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Abstract: This paper studies a semilinear parabolic equation in 1D along with nonlocal boundary
conditions. The value at each boundary point is associated with the value at an interior point of the
domain, which is known as a four-point boundary condition. First, the solvability of a steady-state
problem is addressed and a constructive algorithm for finding a solution is proposed. Combining
this schema with the semi-discretization in time, a constructive algorithm for approximation of a
solution to a transient problem is developed. The well-posedness of the problem is shown using the
semigroup theory in C-spaces. Numerical experiments support the theoretical algorithms.
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1. Introduction

Modeling of physical systems in transport theory is usually based on mass balance.
Mathematical description frequently leads to an appropriate partial differential equation
(PDE). If this process takes place in a bounded domain, then the governing PDE must be
accompanied by suitable boundary conditions (BCs) describing the behavior of the un-
known quantity outside the area of consideration. The BCs are of fundamental importance
since they determine the explicit form of a solution (David Hilbert outlined 23 famous
mathematical problems in 1900. One of them is “The general problem of boundary values”
in relation to PDEs in bounded domains. BCs connect solutions with the exterior domain
with some expectations/restrictions.). The classical heat conduction theory is based on the
Fourier law and it leads to the parabolic heat conduction equation

ρcp∂tu−∇ · (k∇u) = F,

where cp is the specific heat capacity, ρ stands for the mass density of the material, k is
the thermal conductivity and u denotes the temperature. The initial state is described by
the initial datum u(x, t) = u0(x). The heat equation is usually accompanied by one of the
following three classical BCs

Dirichlet when temperature is prescribed on the surrounding surface;

Neumann when the normal component of the flux is given on the boundary;

Robin/Newton when a linear combination of the temperature and the normal component
of the flux is known at the boundary.

Besides these standard types of BCs also the following two evolution BCs are known,
cf. [1]

Carslaw ρcpb∂tu + k∇u · ν = g;

Jaeger ρcpb∂tu + k∇u · ν + hu = g.
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All these BCs mentioned above are local, i.e., the relation between the temperature
and the flux is taken at the same time and place. Researchers have already studied (under
appropriate assumptions on the data functions) the well-posedness of problems involving
those local boundary conditions.

On the other hand, there exist models with so-called nonlocal BCs. A. A. Samarskii
and A.V. Bitsadze [2] are originators of problems with such BCs. Investigation of problems
with various types of nonlocal boundary conditions is a hot topic presently, i.a. because
multi-point boundary-value problems (BVPs) for ODEs have many applications in model-
ing and analyzing problems arising from electric power networks, electric railway systems,
telecommunication lines and also in chemistry and analyzing kinetic reaction problems.
They have been intensively studied e.g., in [3–9]. However, there are only a few papers de-
voted to time-dependent problems along with multi-point BCs, e.g., [10–12]. The article [11]
deals with 3-point BCs subject to nonlinear parabolic Cauchy problem in (0, ∞)× (0, 1)

∂tu(t, x)− ∂x(g(∂xu(t, x))) = f (t, x)
u(t, 0) = 0
u(t, η) = βu(t, 1)
u(0, x) = u0(x),

where η ∈ (0, 1) and β > 1 are given. The convergence of the solution towards the
equilibrium solution was addressed in [12].

Alikhanov [13] studied a linear parabolic problem along with a 3-point BC. He showed
the uniqueness and the continuous dependence of a solution on the initial data. A numerical
finite-difference scheme was suggested and its convergence—assuming the existence of a
very smooth exact solution u ∈ C4,3(Ω× [0, T])—was shown. The existence of a solution
was not addressed. Using the method of energy inequalities, a priori estimates for the
corresponding differential and finite-difference problems were obtained in a weighted L2
norms. This proof technique has been generalized to multi-point BCs for linear parabolic
problems in [14]. However, also here the assumption of existence of a very regular solution
is needed to prove convergence of suggested approximation schemes. The existence of
a solution was again not addressed. A compact difference scheme for the multi-point
boundary-value problem of the heat equation has also been presented in [15].

The problem in this paper describes a transient semilinear heat equation in (a, b) with
two controllers located at the interior points c, d, where

a < c < d < b.

The physical application is controlled cooling of a rod. The role of both controllers is
to adjust the boundary data to the measured temperature, i.e.,

u(a) = u(c), u(b) = u(d). (1)

We assume perfect contact conditions at controller points c and d, i.e.,

[[u(x)]]x=c = 0 = [[u(x)]]x=d,
[[

u′(x)
]]

x=c = 0 =
[[

u′(x)
]]

x=d. (2)

Here the [[w(x)]]x=y denotes the usual jump operator of the quantity w(x) at the
position x = y.

The main difficulty by stability analysis is the fact that one cannot prove that the
governing (steady-state) differential operator is elliptic – due to the nonlocal BCs. Unfortu-
nately, most solution methods rely on the ellipticity of the operator. That is why we first
developed a new solution method for the steady-state differential problem. This is based
on the principle of linear superposition. Secondly, we showed that the operator remains
sectorial in an appropriate function space.

After that, we designed a numerical scheme for approximation of the solution to a
semilinear parabolic equation accompanied with the four-point BCs (1), which is based
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on semi-discretization in time method. The convergence of approximations towards the
exact solution is shown under much weaker regularity assumptions than it was done
in [13,14]. Therefore, we conclude that the semilinear parabolic equation accompanied with
the four-point BCs (1) is well-posed. Finally, we carried out some numerical experiments
to support our results.

2. Linear Steady-State Case

In the study of the existence of solutions to ODEs major advancements have been
made thanks to the so-called “Bernstein-Nagumo” conditions [16,17]. In this section, we
derive a simple construction method for the solution of linear second order ODE-problems
with nonlocal BCs. We will study the resolvent operator associated with this problem. This
will be later applied to parabolic settings.

Let us consider the following nonlocal problem in (a, b) for r ∈ C

ru(x)− u′′(x) = f ;
u(a) = u(c) = α;
u(d) = u(b) = β,

(3)

with α and β unknown. We look for a classic solution of (3). Under a classic solution we
understand C2([a, b]) function, for which the interface condition (2) is naturally valid. The
concept of a weak solution in not appropriate in this situation, because a weak solution
may have jumps of the first derivative at the interface points x = c, d. We show a very
simple constructive way for solving this problem, which is based on the principle of linear
superposition.

Let us consider the following seven auxiliary problems

rz1(x)− z′′1 (x) = f in (a, c);
z1(a) = z1(c) = 0,

(4)

rw1(x)− w′′1 (x) = 0 in (a, c);
w1(a) = w1(c) = 1,

(5)

rz2(x)− z′′2 (x) = f in (c, d);
z2(c) = z2(d) = 0,

(6)

rw2(x)− w′′2 (x) = 0 in (c, d);
w2(c) = 0;
w2(d) = 1,

(7)

rv2(x)− v′′2 (x) = 0 in (c, d);
v2(c) = 1;
v2(d) = 0,

(8)

rz3(x)− z′′3 (x) = f in (d, b);
z3(d) = z3(b) = 0,

(9)

rw3(x)− w′′3 (x) = 0 in (d, b);
w3(d) = w3(b) = 1.

(10)

Further we set u|(a,c) = u1, u|(c,d) = u2, u|(d,b) = u3, where

u1 = z1 + αw1;
u2 = z2 + αv2 + βw2;
u3 = z3 + βw3.

(11)

Then we have
[[u(x)]]x=c = 0 = [[u(x)]]x=d.
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There is a perfect contact at controller points, so we have to force[[
u′(x)

]]
x=c = 0 =

[[
u′(x)

]]
x=d,

which implies

M
(

α
β

)
:=
(

w′1(c)− v′2(c) −w′2(c)
−v′2(d) w′3(d)− w′2(d)

)(
α
β

)
=

(
z′2(c)− z′1(c)
z′2(d)− z′3(d)

)
. (12)

The values of α, β in (3) are the solution of (12).
In this way we can see that the solvability of the nonlocal problem (3) is linked to

the solvability of the classical Dirichlet BVPs (4)–(8) and the solvability of the algebraic
system (12). We have to check if the matrix M is invertible. To do this, we derive the for-
mulas for solutions to particular problems, first. The general solution to rp(x)− p′′(x) = 0
has the following form

p(x) = C1e
√

rx + C2e−
√

rx

with the constants C1, C2 depending on the boundary conditions under consideration. One
can find the exact forms of the particular solutions, namely

w1(x) = −

(
e−
√

ra − e−
√

rc
)

e
√

rx

−e−
√

rae
√

rc + e−
√

rce
√

ra
+

(
e
√

ra − e
√

rc
)

e−
√

rx

−e−
√

rae
√

rc + e−
√

rce
√

ra

=
−e
√

r(x−a) + e
√

r(x−c) + e
√

r(a−x) − e
√

r(c−x)

e
√

r(a−c) − e
√

r(c−a)

=
sinh

(√
r(a− x)

)
+ sinh

(√
r(x− c)

)
sinh

(√
r(a− c)

)
=

2 sinh
(√

r
2 (a− c)

)
cosh

(√
r

2 (a + c− 2x)
)

2 sinh
(√

r
2 (a− c)

)
cosh

(√
r

2 (a− c)
)

=
cosh

(√
r

2 (a + c− 2x)
)

cosh
(√

r
2 (a− c)

) ,

(13)

v2(x) =
e−
√

rde
√

rx

e−
√

rde
√

rc − e−
√

rce
√

rd
− e

√
rde−

√
rx

e−
√

rde
√

rc − e−
√

rce
√

rd

=
e
√

r(x−d) − e
√

r(d−x)

e
√

r(c−d) − e
√

r(d−c)

=
sinh

(√
r(x− d)

)
sinh

(√
r(c− d)

) ,

(14)

w2(x) = − e−
√

rce
√

rx

e−
√

rde
√

rc − e−
√

rce
√

rd
+

e
√

rce−
√

rx

e−
√

rde
√

rc − e−
√

rce
√

rd

=
e
√

r(c−x) − e
√

r(x−c)

e
√

r(c−d) − e
√

r(d−c)

=
sinh

(√
r(c− x)

)
sinh

(√
r(c− d)

) ,

(15)
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w3(x) = −

(
−e−

√
rb + e−

√
rd
)

e
√

rx

e−
√

rbe
√

rd − e−
√

rde
√

rb
+

(
−e
√

rb + e
√

rd
)

e−
√

rx

e−
√

rbe
√

rd − e−
√

rde
√

rb

=
−e
√

r(x−d) + e
√

r(x−b) + e
√

r(d−x) − e
√

r(b−x)

e
√

r(d−b) − e
√

r(b−d)

=
sinh

(√
r(d− x)

)
+ sinh

(√
r(x− b)

)
sinh

(√
r(d− b)

)
=

2 sinh
(√

r
2 (d− b)

)
cosh

(√
r

2 (d + b− 2x)
)

2 sinh
(√

r
2 (d− b)

)
cosh

(√
r

2 (d− b)
)

=
cosh

(√
r

2 (d + b− 2x)
)

cosh
(√

r
2 (d− b)

) .

(16)

Involving these relations into (12) we get

M =


−2

√
r
(

e−
√

r(a−d)+e
√

r(−d+c)−e−
√

r(−d+c)−e
√

r(a−d)
)

(e−
√

r(a−c)−e
√

r(a−c))(e
√

r(−d+c)−e−
√

r(−d+c))
2

√
r

e
√

r(−d+c)−e−
√

r(−d+c)

−2
√

r
e
√

r(−d+c)−e−
√

r(−d+c) 2
√

r
(
−e−

√
r(b−c)+e

√
r(−d+c)−e−

√
r(−d+c)+e

√
r(b−c)

)
(−e−

√
r(b−d)+e

√
r(b−d))(e

√
r(−d+c)−e−

√
r(−d+c))

.

The matrix M is regular if its determinant is different from 0. To check this, we rewrite
det M into a more suitable form for our purposes. To obtain this, we use basic functional
relations between trigonometric and hyperbolic functions, namely

sinh z = ez−e−z

2 , ∀z ∈ C,
cosh z = ez+e−z

2 , ∀z ∈ C.
(17)

We may write

det M = −4r
(

e−
√

r(a−d) + e
√

r(−d+c) − e−
√

r(−d+c) − e
√

r(a−d)
)

×

(
−e−

√
r(b−c) + e

√
r(−d+c) − e−

√
r(−d+c) + e

√
r(b−c)

)
(

e−
√

r(a−c) − e
√

r(a−c)
)(

e
√

r(−d+c) − e−
√

r(−d+c)
)2(
−e−

√
r(b−d) + e

√
r(b−d)

)
+4

r(
e
√

r(−d+c) − e−
√

r(−d+c)
)2

=
4r
(

e
1
2
√

r(a−b+c−d) − e−
1
2
√

r(a−b+c−d)
)

(
e
√

r(−c+d) − e−
√

r(−c+d)
)(

e
1
2
√

r(a−c) + e−
1
2
√

r(a−c)
)(

e
√

r(b−d) + 1
2 e−

√
r(b−d)

)
= r

sinh
(

1
2
√

r(a− b + c− d)
)

sinh
(√

r(−c + d)
)

cosh
(

1
2
√

r(a− c)
)

cosh
(

1
2
√

r(b− d)
) .

Using the relations (17) and

||a| − |b|| ≤ |a− b|

for z, a, b ∈ C, we can easily derive the following estimates

e|<z| 1− e−2|<z|

2
≤ |sinh z| ≤ e|<z|, e|<z| 1− e−2|<z|

2
≤ |cosh z| ≤ e|<z|. (18)



Mathematics 2021, 9, 468 6 of 15

Therefore

|det M| =

∣∣∣∣∣∣r
sinh

(
1
2
√

r(a− b + c− d)
)

sinh
(√

r(−c + d)
)

cosh
(

1
2
√

r(a− c)
)

cosh
(

1
2
√

r(b− d)
)
∣∣∣∣∣∣

≥ |r|1− e−|<
√

r|(−a+b−c+d)

2
.

Let 0 6= K ∈ R. A simple calculation yields

sinh(K
√

r) = 0⇐⇒ eK
√

r = e−K
√

r ⇐⇒ e2K<
√

re2Ki=
√

r = 1⇐⇒ <
√

r = 0∧ =
√

r =
kπ

K
for k ∈ Z.

It holds

<r + i =r = r =
(√

r
)2

= <2√r−=2√r + 2i <
√

r =
√

r. (19)

If <
√

r = 0 then
<r + i =r = −=2√r,

which implies

=r = 0∧ <r = − k2π2

K2 .

Thus, we have proved that

sinh(K
√

r) = 0⇐⇒
(
=r = 0∧ <r = − k2π2

K2 for k ∈ N∪ {0}
)

. (20)

Analogously we deduce that

cosh(K
√

r) = 0 ⇐⇒ eK
√

r = −e−K
√

r

⇐⇒ e2K<
√

re2Ki=
√

r = −1

⇐⇒ <
√

r = 0∧ =
√

r =
(2k + 1)π

2K
,

for k ∈ Z. Using (19) we see that

=r = 0∧ <r = −
(
(2k + 1)π

2K

)2

.

Thus, we have proved that

cosh(K
√

r) = 0⇐⇒
(
=r = 0∧ <r = −

(
(2k + 1)π

2K

)2

for k ∈ N∪ {0}
)

. (21)

We can clearly see that det M = 0 if and only if r = 0 or sinh
(

1
2
√

r(a− b + c− d)
)
= 0,

thus

det M = 0⇐⇒
(
=r = 0∧ <r = − 4k2π2

(a− b + c− d)2 for k ∈ N∪ {0}
)

. (22)

This concludes the proof that the nonlocal problem (3) can be solved using the classical
Dirichlet BVPs (4)–(8) in the way described above if det M 6= 0.

3. Estimates for α, β

According to (12) we may write(
α
β

)
=

1
det M

(
w′3(d)− w′2(d) w′2(c)

v′2(d) w′1(c)− v′2(c)

)(
z′2(c)− z′1(c)
z′2(d)− z′3(d)

)
. (23)
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where

det M = r
sinh

(√
r

2 (a− b + c− d)
)

sinh
(√

r(−c + d)
)

cosh
(√

r
2 (a− c)

)
cosh

(√
r

2 (b− d)
) .

We may rewrite the matrix in (23) in a more suitable form, namely

1
det M

(
w′3(d)− w′2(d) w′2(c)

v′2(d) w′1(c)− v′2(c)

)
=

1
det M

×


2
√

r
(

e−
√

r(b−c)−e
√

r(−d+c)+e−
√

r(−d+c)−e
√

r(b−c)
)

(−e−
√

r(b−d)+e
√

r(b−d))(−e
√

r(−d+c)+e−
√

r(−d+c))
2

√
r

−e
√

r(−d+c)+e−
√

r(−d+c)

−2
√

r
−e
√

r(−d+c)+e−
√

r(−d+c) −2
√

r
(
−e−

√
r(a−d)−e

√
r(−d+c)+e−

√
r(−d+c)+e

√
r(a−d)

)
(e−

√
r(a−c)−e

√
r(a−c))(−e

√
r(−d+c)+e−

√
r(−d+c))



=

√
r

det M


sinh (

√
r(c−b))+sinh (

√
r(d−c))

sinh (
√

r(b−d)) sinh (
√

r(d−c))
1

sinh (
√

r(d−c))

− 1
sinh (

√
r(d−c))

− sinh (
√

r(a−d))+sinh (
√

r(d−c))
sinh (

√
r(c−a)) sinh (

√
r(d−c))


=

sinh
(√

r(−c + d)
)

cosh
(√

r
2 (a− c)

)
cosh

(√
r

2 (b− d)
)

√
r sinh

(√
r

2 (a− b + c− d)
)

×


2 sinh

(√
r

2 (d−b)
)

cosh
(√

r
2 (2c−b−d)

)
sinh (

√
r(b−d)) sinh (

√
r(d−c))

1
sinh (

√
r(d−c))

− 1
sinh (

√
r(d−c))

−
2 sinh

(√
r

2 (a−c)
)

cosh
(√

r
2 (a+c−2d)

)
sinh (

√
r(c−a)) sinh (

√
r(d−c))


=

cosh
(√

r
2 (a− c)

)
cosh

(√
r

2 (b− d)
)

√
r sinh

(√
r

2 (a− b + c− d)
)

×


2 sinh

(√
r

2 (d−b)
)

cosh
(√

r
2 (2c−b−d)

)
sinh (

√
r(b−d))

1

−1 −
2 sinh

(√
r

2 (a−c)
)

cosh
(√

r
2 (a+c−2d)

)
sinh (

√
r(c−a))


=

cosh
(√

r
2 (a− c)

)
cosh

(√
r

2 (b− d)
)

√
r sinh

(√
r

2 (a− b + c− d)
)

×


2 sinh

(√
r

2 (d−b)
)

cosh
(√

r
2 (2c−b−d)

)
2 sinh

(√
r

2 (b−d)
)

cosh
(√

r
2 (b−d)

) 1

−1 −
2 sinh

(√
r

2 (a−c)
)

cosh
(√

r
2 (a+c−2d)

)
2 sinh

(√
r

2 (c−a)
)

cosh
(√

r
2 (c−a)

)



=
cosh

(√
r

2 (a− c)
)

cosh
(√

r
2 (b− d)

)
√

r sinh
(√

r
2 (a− b + c− d)

)

−

cosh
(√

r
2 (2c−b−d)

)
cosh

(√
r

2 (b−d)
) 1

−1
cosh

(√
r

2 (a+c−2d)
)

cosh
(√

r
2 (c−a)

)

.

Applying (18), we can estimate the particular entries of the last matrix as follows∣∣∣∣∣∣
cosh

(√
r

2 (a− c)
)

cosh
(√

r
2 (2c− b− d)

)
√

r sinh
(√

r
2 (a− b + c− d)

)
∣∣∣∣∣∣ ≤ 1∣∣√r

∣∣ e
|<
√

r|
2 (c−a)e

|<
√

r|
2 (b+d−2c)

e
|<
√

r|
2 (b−a+d−c) 1−e−|<

√
r|(b−a+d−c)

2

=
1∣∣√r
∣∣ 2

1− e−|<
√

r|(b−a+d−c)
,
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∣∣∣∣∣∣
cosh

(√
r

2 (a− c)
)

cosh
(√

r
2 (b− d)

)
√

r sinh
(√

r
2 (a− b + c− d)

)
∣∣∣∣∣∣ ≤ 1∣∣√r

∣∣ e
|<
√

r|
2 (c−a)e

|<
√

r|
2 (b−d)

e
|<
√

r|
2 (b−a+d−c) 1−e−|<

√
r|(b−a+d−c)

2

=
1∣∣√r

∣∣e|<√r|(d−c)

2
1− e−|<

√
r|(b−a+d−c)

and∣∣∣∣∣∣
cosh

(√
r

2 (a + c− 2d)
)

cosh
(√

r
2 (b− d)

)
√

r sinh
(√

r
2 (a− b + c− d)

)
∣∣∣∣∣∣ ≤ 1∣∣√r

∣∣ e
|<
√

r|
2 (2d−a−c)e

|<
√

r|
2 (b−d)

e
|<
√

r|
2 (b−a+d−c) 1−e−|<

√
r|(b−a+d−c)

2

=
1∣∣√r
∣∣ 2

1− e−|<
√

r|(b−a+d−c)
.

According to (23) and the considerations above we have

max{|α|, |β|} ≤ 1∣∣√r
∣∣ 2

(
1 + 1

e|<
√

r|(d−c)

)
1− e−|<

√
r|(b−a+d−c)

max{|z′2(c)− z′1(c)|, |z′2(d)− z′3(d)|}

≤ 4∣∣√r
∣∣ 1

1− e−|<
√

r|(b−a+d−c)
max{|z′2(c)− z′1(c)|, |z′2(d)− z′3(d)|}.

(24)

Now, we characterize all r for which |<
√

r| ≥ δ > 0.
Using

√
r = <

√
r + i=

√
r we have

r = <r + i =r = <2√r−=2√r + 2i <
√

r =
√

r.

This implies

<r = <2√r−=2√r = <2√r−
(
=r

2<
√

r

)2
= <2√r− =2r

4<2
√

r
.

We see that if |<
√

r| = δ the complex numbers r lie on a horizontal parabola (see
Figure 1)

<r = δ2 − =
2r

4δ2 .

|<
√

r| = δ

|<
√

r| > δ
|<
√

r| < δ

<r = δ2− =2r
4δ2

Figure 1. Splitting of the complex plane into two parts by the horizontal parabola <r = δ2 − =2r
4δ2 .



Mathematics 2021, 9, 468 9 of 15

The top of the parabola is at the point (δ2, 0). From this we conclude that if r ∈ C lies
on the right-hand side of the horizontal parabola, then |<

√
r| ≥ δ > 0. Clearly, there exists

a sector S−δ̄,φ̄ in the complex plane with δ̄ < 0

S−δ̄,φ̄ = {r ∈ C ; |arg(r + δ̄)| ≤ π − φ̄, r 6= −δ̄}, φ̄ ∈ (0, π/2),

in which

max{|α|, |β|} ≤ C(δ̄)∣∣√r
∣∣ max{|z′2(c)− z′1(c)|, |z′2(d)− z′3(d)|}. (25)

Our next concern is to derive estimates of |z′i| at the points c, d for i = 1, 2, 3. This will
be done in the next section, cf. (28).

4. Resolvent Estimate

Consider the problem (3). Let us denote Au = −u′′. We see A as an operator from
D(A) into X, where

D(A) = {u ∈ C2([a, b]); u(a) = u(c), u(d) = u(b)},
X = {u ∈ C([a, b]); u(a) = u(c), u(d) = u(b)}.

The norm in X is induced by C([a, b]) and denoted by ‖·‖. We see that D(A) = X.
The goal of this section is to derive some uniform estimates (with respect to r) of the

resolvent operator (rI + A)−1 in an appropriate function space. We show that this can be
achieved in the sector S−δ̄,φ̄.

First, we address the closedness of A. Let (un, Aun)→ (u, y). Due to the fact that Aun
is convergent, it is bounded. Applying the embedding theorem for continuous functions
C2 ⊂ C1 we have the boundedness and equi-continuity of u′n, i.e.,

|u′n(x)− u′n(y)| =
∣∣∣∣∫ y

x
u′′n

∣∣∣∣ ≤ C|x− y|.

Using the Arzela–Ascolli theorem (Thm. 1.5.3 in [18]), we get the relative compactness
of u′n, i.e., there exists a subsequence of u′n that converges uniformly to some g. We know
that un converges pointwise to u. Thus, u is differentiable and u′ = g. Further we may
write for any smooth function φ

∫ b

a
u′′nφ = −

∫ b

a
u′nφ′+ u′nφ

∣∣b
a

↓ ↓ ↓

−
∫ b

a
yφ = −

∫ b

a
u′φ′+ u′φ

∣∣b
a =

∫ b

a
u′′φ,

which implies Au = y, i.e., the operator A is closed. The aim of this section is to prove
that A, together with the nonlocal BCs (3), is a sectorial operator in a suitable function
space, cf. [19–21].

According to (11) we have

‖u‖C([a,b]) ≤ ‖u1‖C([a,c]) + ‖u2‖C([c,d]) + ‖u3‖C([d,b])
≤ ‖z1‖C([a,c]) + ‖z2‖C([c,d]) + ‖z3‖C([d,b])
+|α|(‖w1‖C([a,c]) + ‖v2‖C([c,d])) + |β|(‖w2‖C([c,d]) + ‖w3‖C([d,b])).

(26)

One can prove that a strongly elliptic partial differential operator of second order with
continuous coefficients in a smooth bounded domain Ω together with the homogeneous
Dirichlet boundary condition generates an analytic semigroup in Lp(Ω) for 1 < p < ∞.
This is based on the resolvent estimate with respect to the Lp(Ω)-norm, see [21] (Chapter
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7.3). In the analysis of our subject, we need to have a C(Ω)-bound rather than an Lp(Ω)-
bound. The resolvent estimate in the C(Ω)-norm can be found in [22] and the L∞(Ω)-bound
in [21] (Chapter 7.3).

The particular problem (4) is a classical homogeneous Dirichlet setting. The spectrum
of the operator A is real and strict positive. In this standard case we have the following
estimate, cf. [22]∥∥∥(rI + A)−1

∥∥∥
L(C([a,c]),C([a,c]))

≤ C
|r + δ| for any r ∈ S−δ̄,φ̄

and
‖z1‖C([a,c]) ≤

∥∥∥(rI + A)−1
∥∥∥
L(C([a,c]),C([a,c]))

‖ f ‖C([a,c]) ≤
C
|r + δ| ‖ f ‖C([a,c]). (27)

Let us note that a similar estimate is also valid for z2 and z3 using the same argument.
The situation for v2, w1, w2 and w3 is analogous. First, we have to get rid of the non-
homogeneous BC by shifting the solution by an appropriate linear function g to get (e.g.,
v2 = h− g)

rh + Ah = rg

along with the homogeneous Dirichlet BCs. Then, using the same argumentation as for z1,
we get

‖h‖C([c,d])) ≤
∥∥∥(rI + A)−1

∥∥∥
L(C([c,d]),C([c,d])))

‖rg‖C([c,d])) ≤
C|r|
|r + δ| ,

such that

‖v2‖C([c,d])) ≤ ‖g‖C([c,d])) + ‖h‖C([c,d])) ≤ C
(

1 +
|r|
|r + δ|

)
.

Analogously we arrive at the same kind of estimates for w1, w2 and w3.
Let 0 < ξ < 1. Then Aξ(r + A)−1 is a linear bounded operator and

Aξ(r + A)−1 =
[

A(r + A)
− 1

ξ

]ξ

=
[
(r + A− r)(r + A)

− 1
ξ

]ξ

=
[
(r + A)

1− 1
ξ − r(r + A)

− 1
ξ

]ξ

=

[{
(r + A)−1

} 1
ξ−1
− r
{
(r + A)−1

} 1
ξ

]ξ

.

First, we note that for a bounded operator B and for 0 ≤ ζ ≤ 1 we have∥∥∥Bζ
∥∥∥ = sup

‖x‖≤1

∥∥∥Bζ x
∥∥∥ ≤ sup

‖x‖≤1
‖Bx‖ζ‖x‖1−ζ ≤ sup

‖x‖≤1
‖Bx‖ζ ≤ sup

‖x‖≤1
‖B‖ζ‖x‖ζ ≤ ‖B‖ζ .

Using the inequality

(a + b)ζ ≤ max{1, 2ζ−1}
(

aζ + bζ
)

, a, b ≥ 0, ζ ≥ 0
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we obtain (skipping the function space)

∥∥∥Aξ(r + A)−1
∥∥∥ =

∥∥∥∥∥
[{

(r + A)−1
} 1

ξ−1
− r
{
(r + A)−1

} 1
ξ

]ξ
∥∥∥∥∥

≤
∥∥∥∥{(r + A)−1

} 1
ξ−1
− r
{
(r + A)−1

} 1
ξ

∥∥∥∥ξ

≤
[∥∥∥∥{(r + A)−1

} 1
ξ−1
∥∥∥∥+ ∥∥∥∥r

{
(r + A)−1

} 1
ξ

∥∥∥∥]ξ

≤ C
[∥∥∥(r + A)−1

∥∥∥1−ξ
+
∥∥∥(r + A)−1

∥∥∥rξ

]
≤ C|r + δ|ξ−1

(
1 +

(
|r|
|r + δ|

)ξ
)

.

For the particular choice ξ = 1
2 we have

∥∥∥A
1
2 (r + A)−1

∥∥∥ ≤ C|r + δ|−
1
2

(
1 +

(
|r|
|r + δ|

) 1
2
)

.

In light of this we may write

∣∣z′1(c)∣∣ ≤ ∥∥z′1
∥∥

C([a,c]) ≤ C|r + δ|−
1
2

(
1 +

(
|r|
|r + δ|

) 1
2
)

. (28)

The same estimates are valid for |z′2(c)|, |z′2(d)| and |z′3(d).
Wrapping up the considerations above, we successively deduce that

‖u‖C([a,b])

(26)
≤ ‖z1‖C([a,c]) + ‖z2‖C([c,d]) + ‖z3‖C([d,b])
+|α|(‖w1‖C([a,c]) + ‖v2‖C([c,d])) + |β|(‖w2‖C([c,d]) + ‖w3‖C([d,b]))

≤ C
|r + δ|

(
‖ f ‖C([a,c]) + ‖ f ‖C([c,d]) + ‖ f ‖C([d,b])

)
+C
(

1 +
|r|
|r + δ|

)
(|α|+ |β|)

(25)
≤ C
|r + δ| ‖ f ‖C([a,b]) +

C∣∣√r
∣∣ max{|z′2(c)− z′1(c)|, |z′2(d)− z′3(d)|}

(28)
≤ C
|r + δ| ‖ f ‖C([a,b]) +

C∣∣√r
∣∣ |r + δ|−

1
2

(
1 +

(
|r|
|r + δ|

) 1
2
)

≤ C
|r + δ| ‖ f ‖C([a,b]) +

C
|r + δ|

(
1 +

(
|r|
|r + δ|

) 1
2
)(
|r + δ|
|r|

) 1
2
.

(29)

Finally, we conclude that∥∥∥(rI + A)−1
∥∥∥
L(C([a,b]),C([a,b])))

≤ C
|r + δ| , ∀r ∈ S−δ̄,φ̄.

Thus, A is a sectorial operator in X. For the definition of a sectorial operator we refer
the reader to [19–21]. In our special situation it means that the spectrum is real, lies in a
half plane and the resolvent operator obeys the inequality above.
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5. Parabolic Problem

The aim of this section is to solve the following semilinear parabolic problem (Au = −uxx)

ut(t, x) + Au(t, x) = f (t, x, u(t, x), ux(t, x))
α(t) = u(t, a) = u(t, c)
β(t) = u(t, d) = u(t, b)

u(0, x) = u0(x)

(30)

for t ∈ [0, T] and x ∈ (a, b), along with the unknown functions α(t) and β(t). We assume
that f is a global Lipschitz continuous function in all variables.

The operator A is sectorial in X. Therefore, we may involve the semigroup theory
(cf. [19–21]) to conclude that:

Theorem 1. Let f be a global Lipschitz continuous function in all variables and u0 ∈ X. Then
there exists a unique solution u to (30).

Semi-Discretization in Time

Rothe’s method (cf. [23]) represents a constructive method suitable for solving evolu-
tion problems with standard BCs. Using a simple discretization in time, a time-dependent
problem is approximated by a sequence of elliptic BVPs which have to be solved succes-
sively with increasing time step. This standard procedure is in our case complicated by the
nonlocal BCs. We will show how to apply this method to our nonlocal setting.

First, we divide the time interval [0, T] into n ∈ N equidistant sub-intervals [ti−1, ti]
for ti = iτ, where τ = T

n . We introduce the following notation

zi = z(ti), δzi =
zi − zi−1

τ

for any function z.
We are left with a recurrent system of nonlocal steady-state problems at each successive

time point ti, i = 1, . . . , n

δui + Aui = f (ti−1, ui−1, u′i−1),
αi = ui(a) = ui(c),
βi = ui(d) = ui(b).

(31)

Please note that u0 = u0(x), which is a known function.
The problem (31) can be rewritten as follows

ui
τ
+ Aui = f (ti−1, ui−1, u′i−1) +

ui−1

τ
,

αi = ui(a) = ui(c),
βi = ui(d) = ui(b).

This is precisely the same form of the problem as we have studied in Section 2. Apply-
ing our constructive method using auxiliary problems (4)–(8), we get the approximations
ui (i = 1, . . . , n) obeying (31). The convergence of the approximations towards the exact
solution and the error estimates can be obtained readily using the semigroup theory in
Banach spaces. Let us note that this has already been studied in [24] under the assumption
that A is a sectorial operator in X and

<σ(A) > δ0 > 0.

To meet this condition, we can redefine our problem by shifting the spectrum, i.e.,
instead of

ut(t, x) + Au(t, x) = f (t, x, u(t, x), ux(t, x))
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we take
ut(t, x) + pu(t, x) + Au(t, x) = f (t, x, u(t, x), ux(t, x)) + pu(t, x).

This means, considering Ãu = pu + Au instead of Au. In light of this, we may write:

Theorem 2. Let f be a global Lipschitz continuous function in all variables and u0 ∈ C2([a, b]) ∩
X. Then there exists a unique solution u to (30). Moreover, the approximations ui defined
by (31) obey

max
1≤i≤n

‖u(ti)− ui‖C([a,b]) ≤ Cτ.

6. Numerical Experiments

The aim of this section is to demonstrate the efficiency of the proposed theoretical
schemes described in the previous sections. We start with a steady-state case.

6.1. Steady-State Example

Consider the problem (3) with r = 1, a = π
8 , c = 3π

8 , d = 5π
8 , b = 7π

3 . Let u = sin(2x)
be the exact solution and f (x) = 2 + 5 sin(2x) be the corresponding right-hand-side.

We apply the Finite Element Method (FEM) with N discretization intervals using
first order Lagrange polynomials (P1-FEM) to find an approximation of the solutions to
auxiliary problems (4), (6) and (9). We approximate the first order derivatives appearing
in (12) by the first order differences at the interior points c and d. Finally, we approximate
the total error on the solution by

E := max
16j6N

∣∣u(xj
)
− uj

∣∣,
with uj ≈ u(xj), j = 0, . . . , N.

The results are depicted in Figure 2, which validates the scheme described in Section 2.

Figure 2. Steady-state problem: Regression line is ln(E) = 1.236743707 + 0.9745811176 ln(h) with
h = c−a

N .

6.2. Transient Problem

Now, we test the proposed method from Section 5. Let us consider the following
semilinear parabolic problem

ut(t, x) + u(t, x)− uxx(t, x) = sin(u(t, x)) + f (t, x)
α(t) = u(t, a) = u(t, c)
β(t) = u(t, d) = u(t, b)

u(0, x) = u0(x)
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with unknown α(t) and β(t).
We set a = π

8 , c = 3π
8 , d = 5π

8 and b = 7π
3 . The f (t, x) is defined in such a way that

u(t, x) = 2− e−t cos(πt) sin(2x)

is the exact solution representing a damped transient wave.
The auxiliary problems (4), (6) and (9) are solved using the Finite Element Method

(FEM) with N discretization intervals using first order Lagrange polynomials (P1-FEM).
We approximate the first order derivatives appearing in (12) by the first order differences
at the interior points c and d. Finally, we approximate the total error on the solution by

E := max
16i6Nt

max
16j6N

∣∣∣u(ti, xj
)
− u(i)

j

∣∣∣,
with u(i)

j ≈ u(ti, xj), j = 1, . . . , N, i = 1, . . . , Nt.
We investigate the dependence of the error on the discretization in time. For this

reason, we take the number of space discretization intervals sufficiently large—in our case
N = 2000. Figure 3 shows the error between the numerical solution and the exact solution
in a log-log scale for decreasing time step τ.

Figure 3. Parabolic semilinear problem: Regression line is ln(E) = −0.9969311860+ 0.7733782860 ln(τ)
with τ = T

Nt
.

7. Conclusions

Using the principle of linear superposition and Rothe’s method, the solution of a
semilinear parabolic equation accompanied with the nonlocal BCs (1) can be approximated.
The convergence of the approximations towards the exact solution and the error estimates
follow from the fact that the (steady-state) differential operator of the proposed problem is
sectorial in an appropriate function space and from existing applications of the semigroup
theory in Banach spaces.
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