets of initial structures are different but compact and convex; also, the sets
of allocation probabilities of the memberships are different but convex and compact; the
inherent non-homogeneous Markov set chain is common; then the Hausdorff metric of
the two different sets of all possible expected relative structures asymptotically goes to
zero geometrically fast, i.e., asymptotically they coincide geometrically fast. Then we
established that in an NHMSS if the total population of memberships converge in a finite
number geometrically fast, and the sets of initial structures and allocation probabilities
of memberships are compact and convex, then the set of all possible expected relative
population structure converge to a limit set geometrically fast. Then it was proved that
these results generalize certain well-known results for NHMS’s. Then it was proved that
under some mild conditions the limit set of the expected relative population structures of
an NHMSS remains invariant if any selected transition probability matrix of the inherent
non-homogeneous Markov chain from the respective interval is multiplied by it from the
right. It was also proved that the limit set is the only set with this property if the interval
of selection of transition probabilities of the inherent non-homogeneous Markov chain
is product scrambling. Finally it was assumed that two different NHMSS in the sense
that they have different sets of selecting initial distributions, different sets of selecting
allocation probabilities and different intervals of selecting the transition probabilities of
the inherent non-homogeneous Markov chains, while they have in common that their
respective intervals are uniformly scrambling with a common bound and they have the
same total population of memberships. Then it was proved that the Hausdorff metric of
the limit sets of the expected relative population structures of the two NHMSS is bounded
by the multiplication of a function of the Hausdorff metric of the two tight intervals of
selection of the stochastic matrices of the inherent non-homogeneous Markov set chains
and the bound of their uniform coefficients of ergodicity.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vassiliou, P.-C.G. Asymptotic behavior of Markov systems. J. Appl. Probab. 1982, 19, 851–857. [CrossRef]
2. Bartolomew, D.J. Stochastic Models for Social Processes; Wiley: New York, NY, USA, 1982.
3. Young, A.; Vassiliou, P.-C.G. A non-linear model on the promotion of staff. J. R. Stat. Soc. A 1974, 138, 584–595. [CrossRef]
4. Vassiliou, P.-C.G. A markov model for wastage in manpower systems. Oper. Res. Quart. 1976, 27, 57–70. [CrossRef]
5. Vassiliou, P.-C.G. A high order non-linear Markovian model for prediction in manpower systems. J. R. Stat. Soc. A 1978, 141,

86–94. [CrossRef]
6. Neumaier, A. Interval Methods for Systems of Equations; Cambridge University Press: Cambridge, UK, 1990.
7. Alfred, G.; Herzberger, J. Introduction to Interval Computations; Academic Press: New York, NY, USA, 1983.
8. Ben-Haim, Y.; Elishakoff, I. Convex models of uncertainty in Applied Mathematics; Elsevier: New York, NY, USA, 1990.
9. Hartfiel, D.J. Markov Set-Chains; Springer: Heidelberg, Germany, 1998.
10. Georgiou, A.C.; Vassiliou, P.-C.G. Periodicity of asymptotically attainable structures in non-homogeneous Markov systems. Linear

Algebra Its Appl. 1992, 176, 137–174. [CrossRef]
11. Vassiliou, P.-C.G. On the limiting behaviour of a non-homogeneous Markov chain model in manpower systems. Biometrika 1981,

68, 557–561.
12. Vassiliou, P.-C.G. The evolution of the theory of non-homogeneous Markov systems. Appl. Stoch. Models Data Anal. 1997, 13,

159–176. [CrossRef]
13. Ugwuogo, F.I.; Mc Clean, S.I. Modelling heterogeneity in manpower systems. A review. Appl. Stoch. Models Bus. Ind. 2000, 2,

99–110. [CrossRef]

http://doi.org/10.2307/3213839
http://dx.doi.org/10.2307/2344714
http://dx.doi.org/10.1057/jors.1976.6
http://dx.doi.org/10.2307/2344779
http://dx.doi.org/10.1016/0024-3795(92)90216-W
http://dx.doi.org/10.1002/(SICI)1099-0747(199709/12)13:3/4<159::AID-ASM309>3.0.CO;2-Q
http://dx.doi.org/10.1002/1526-4025(200004/06)16:2<99::AID-ASMB385>3.0.CO;2-3


Mathematics 2021, 9, 471 24 of 25

14. Vassiliou, P.-C.G. Markov systems in a General State Space. Commun. Stat.-Theory Methods 2014, 43, 1322–1339. [CrossRef]
15. Vassiliou, P.-C.G. Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in

General State Space. Mathematics 2020, 8, 1021. [CrossRef]
16. Vassiliou, P.-C.G. Exotic properties of non-homogeneous Markov and semi-Markov systems. Commun. Stat. Theory Methods 2013,

42, 2971–2990. [CrossRef]
17. Vassiliou, P.-C.G. Laws of Large numbers for non-homogeneous Markov systems. Methodol. Comput. Appl. Prob. 2020, 1631–1658.

[CrossRef]
18. Mathew, E.; Foucher, Y.; Dellamonika, P.; Daures, J.-P. Parametric and Non-Homogeneous Semi-Markov Process for HIV Control;

Working Paper; Archer Hospital: Nice, France, 2006.
19. Foucher, Y.; Mathew, E.; Saint Pierre, P.; Durant, J.-F.; Daures, J.-P. A semi-Markov model based on generalized Weibull distribution

with an illustration for HIV disease. Biom. J. 2005, 47, 825–833. [CrossRef]
20. Dessie, Z.G. Modeling of HIV/AIDS dynamic evolution using non-homogeneous semi-Markov processes. Springerplus 2014, 3,

537. [CrossRef] [PubMed]
21. Saint Pierre, P. Modelles Multi-Etas de Type Markovien et Application a la Astme. Ph.D. Thesis, University of Monpellier I,

Montpellier, France, 2005.
22. Barbu, V.; Boussement, M.; Limnios, N. Discrete-time semi-Markov model for reliability and survival analysis. Commun. Stat.

Theory Methods 2004, 33, 2833–2886. [CrossRef]
23. Perez-Ocon, R.; Castro, J.E.R. A semi-Markov model in biomedical studies. Commun. Stat. Theory Methods 2004, 33, 437–455.
24. Ocana-Riola, R. Non-homogeneous Markov process for biomedical data analysis. Biom. J. 2005, 47, 369–376. [CrossRef]
25. De Freyter, T. Modelling heterogenity in Manpower Planning. Dividing the personel system in more homogeneous subgroups.

Appl. Stoch. Model Bus. Ind. 2006, 22, 321–334. [CrossRef]
26. Niakantan, K.; Raghavendra, B.G. Control aspects in proportionality Markov manpower systems. Appl. Stoch. Models Data Anal.

2005, 7, 27–41.
27. Yadavalli, V.S.S.; Natarajan, R.; Udayabhaskaran, S. Optimal training policy for promotion-stochastic models of manpower

systems. Electron. Publ. 2002, 13, 13–23. [CrossRef]
28. De Freyter, T.; Guerry, M. Markov manpower models: A review. In Handbook of Optimization Theory: Decision Analysis and

Applications; Varela, J., Acuidja, S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 67–88.
29. Guerry, M.A. Some results on the Embeddable problem for discrete time Markov models. Commun. Stat. Theory Methods 2014, 43,

1575–1584. [CrossRef]
30. Esquivel, M.L.; Fernandez, J.M.; Guerreiro, G.R. On the evaluation and asymptotic analysis of open Markov populations:

Application to consumption credit. Stoch. Model. 2014, 30, 365–389. [CrossRef]
31. Esquivel, M.L.; Patricio, P.; Guerreiro, G.R. From ODE to open Markov chains, via SDE: An application to models of infections in

individuals and populations. Comput. Math. 2020, 8, 180–197.
32. Papadopoulou, A.A. Some results on modeling biological sequences and web navigation with a semi-Markov chain. Commun.

Stat. Theory Methods 2013, 41, 2853–2871. [CrossRef]
33. Patoucheas, P.D.; Stamou, G. Non-homogeneous Markovian models in ecological modelling: Astudy of the zoobenthos dynamics

in Thermaikos Gulf, Greece. Ecol. Model. 1993, 66, 197–215. [CrossRef]
34. Crooks, G.E. Path ensemble averages in system driven far from equilibrium. Phys. Rev. E 2000, 61, 2361–2366. [CrossRef]
35. Faddy, M.J.; McClean, S.J. Markov chain for for geriatricpatient care. Methods Inf. Med. 2005, 44, 369–373. [CrossRef]
36. Gurnescu, F.; McClean, S.J.; Millard, P.H. A queueing model for bed-occupancy management and planning of hospitals. J. Oper.

Res. Soc. 2002, 5, 307–312. [CrossRef]
37. Gurnescu, F.; McClean, S.J.; Millard, P.H. Using a queueing model to help plan bed allocation in a department of geriatric

medicine. Health Care Manag. Sci. 2004, 7, 285–289.
38. Marshall, A.H.; McClean, S.I. Using Coxian phase type distributions to identify patient characteristics for duration of stay in

hospital. Health Care Manag. Sci. 2004, 7, 285–289. [CrossRef] [PubMed]
39. McClean, S.I.; Millard, P. Where to treat the older patient? Can Markov models help us better understand the relationship

between hospital and community care. J. Oper. Res. Soc. 2007, 58, 255–261. [CrossRef]
40. Hartfiel, D.J.; Seneta, E. On the theory of Markov set chains. Adv. Appl. Probab. 1994, 26, 947–964. [CrossRef]
41. Hartfiel, D.J. Sequential limits in Markov set chains. J. Appl. Probab. 1991, 28, 910–913. [CrossRef]
42. Hartfiel, D.J. Homogeneous Markov chains with bounded transition matrix. Stoch. Proc. Appl. 1994, 50, 275–279. [CrossRef]
43. Hartfiel, D.J. Intermediate Markov systems. Appl. Math. Comput. 1995, 72, 51–59.
44. Eggleston, H.G. Convexity; Cambridge University Press: Cambridge, UK, 2008.
45. Hartfiel, D.J.; Rothblum, U. Convergence of inhomogeneous products of matrices and coefficients of ergodicity. Linear Algebra Its

Appl. 1998, 277, 1–9. [CrossRef]
46. Rhodius, A. On explicit forms for ergodicity coefficients. Linear Algebra Its Appl. 1993, 194, 71–83. [CrossRef]
47. Seneta, E. Sensitivity of finite Markov chains under perturbation. Stat. Probab. Lett. 1993, 17, 163–168. [CrossRef]
48. Berge, C. Topological Spaces; Oliver Boyd: Edinburgh, UK, 1963.
49. Vassiliou, P.-C.G.; Tsaklidis, G. The rate of convergence of the vector of variances and covariances in non-homogeneous Markov

systems. J. Appl. Probab. 1989, 26, 776–783. [CrossRef]

http://dx.doi.org/10.1080/03610926.2012.755200
http://dx.doi.org/10.3390/math8061021
http://dx.doi.org/10.1080/03610926.2012.698782
http://dx.doi.org/10.1007/s11009-017-9612-1
http://dx.doi.org/10.1002/bimj.200410170
http://dx.doi.org/10.1186/2193-1801-3-537
http://www.ncbi.nlm.nih.gov/pubmed/25279328
http://dx.doi.org/10.1081/STA-200037923
http://dx.doi.org/10.1002/bimj.200310114
http://dx.doi.org/10.1002/asmb.619
http://dx.doi.org/10.7166/13-1-315
http://dx.doi.org/10.1080/03610926.2012.742543
http://dx.doi.org/10.1080/15326349.2014.912947
http://dx.doi.org/10.1080/03610926.2012.736003
http://dx.doi.org/10.1016/0304-3800(93)90113-7
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1055/s-0038-1633979
http://dx.doi.org/10.1057/palgrave/jors/2601244
http://dx.doi.org/10.1007/s10729-004-7537-z
http://www.ncbi.nlm.nih.gov/pubmed/15717813
http://dx.doi.org/10.1057/palgrave.jors.2602173
http://dx.doi.org/10.2307/1427899
http://dx.doi.org/10.2307/3214695
http://dx.doi.org/10.1016/0304-4149(94)90124-4
http://dx.doi.org/10.1016/S0024-3795(97)10097-0
http://dx.doi.org/10.1016/0024-3795(93)90113-3
http://dx.doi.org/10.1016/0167-7152(93)90011-7
http://dx.doi.org/10.2307/3214382


Mathematics 2021, 9, 471 25 of 25

50. Vassiliou, P.-C.G.; Georgiou, A.C. Asymptotically attainable structures in nonhomogeneous Markov systems. Oper. Res. 1990, 38,
537–545 [CrossRef]

51. Vassiliou, P.-C.G. On the periodicity of non-homogeneous Markov chains and systems. Linear Algebra Its Appl. 2015, 471, 654–684.
[CrossRef]

52. Hartfiel, D.J. Results on limiting sets of Markov set chains. Linear Algebra Its Appl. 1993, 105, 155–163. [CrossRef]
53. McClean, S.I.; Millard, P. A three compartment model of the patient flows in a geriatric department: A decision support approach.

Health Care Manag. Sci. 1998, 7, 285–289.
54. McClean, S.I.; McAlea, B.; Millard, P. Using a Markov reward model to estimate spend-down costs for geriatric department. J.

Oper. Res. Soc. 1998, 49, 1021–1025. [CrossRef]
55. Taylor, G.J.; McClean, S.I.; Millard, P. Stochastic models of geriatric patient bed occupancy behavior. J. R. Stat. Soc. A 2000, 163,

39–48. [CrossRef]
56. Marshall, A.H.; McClean, S.I.; Shapcott, C.M.; Millard, P. Modelling patient duration of stay to facilitate resource management of

geriatric hospitals. Health Care Manag. Sci. 2002, 5, 313–319. [CrossRef]
57. Marshall, A.H.; McClean, S.I. Conditional phase type distributionsfor modelling patient length of stay in hospital. Int. Trans.

Oper. Res. 2003, 10, 565–576. [CrossRef]
58. McClean, S.I.; Gillespie, J.; Garg, L.; Barton, M.; Scotney, B.; Fullerton, K. Using phase-type models to cost stroke patient care

across health, social and community services. Eur. J. Oper. Res. 2014, 236, 190–199. [CrossRef]
59. McClean, S.I.; Garg, L.; Fullerton, K. Costing mixed Coxian phase type systems with Poisson arrivals. Commun. Stat. Methods

2014, 43, 1437–1452. [CrossRef]
60. Vassiliou, P.-C.G.; Tsantas, N. Maintainability of structures in non-homogeneous Markov systems under cyclic behavior and

input control. SIAM J. Appl. Math. 1984, 44, 1014–1022. [CrossRef]
61. Vassiliou, P.-C.G.; Tsantas, N. Stochastic control in non-homogeneous Markov systems. Int. J. Comput. 1984, 16, 139–155.
62. Georgiou, A.C.; Vassiliou, P.-C.G. Cost models in non-homogeneous Markov systems. Eur. J. Oper. Res. 1997, 100, 81–96.

[CrossRef]
63. De Feyter, T.; Guerry, M.-A.; Komarudin. Optimizing cost-effectiveness in stochastic Markov manpwer planning system under

control by recruitment. Ann. Oper. Res. 2017, 253, 117–131. [CrossRef]
64. Preparata, F.P.; Shamos, M.I. Computational Geometry. An Introduction; Springer: New York, NY, USA, 1985

http://dx.doi.org/10.1287/opre.38.3.537
http://dx.doi.org/10.1016/j.laa.2015.01.017
http://dx.doi.org/10.1016/0024-3795(93)90261-L
http://dx.doi.org/10.1057/palgrave.jors.2600619
http://dx.doi.org/10.1111/1467-985X.00155
http://dx.doi.org/10.1023/A:1020394525938
http://dx.doi.org/10.1111/1475-3995.00428
http://dx.doi.org/10.1016/j.ejor.2014.01.063
http://dx.doi.org/10.1080/03610926.2013.788713
http://dx.doi.org/10.1137/0144071
http://dx.doi.org/10.1016/S0377-2217(97)82785-3
http://dx.doi.org/10.1007/s10479-016-2311-4

	Introduction
	The Non-Homogeneous Markov System
	Non-Homogeneous Markov Set System
	The Set of the Expected Relative Population Structures of a NHMSS
	Asymptotic Behavior of NHMSS
	Properties of the Limit Set
	An Illustrative Representative Example
	Conclusions
	References

