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Abstract: An important problem in membrane micro-electric-mechanical-system (MEMS) modeling
is the fringing-field phenomenon, of which the main effect consists of force-line deformation of
electrostatic field E near the edges of the plates, producing the anomalous deformation of the
membrane when external voltage V is applied. In the framework of a 2D circular membrane MEMS,
representing the fringing-field effect depending on |∇u|2 with the u profile of the membrane, and
since strong E produces strong deformation of the membrane, we consider |E| proportional to the
mean curvature of the membrane, obtaining a new nonlinear second-order differential model without
explicit singularities. In this paper, the main purpose was the analytical study of this model, obtaining
an algebraic condition ensuring the existence of at least one solution for it that depends on both the
electromechanical properties of the material constituting the membrane and the positive parameter
δ that weighs the terms |∇u|2. However, even if the the study of the model did not ensure the
uniqueness of the solution, it made it possible to achieve the goal of finding a stable equilibrium
position. Moreover, a range of admissible values of V were obtained in order, on the one hand, to
win the mechanical inertia of the membrane and, on the other hand, to ensure that the membrane
did not touch the upper disk of the device. Lastly, some optimal control conditions based on the
variation of potential energy are presented and discussed.

Keywords: membrane MEMS; semilinear elliptic 2D boundary value problems; mean curvature;
Bessel equations; stability; optimal control

1. Introduction

The remarkable development of embedded technologies in recent years is, in large
part, due to the small size of the devices used that manage the link between the physical
nature of the problem and the logic of the machine language [1,2]. In this context, in-
terest in micro-electro-mechanical system (MEMS) devices has been very high since they
represent a good approximation of the human–machine interface [3]. MEMS are devices
that have been recognized as one of the most promising of the 21st century, capable of
revolutionizing both the industrial and the consumer-product worlds. MEMS are devices
integrated in miniaturized form on the same substrate as that of semiconductor material
(silicon), combining the electrical properties of the integrated semiconductor with optome-
chanical properties [1]. These are “intelligent” systems that combine electronic, optical,
biological, chemical, and mechanical fluid management functions in a very small space,
integrating sensor and actuator technology, and the most diverse process-management
functions [1,3]. MEMS technologies are adopted in the most varied application fields, many
of which are based on microscopic mirrors [1,2] or oscillating lenses in a single or array
version that are used to create complex optoelectronic devices [2]. In microwave electronics,
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MEMS devices are often used as single switches for complex applications such as matching
networks, resonant filters, power-supply networks for array antennas, and generally
reconfigurable systems [2]. MEMS are also used for new solutions in chemistry and bio-
engineering [2]. Since the first batch device was produced [4], technological development
has strongly influenced the production of physicomathematical models, describing increas-
ingly complex multiphysics [5–7]. However, such models, although theoretically valid,
rarely provide explicit solutions, so that the conditions of existence and uniqueness of the
solution need to be obtained with reasonable computational costs [8–10]. Furthermore,
if the solution is not analytically obtainable, one can rely on numerical techniques that
provide approximate solutions that, if they satisfy the aforementioned conditions of ex-
istence and uniqueness [11–13], do not represent ghost solutions [14–18]. The scientific
community is currently working hard both on the analysis and synthesis of multiphysical
models, and on technology transfer [19–24]. In such contexts, it is preferred to study MEMS
devices equipped with symmetries in order to obtain models that can be studied more
easily, both mathematically and physically [12]. Thus, for application reasons, the authors
focus their attention on a 2D circular membrane MEMS device used in many industrial
and biomedical applications [1,12,25–28]. Particularly, the authors consider a bounded
circular smooth domain Ω, where a 2D circular membrane MEMS device is represented
by two parallel disks placed d apart [12]. Furthermore, an electrically conductive elastic
membrane (which has the same size as the disks at rest) was clumped on the edge of the
lower disk (which acted as a support to the membrane) deforming toward the upper disk
when an external electric voltage V is applied between the disks. This deformation, in this
work, is described by the profile of the membrane, u(r), r ∈ [0, R], with r being the radial
coordinate [1,5,6,11]. The model took the following well-known form [1,5,6,11]:

∆u(r) = − λ2

(1−u(r))2

u(R) = 0, u′(0) = 0,
0 < u(r) < d

(1)

in which λ2 is a parameter depending on V. However, electrostatically, if d 6� R,
the fringing-field phenomenon occurs [29–31]. In other words, the lines of force of electric
field E away from the edges of the device appear parallel and uniform, while as one ap-
proaches the edges of the disks, they become a curve [29–31]. Thus, with these premises,
in Model (1), λ2 becomes λ2(1 + δ|∇u(r)|2) where term δ|∇u(r)|2, with δ ∈ R+, considers
the fringing-field effects (when δ = 0, no fringing field phenomenon is observed). Since the
device presents radial symmetry with respect to vertical axes r = 0, in ∆u(r), only the radial
component is taken into account, and ∇u(r) = u′(r). Upon deformation of the membrane,
the electrostatic capacitance of the device varies, as the distance between the membrane and
upper disk is variable. Furthermore, λ2

(1−u(r))2 ∝ |E|2, so that λ2

(1−u(r))2 = θ|E|2, θ ∈ R+ [11].
Moreover, physically, E on the membrane is locally orthogonal to the straight-line tangent
to the profile of the membrane. Thus, it makes sense to consider |E| proportional to mean
curvature K(r, u(r)) of the membrane [12]. So, as detailed in Section 3, the model becomes
the following 2D second-order semilinear elliptic model:

u′′(r) = − 1
r u′(r)− 4(1−u(r)−d∗)2

θλ2(1+δ|u′(r)|2)
u(R) = 0, u′(0) = 0,
0 < u(r) < d,

(2)

in which d∗ is the critical security distance ensuring that the membrane does not touch
the upper disk. In recent years, there has been an interesting surge in the application of
machine learning and statistical frameworks to solve similar problems as those in this paper,
as highlighted in the studies shown in [32–34]. Model (2) is very difficult to solve and,
in any cases, does not give explicit solutions, so that we focus on if any conditions ensuring
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both the existence and uniqueness of the solution are obtainable. In particular, considering
Model (2) in a more general formulation, an interesting result of the existence of at least
one solution is obtained if an algebraic condition, depending on the electromechanical
properties of the material constituting the membrane and fringing-field parameter δ, is
satisfied. However, although the uniqueness of the solution is not ensured, the unique
admitted equilibrium position results in being stable. Moreover, the range of admissible
values of V, to both win the mechanical inertia of the membrane (Vmin)inertia and to avoid
the membrane touching the upper disk (Vmax)permissible, is achieved and discussed. Lastly,
some optimal control conditions, formulated in terms of variation of potential energy, are
discussed. In order to improve the readability of the paper, Figure 1 shows a schematic
flowchart of the entire work.

Figure 1. Work flowchart.

2. Circular-Membrane MEMS Devices: Overview

The MEMS device studied in this paper consisted of two parallel metal disks of which
the radius is R, placed at a distance d between them [12]. A circular membrane of radius R
in its rest condition was anchored to the edges of the lower disk (which acted as a support).
The membrane, under the effect of an external V, deformed towards the upper plate
without touching it. Then, E in the device generated electrostatic pressure pel = 0.5ε0|E|2
(ε0, permittivity of free space) that deflected the membrane. Electrostatically, when the
membrane deformed, E, which depended on the distance between membrane and upper
disk, was locally orthogonal to the line tangent to the membrane at the point. Furthermore,
the electrostatic capacitance of the device, Cel , was also variable, as the distance between
membrane and upper disk locally varied. The higher |E| was, the greater the curvature of
the membrane, so that |E| was proportional to curvature K of the membrane.

2.1. Circular-Membrane MEMS as Transducer

For our purposes, we exploited some similarities with the model of a MEMS circular
plate transducer subjected to mechanical pressure p.

Remark 1. Usually, the terms “sensor” and “transducer” are used interchangeably. However,
a distinction must be made, as a sensor is a sensitive element that converts an input into a physical
output, which is acquired into an electrical signal. On the other hand, a transducer consists of an
input interface, a sensor, and an output interface. In this paper, we refer to a MEMS transducer in
order to consider both interfaces.
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In this section, we report some important results concerning the mechanics, as already
discussed in [12], of when a metal plate is subjected to mechanical pressure p, deforms,
and its deflection u satisfies the known equation [1,35]

ρhutt − T∆u + D∆2u = 0 (3)

with ρ being the density of the material constituting the plate, with thickness h, T, and [35]

D =
Yh3

12(1− ν2)
, (4)

with Y (Young’s modulus) and ν (Poisson ratio) being the mechanical tension and flexural
stiffness of the plate, respectively. Moreover, if the plate is circular, u only depends on
radial coordinate r (assuming radial symmetry). With these premises, and in steady-state
conditions, u is valuable as [1,35]

u(r) =
R4

64D

(
1−

( r
R

)2)2
p (5)

with 0 ≤ r ≤ R, for z-directed u [35]. Of course, if r = 0, displacement at the center of the
plate u0 becomes [1,35]

u0 =
R4

64D
p (6)

so that (5) becomes [1]

u(r) = u0

(
1−

( r
R

)2)2
p. (7)

Then, unlike the actuator, the device works like a transducer. In fact, as verified in [12],
p generates u(r), so that Cel becomes [1,35]

Cel(u0) =
∫ R

0

2ε0πr

d
(

1− u(r)
d

)dr, if |u0| � d. (8)

Both h and D are limited values. Then, u(r) becomes inconspicuous, so that the
distance between the two plates remains d. Using the Taylor series (up to the third term) and
considering the electrostatic capacitance at equilibrium, C0 = ε0

πR2

d for p = 0, Equation (8)
becomes [35]

Cel(u0) ≈ C0

(
1 +

u0

3d
+

u2
0

5d2

)
, (9)

which can be exploited to achieve the coenergy of the system, the charge in the membrane,
and the electrical force [11]. Furthermore, in [12], Cel(u0), as computed in (9), is a nonlinear
function of u0. Moreover, dCel(u0)

du0
∝ p by electrostatic force fel . In other words, dCel(u0)

du0
≈

2 fel
V2 , and, if |u0| � d

|E(r)| ≈ V

d− u0

(
1−

(
r
R

)2)2 . (10)

All involved physical quantities depend on d because the circular plate had a signifi-
cant value of D; then, u(r) was extremely limited, so that any dependencies on d− u(r)
could be replaced by the simpler dependence on d. If, instead of the deformable plate,
a membrane was considered (see [12]), h is negligible, so that D, as formulated in (4) signif-
icantly decreases compared to the case in which a deformable plate is present. Considering
that the lower the D value, the more flexible the membrane, u0 became higher with the risk
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that the membrane touched the upper plate. In this, it is imperative to consider d− u(r) in
the denominator of (9). By subjecting the membrane to p, u(r) becomes [1]

u(r) = u0

(
1−

( r
R

)2)
(11)

with

u0 =
pR2

4T
. (12)

In this case, fel became [1,35]

fel =
0.5ε0πR2V2

(d− u(r))2 (13)

from which

pel
∼=

fel
πR2 =

0.5ε0V2

(d− u(r))2 . (14)

Remark 2. In the calculation of fel and pel , the surface of the membrane was approximated as
πR2, even in the presence of membrane deformation. This approximation is justifiable because
d� R, and the surface of the deformed membrane could then be approximated to the surface of the
membrane in the rest position.

2.2. p and pel : An Interesting Relationship

The relationship between p and pel arises from, when V is applied, E is generated
inside the device, also generating pel , which deforms the membrane, obtaining u(r) and
making it clear that there is a link between p and pel . Let us first observe that, from (12), u0
depends on p and, setting

k1 =
R2

4T
, (15)

we can write:

u0 =
pR2

4T
= k1 p. (16)

If there are no further stresses, p originates exclusively from pel , which, in turn, is
generated by |E|. Then, the following chain of equalities makes sense:

u0 = k1 p = k1k2 pel = kpel , (17)

with both k2 and k being constant.

Remark 3. Considering (14), u0 becomes

u0 = kpel =
kε0V2

2(d− u(r))2 (18)

where d− u(r) is locally the distance between membrane and upper disk. The profile of the membrane
must also absolutely not touch the upper disk. Then, once the membrane is deformed,

u(r) ≤ d− d∗, (19)

must occur, so that
1

(d− u(r))2 ≤
1

d∗2
. (20)
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Graphical details are shown in Figure 2. Thus, Equation (11), considering Equation (18)
and Remark 3, can be written as

u(r) ≤ u(r) =
kε0V2

2d∗2
(

1−
( r

R

)2)
. (21)

The relationship between p and pel constitutes a dual transducer–actuator model. So,
the behavior of the transducer helps us to understand the function of an actuator and
vice versa.

Figure 2. u1(r) and u2(r) for model (2).

Remark 4. Equation (21) is a very important relationship because it represents an upper solution
that is useful to exploit a lemma known in the literature to obtain an algebraic condition governing
the existence of the solution for (2).

3. Problem Formulation

As introduced above, Model (1), in the presence of a fringing field, becomes
∆u(r) = − λ2(1+δ|∇u(r)|2)

(1−u(r))2

u(R) = 0, u′(0) = 0,
0 < u(r) < d,

(22)

highlighting a radial symmetry with respect to vertical axes r = 0, ∆u(r) = 1
r u′(r) + u′′(r).

Moreover, with ∇u(r) = u′(r), Equation (22) can be written as
1
r u′(r) + u′′(r) = − λ2(1+δ|u′(r)|2)

(1−u(r))2

u(R) = 0, u′(0) = 0,
0 < u(r) < d.

(23)

Furthermore, when the membrane deformed, the electrostatic capacitance of the
device varied, as the distance between membrane and upper disk was variable. Moreover,
in (23), λ2

(1−u(r))2 ∝ |E|2, so that it makes sense to write λ2

(1−u(r))2 = θ|E|2, θ ∈ R+ [11]. Thus,
Equation (23) becomes

u′′(r) + 1
r u′(r) = −θ|E|2(1 + δ|u′(r)|2)

u(R) = 0, u′(0) = 0
θ ∈ R+, 0 < u(r) < d.

(24)
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In addition, E on the membrane was physically locally orthogonal to the straight-line
tangent to the profile of the membrane, so that |E| could be considered proportional to
mean curvature K(r, u(r)) of the membrane [12]

K(r, u(r)) =
1
2

(
u′′(r) +

1
r

u′(r)
)

(25)

The larger |E| is, the more the membrane deforms. Then, it makes sense to assume
that |E| ∝ K(r, u(r)) (as detailed in (25)). Thus,

|E| = µ(r, u(r), λ)K(r, u(r)) (26)

where µ(r, u(r), λ), the function of proportionality, can be written as [11,12]

µ(r, u(r), λ) =
λ

(1− u(r)− d∗)
(27)

with µ(r, u(r)) ∈ C0(A) and A = [−R,R]× [0, 1), and, in the radial symmetry framework,
K(r, u(r)) represents the mean curvature, so that (26), considering both (27) and (25), can
be written as

|E|2 =
1
4

λ2

(1− u(r)− d∗)2

(
u′′(r) +

1
r

u′(r)
)2

(28)

and Model (24) becomes
u′′(r) + 1

r u′(r) = − θλ2

4(1−u(r)−d∗)2

(
u′′(r) + 1

r u′(r)
)2

(1 + δ|u′(r)|2)
u(R) = 0, u′(0) = 0
θ ∈ R+, 0 < u(r) < d.

(29)

Therefore, from (29), Equation (2) follows.

Remark 5. Equation (2) was achieved from (29) because it was easy to prove that u′′(r) + 1
r u′(r) 6= 0.

For details, see [12].

4. General Problem Formulation

Model (2) is a special case of the following general problem:{
u′′(r) + F(r, u(r), u′(r)) = 0
u(b) = B, u′(a) = m,

(30)

in which F ∈ C0((a, b]×R×R) and B, m ∈ R. In fact, setting

F(r, u(r), u′(r)) =
1
r

u′(r) +
4(1− u(r)− d∗)2

θλ2(1 + δ|u′(r)|2) , (31)

B = m = 0 (32)

and
b = R, a = 0 (33)

we obtain (2). Now, we obtain conditions ensuring both the existence and uniqueness of
the solution for (2). We introduce two preliminary lemmas.

5. Preliminary Lemmas

For further details, see [36] ). Particularly, we exploited Lemma 1 to prove that (2)
admits at least one solution. On the other hand, Lemma 2 was used to prove that the
solution for (2) is not unique.
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Lemma 1. Let us consider Model (30) and two twice continuously differentiable functions u1(r)
and u2(r), such that

u1(r) < u2(r), r ∈ (a, b). (34)

Let us also consider
u′′1 (r) + F(r, u1(r), u′1(r)) > 0 (35)

and
u′′2 (r) + F(r, u2(r), u′2(r)) < 0 (36)

for r ∈ (a, b). Furthermore, let F(r, y(r), y′(r)) be a continuous function satisfying the following
Lipschitz condition:

K1(r)(u(r)− v(r)) + L2(r)(u′(r)− v′(r)) (37)

≤ F(r, u(r), u′(r))− F(r, v(r), v′(r))

≤ K2(r)(u(r)− v(r)) + L1(r)(u′(r)− v′(r))

in U × (−∞,+∞) in which

U = {(r, u) : a < r < b and u1(r) ≤ u(r) ≤ u2(r)} (38)

and K1(r), K2(r), L1(r) and L2(r) are continuous functions in (a, b]. If u′1(a) ≥ u′2(a), with u1(b)
= u2(b) = B, Equation (30) has at least one solution, u(r), such that u1(r) ≤ u(r) ≤ u2(r) in [a, b].

Lemma 2. Let us suppose that the conditions of Lemma 1 are satisfied, and u1(r) and u2(r) satisfy
the boundary conditions. Let us also suppose that

u′′(r) + K2(r)u(r) + L1(r)u′(r) = 0 (39)

has no nontrivial solution that satisfies zero-boundary conditions on any subinterval of [a, b]; then,
Equation (30) has only one solution, u(r), such that u1(r) ≤ u(r) ≤ u2(r).

6. An Interesting Result of the Existence of at Least One Solution

In this section, we prove the existence of at least one solution for (2), referring to
Section 7, the discussion on uniqueness.

Theorem 1. Let us consider Problem (2). Let us also consider u1(r) and u2(r) as two functions
twice continuously differentiable and both defined on [0, R], such that u1(r) < u2(r). Moreover, let
us suppose that

u′′1 (r) +
1
r

u′1(r) +
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
> 0 (40)

and

u′′2 (r) +
1
r

u′2(r) +
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)
< 0 (41)

for r ∈ (0, R). Furthermore, if 1
r u′(r) + 4(1−u(r)−d∗)2

θλ2(1+δ|u′(r)|2) is a continuous function (obviously,
except for r = 0), which satisfies the Lipschitz condition in U × (−∞,+∞), with U = {(r, u) :
0 < r < R and u1(r) ≤ u(r) ≤ u2(r)}, and if u′1(0) ≥ u′2(0), with u1(R) = u2(R) = 0 with

θλ2 >
2d∗2R2

kε0V2
(

1 + δ
(

kε0V2r
d∗2R2

)2) ; (42)

thus, Problem (2) admits at least one solution.
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Proof of Theorem 1. To prove this theorem, we need to exploit Lemma 1. Particularly, we
assume that

u1(r) = 0, ∀r ∈ [0, R] (43)

and

u2(r) = u(r) =
kε0V2

2d∗2
(

1−
( r

R

)2)
. (44)

as derived from (21). Figure 2 displays both u1(r) and u2(r), a possible recovery of the
membrane. By construction, it is clear that u1(r) < u2(r); moreover, they are twice
continuously differentiable functions. We easily observe that u′1(r) = u′′1 (r) = 0, so that

u′′1 (r) +
1
r

u′1(r) +
4(1− u1(r)− d∗)2

θλ2(1 + δ|u′1(r)|2)
=

(1− d∗)2

θλ2 > 0. (45)

Thus, (40) is verified. Moreover,

u′2(r) = −
kε0V2r
d∗2R2 (46)

and

u′′2 (r) = −
kε0V2

d∗2R2 (47)

so that we need to verify (41), which becomes

u′′2 (r) +
1
r

u′2(r) +
4(1− u2(r)− d∗)2

θλ2(1 + δ|u′2(r)|2)
(48)

= −2
kε0V2

d∗2R2 +
4
(

1− kε0V2

2d∗2

(
1−

(
r
R

)2)
− d∗

)2

θλ2
(

1 + δ
(

kε0V2r
d∗2R2

)2) < 0

that is

4
(

1− kε0V2

2d∗2

(
1−

(
r
R

)2)
− d∗

)2

θλ2
(

1 + δ
(

kε0V2r
d∗2R2

)2) < 2
kε0V2

d∗2R2 . (49)

For this purpose, since (49) 0 ≤
(

1− kε0V2

2d∗2

(
1−

(
r
R

)2)
− d∗

)2
< 1, to verify (41) and

then (48), it is sufficient to impose

1

θλ2
(

1 + δ
(

kε0V2r
d∗2R2

)2) <
kε0V2

2d∗2R2 ; (50)

moreover, from (43), (44) and (46), we can easily verify u′1(0) ≥ u′2(0) and u1(R) = u2(R) = 0.
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Lastly, as Lemma 1 requires, we need to prove that F given by (31) satisfies the
Lipschitz condition (37). Thus, starting from (31), ∀(u(r), v(r) ∈ U :

F(r, u(r), u′(r))− F(r, v(r), v′(r)) (51)

=
1
r

u′(r) +
4(1− u(r)− d∗)2

θλ2(1 + δ|u′(r)|2) −
1
r

v′(r)− 4(1− v(r)− d∗)2

θλ2(1 + δ|v′(r)|2)

=
1
r
(u′(r)− v′(r)) +

1
θλ2

(
4(1− u(r)− d∗)2

1 + δ|u′(r)|2 − 4(1− v(r)− d∗)2

1 + δ|v′(r)|2

)

=
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2(1 + δ|u′(r)|2 − δ|u′(r)|2)

1 + δ|u′(r)|2

− (1− v(r)− d∗)2(1 + δ|v′(r)|2 − δ|v′(r)|2)
1 + δ|v′(r)|2

)

=
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

(
1− δ|u′(r)|2

1 + δ|u′(r)|2

)

−(1− v(r)− d∗)2

(
1− δ|v′(r)|2

1 + δ|v′(r)|2

))

=
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2 − (1− v(r)− d∗)2

− (1− u(r)− d∗)2δ|u′(r)|2
1 + δ|u′(r)|2 +

(1− v(r)− d∗)2δ|v′(r)|2
1 + δ|v′(r)|2

)
.

Observing that (1−u(r)−d∗)2δ|u′(r)|2
1+δ|u′(r)|2 > 0, Equation (51) becomes:

F(r, u(r), u′(r))− F(r, v(r), v′(r)) (52)

<
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

−(1− v(r)− d∗)2 +
(1− v(r)− d∗)2δ|v′(r)|2

1 + δ|v′(r)|2

)
.

Moreover, since δ|v′(r)|2
1+δ|v′(r)|2 ≤ 1, Equation (52) can be written as

F(r, u(r), u′(r))− F(r, v(r), v′(r)) (53)

<
1
r
(u′(r)− v′(r)) +

4
θλ2 ((1− u(r)− d∗)2

−(1− v(r)− d∗)2 + (1− v(r)− d∗)2).



Mathematics 2021, 9, 465 11 of 26

Furthermore, with (1− v(r)− d∗)2 > 0 from (53)

F(r, u(r), u′(r))− F(r, v(r), v′(r)) (54)

<
1
r
(u′(r)− v′(r)) +

4
θλ2 ((1− u(r)− d∗)2 + (1− v(r)− d∗)2)

<
1
r
(u′(r)− v′(r)) +

4
θλ2 ((1− u(r))2 + (1− v(r))2)

<
1
r
(u′(r)− v′(r)) +

4
θλ2 (2 + u2(r) + v2(r)− 2u(r)− 2v(r))

<
1
r
(u′(r)− v′(r)) +

4
θλ2 (2 + u(r) + v(r)− 2u(r)− 2v(r))

=
1
r
(u′(r)− v′(r)) +

4
θλ2 (2− u(r)− v(r))

<
1
r
(u′(r)− v′(r)) +

4
θλ2 (2 + u(r)− v(r)).

As it is safe to assume that u(r) > v(r), and with u(r) < 1 and v(r) < 1,

2 < K(u(r)− v(r)) (55)

with K = K(r) = sup{2/(u(r)− v(r))} | (r(r), v(r)) ∈ U , from which K ≥ 2
u(r)−v(r) so that

(54) becomes

F(r, u(r), u′(r))− F(r, v(r), v′(r)) (56)

<
1
r︸︷︷︸

L1(r)

(u′(r)− v′(r)) +
4(K(r) + 1)

θλ2︸ ︷︷ ︸
K2(r)

(u(r)− v(r)).
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Moreover,

F(r, u(r), u′(r))− F(r, v(r), v′(r)) (57)

=
1
r
(u′(r)− v′(r)) +

4(1− u(r)− d∗)2

θλ2(1 + δ|u′(r)|2) −
4(1− v(r)− d∗)2

θλ2(1 + δ|v′(r)|2)

=
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

1 + δ|u′(r)|2 − (1− v(r)− d∗)2

1 + δ|v′(r)|2

)

≥ 1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

1 + δ|u′(r)|2 − (1− v(r)− d∗)2

)

≥ 1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

1 + δ|u′(r)|2 − (1− v(r)− d∗)

)

=
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

1 + δ|u′(r)|2 (1 + δ|u′(r)|2

−δ|u′(r)|2)− (1− v(r)− d∗)

)

=
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

− (1− u(r)− d∗)2δ|u′(r)|2
1 + δ|u′(r)|2 − (1− v(r)− d∗)

)

>
1
r
(u′(r)− v′(r)) +

4
θλ2

(
(1− u(r)− d∗)2

−(1− u(r)− d∗)2 − (1− v(r)− d∗)

)

=
1
r
(u′(r)− v′(r)) +

4
θλ2 (−(1− v(r)− d∗))

>
1
r
(u′(r)− v′(r)) +

4
θλ2 (−(1− v(r)− d∗)− (1− u(r)− d∗))

=
1
r
(u′(r)− v′(r)) +

4
θλ2 (−1 + v(r) + d∗ − 1 + u(r) + d∗)

=
1
r
(u′(r)− v′(r)) +

4
θλ2 (−2 + 2d∗ + u(r) + v(r))

≥ 1
r
(u′(r)− v′(r)) +

4
θλ2 (−2 + 2d∗ + u(r)− v(r))

>
1
r
(u′(r)− v′(r)) +

4
θλ2 (−2 + u(r)− v(r))

=
1
r
(u′(r)− v′(r))− 8

θλ2 +
4(u(r)− v(r))

θλ2 .

Supposing again that u(r) > v(r), Equation (55) holds, from which

− 8 > −4K(r)(u(r)− v(r)); (58)
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therefore, Equation (57) becomes

F(r, u(r)− v(r), u′(r)− v′(r)) >
1
r
(u′(r)− v′(r))− 8

θλ2 +
4(u(r)− v(r))

θλ2 (59)

=
1
r
(u′(r)− v′(r)) +

1
θλ2 (−8 + 4(u(r)− v(r))

>
1
r
(u′(r)− v′(r)) +

1
θλ2 (−4K(r)(u(r)− v(r)) + 4(u(r)− v(r))

=
1
r︸︷︷︸

L2(r)

(u′(r)− v′(r)) +
4− 4K(r)

θλ2︸ ︷︷ ︸
K1(r)

(u(r)− v(r)).

Lastly, it is required that u′1(a) ≥ u′2(a). For this goal, since a = r = 0, we achieve
u′1(a) = u′1(0). Moreover, u′2(a) = u′2(0) = 0. Furthermore, u1(R) = u2(R) = 0. Thus,
the proof of the theorem is complete.

Remark 6. Physically, as T increases, and V is fixed (if the intended use of the device was chosen),
the membrane lifts from its rest position to a lesser extent than that when T is reduced. On the other
hand, by increasing pel , the deformation of the membrane is more accentuated. This is confirmed
in (42). In fact, from (16),

R2 = 4k1T (60)

and from (17), we obtain
k1

k
=

1
k2

. (61)

Thus, Equation (42) is writable as

θλ2 >
8Td∗2

k2ε0V2
(

1 + δ
(

k2ε0V2r
4Td∗2

)2) . (62)

Analyzing (62), increasing T also increases θλ2, so that, observing (2), |u′′(r)| significantly
decreases with the consequent reduction in the concavity of the membrane. Furthermore, increasing
pel and considering (17) increases k2, so that θλ2 decreases. Then, |u′′(r)| in (2) increases. We
lastly observe that (42), when δ = 0 (i.e., without fringing field), we obtain the well-known algebraic
condition studied in [12].

7. Solution Uniqueness

As verified above, Equation (2) admits at least one solution, u(r), such that u1(r) <
u(r) < u2(r), where both u1(r) and u2(r) satisfy the hypotheses of Theorem 1. However,
the uniqueness of the solution is not ensured, as proved in the following theorem.

Theorem 2. If the hypotheses of Theorem 1 regarding (2) are satisfied, and u1(r) and u2(r)
together satisfy the assigned boundary conditions, then the uniqueness of solution u(r), such that
u1(r) ≤ u(r) ≤ u2(r), is not guaranteed.

Proof of Theorem 2. As specified in (54),

L1(r)u′(r) + K2(r)u(r) =
1
r

u′(r) +
4(K(r) + 1)

θλ2 u(r). (63)

Therefore, considering Lemma 2, we can take into account the following ODE:

u′′(r) + L1(r)u′(r) + K2(r)u(r) = 0, (64)
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which, in our case, since L1(r) = 1
r and K2(r) =

4(K(r)+1)
θλ2 , becomes

u′′(r) +
1
r

u′(r) +
4(K(r) + 1)

θλ2 u(r) = 0, (65)

which represents a special case of the following Bessel equation:

u′′(r) +
1
r

u′(r) + α2u(r) = 0, (66)

with α =
√

4(K(r)+1)
θλ2 ∈ R+. From the Bessel theory of ordinary differential equations,

the general solution for (65) can be written in terms of the linear combination of two
linearly independent Bessel functions of the first and second kind of the zero-th order,

J0

(√
4(K(r)+1)

θλ2 r
)

and Y0

(√
4(K(r)+1)

θλ2 r
)

, respectively. In other words:

u(r) = c1 J0

(√
4(K(r) + 1)

θλ2 r

)
+ c2Y0

(√
4(K(r) + 1)

θλ2 r

)
(67)

where c1 and c2 are arbitrary constants, and

J0

(√
4(K(r) + 1)

θλ2 r

)
= 1 +

+∞

∑
m=1

(−1)m
(√

4(K(r)+1)
θλ2

)2m

22m(m!)2 (68)

Y0

(√
4(K(r) + 1)

θλ2 r

)
(69)

=
2
π

[(
γ + ln

(
0.5

√
4(K(r) + 1)

θλ2 r

))
J0

(√
4(K(r) + 1)

θλ2 r

)

+
+∞

∑
m=1

(−1)m+1Hm

(√
4(K(r)+1)

θλ2

)2m

22m(m!)2

]

in which γ = 0.5772 is the Euler–Mascheroni constant, and Hm = 1 + 1
2 + 1

3 + . . . + 1
m . We

observe that, for r → 0, we obtain that J0 → 1. Y0 also has logarithmic singularity when
r = 0. Therefore, considering a linear combination with c2 = 0 and c1 6= 0, we obtain the
following general solution:

u(r) = c1

(
1 +

+∞

∑
m=1

(−1)m
(√

4(K(r)+1)
θλ2

)2m

22m(m!)2

)
(70)

Equation (70) represents a nontrivial solution for (65). Thus, by Lemma 2, it follows
that the uniqueness of the solution to Problem (2) is not guaranteed because a subinterval
of [0, R] exists (in our case, itself) on which (64) admits no trivial solution.
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8. On Research of Critical Points and Stability
8.1. A More Suitable Writing of the Differential Model

For searching any critical points, we need to rewrite (2) as a system of two ordinary
differential equations of the first order in normal form [37]. For this purpose, let us consider
two functions, u1(r) and u2(r), such that

u1(r) = u(r), u2(r) = u′(r). (71)

Then, Equation (71) allows for rewriting (2) as a system of differential equations of
the first order in which the unknown functions are the profile of the membrane u(r) and
its speed of variation u′(r). In fact, from (2) and considering (71), we can write

u′1(r) = u2(r);

u′2(r) = − 1
r u2(r)− (1−u1(r)−d∗)2

θλ2(1+δ|u2(r)|2)
u1(R) = u2(0) = 0.

(72)

8.2. Critical Points and Stability

System (72) is a special case of the following general formulation:{
u′1(r) = f (u1(r), u2(r));
u′2(r) = g(u1(r), u2(r)),

(73)

where, in our case,
f (u1(r), u2(r)) = u2(r) (74)

and

g(u1(r), u2(r)) = −
1
r

u2(r)−
(1− u1(r)− d∗)2

θλ2(1 + δ|u2(r)|2)
. (75)

Therefore, for achieving the critical points, we set u′1(r) = u′2(r) = 0, which in our
case, since θλ2 6= 0, we are given the following unique critical point:

(u0
1, u0

2) = (1− d∗, 0). (76)

To evaluate the stability of (76), we exploit the first Lyapunov criterion [37] that is
based on the linearization of System (72) in the neighborhood of the critical point. For this
purpose, we consider the following change of variable:

u1(r) = u0
1 + εξ(r); u2(r) = u0

2 + εη(r) (77)

with ε being a small-enough quantity. Therefore, considering (73)–(75) and (77),{
u′1(r) = εξ ′(r) = f (u1(r), u2(r))
u′2(r) = εη′(r) = g(u1(r), u2(r))

(78)

from which, developing in Taylor series both f (u1(r), u2(r)) and g(u1(r), u2(r)), and ne-
glecting the terms of an order higher than the linear one and setting τ =

√
ξ2 + η2, it

follows that 
εξ ′(r) = f (u0

1 + ε(r), u0
2 + εη(r)) ≈

≈ f (u0
1, u0

2) + ε f u1
(u0

1, u0
2)ξ(r) + ε f u2

(u0
1, u0

2)η(r) + o(τ)
εη′(r) = g(u0

1 + ε(r), u0
2 + εη(r)) ≈

≈ g(u0
1, u0

2) + εgu1
(u0

1, u0
2)ξ(r) + εgu2

(u0
1, u0

2)η(r) + o(τ).
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Remark 7. Equation (79) makes sense because both u1(r) and u2(r) are analytical functions
allowing for the linearization procedure by means of computing f u1

, f u2
, gu1

and gu2
.

In (79), f (u0
1, u0

2) = g(u0
1, u0

2) = 0, so that it becomes{
ξ ′(r) = f u1

(u0
1, u0

2)ξ(r) + f u2
(u0

1, u0
2)η(r)

η′(r) = gu1
(u0

1, u0
2)ξ(r) + gu2

(u0
1, u0

2)η(r).
(79)

Moreover,

f u1
(u0

1, u0
2) = 0, f u2

(u0
1, u0

2) = 1, gu2
(u0

1, u0
2) = −

1
r

(80)

and
gu1

(u0
1, u0

2) = 2(1− (1− d∗)− d∗) = 0, (81)

so that System (79) can be written as{
ξ ′(r) = η(r)

η′(r) = − η(r)
r

(82)

that, when solved, gives us
ξ + ln ηC1 = C2 (83)

with both C1 and C2 being constant. Equation (82), indicated by

z =

(
ξ(r)
η(r)

)
, ż =

(
ξ ′(r)
η′(r)

)
, A =

(
0 1
0 − 1

r

)
, (84)

can easily be written as
ż = Az. (85)

Let us consider the following definitions [38].

Definition 1. If A is a square matrix with order n, with r ≤ n distinct eigenvalues λ1, λ2, . . . λr,
i 6= j, the characteristic polynomial of A is

P(s) = (s− λ1)
ν1(s− λ2)

ν2 . . . (s− λr)
νr (86)

such that ∑r
i=1 = n. νi ∈ N+ defines the algebraic multiplicity of generic eigenvalue λi. Moreover,

the geometric multiplicity of λi is defined by number µi of the linearly independent eigenvectors
corresponding to it.

Definition 2. If λ is an eigenvalue of A with algebraic multiplicity ν linked to Jordan form J,
the index of λ, π, is the order of the largest Jordan block associated with λ in J.

Now, we present the following result evaluating the stability of (85) exploiting a
criterion on the basis of A eigenvalues [38].

Theorem 3. Dynamic systems in form (85) admit at least one stable equilibrium position if, and
only if, its matrix, A, does not have eigenvalues with a positive real part and if any eigenvalues with
a real part zero have a unit index. Furthermore, if z0 = [z0,1, z0,2]

T , then

ż(r) = eArz(0) = eArz0. (87)

Thus, the following result holds.

Proposition 1. Equation (82) admits a stable equilibrium position.
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Proof. From A, two eigenvalues, λ1 and λ2, are computed:

λ1 = 0; λ2 = −1
r

, (88)

so that, by Theorem 3, it follows that System (82) is stable, and (76) is a stable equilibrium
position.

Remark 8. The number of the eigenvalues of A, counted with their algebraic multiplicity, is equal
to the order of A. Moreover, the geometric multiplicity of each eigenvalue is equal to the algebraic
multiplicity. Then, it follows that A is diagonalizable [38].

Therefore, since A is diagonalizable (see Remark 8), eAr can be written as [38]:

eAr =
n

∑
k=1

tk · sT
k eλkr = t1 · s1 + t2 · s2e−1 (89)

in which tk and sk are, respectively, the left and right eigenvectors corresponding to λk.
Thus,

t1 = [1 0]T , t2 = [1 − r−1]T , s1 = [1 r], s2 = [0 1], (90)

so that (89) becomes

eAr =

( 1
r r + 1

e
0 − 1

er

)
. (91)

Moreover, Equation (91) for r 6= 0 is limited in norm, so that (87) becomes{
ξ(r) = ξ0

r + (r + e−1)η0

η(r) = − η0
re

(92)

from which, eliminating r, we achieve

ξ(r)η(r) = − ξ0eη2(r)
η0

−
η2

0
e
+

η0

e
η(r). (93)

Indicated by

H =

−
ξ0e
η0
− 1

2 1
− 1

2 0 0

1 0 − η2
0
e

 (94)

and

H1 =

(
− ξ0e

η0
− 1

2
− 1

2 0

)
(95)

one easily achieves that |H| 6= 0 and |H1| < 0, so that (93) on ξ − η plane represents a
hyperbole. Furthermore, from (92),

η(r) = − ξ(r)
r(er + 1)

+
ξ0

r2(er + 1)
, (96)

in which ∀r ∈ (0, R] represents a straight line of which the slope, as r varies on (0, R],
changes from 1

r(er+1) to 1
R(eR+1) , intercepting point ( xi0

r , 0) on axis η(r) = 0 and point

(0, xi0
r2(1+er) ) on axis ξ(r) = 0. Therefore, the straight line, when its slope changes, intercepts

an arc of hyperbole representing points (ξ(r), η(r)). This arc of hyperbole represents the
place of points ξ(r)− η(r), which admit stability for (85).

Concerning the stability of System (72), let us introduce the following lemma [37].
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Lemma 3. If linearized System (85) is stable, the critical point of nonlinear System (72) is stable itself.

Therefore, we can introduce the following important result.

Proposition 2. Critical point (76) is an equilibrium position characterized by stability for System (72).

Proof of Proposition 2. It is an immediate consequence of Lemma 3.

Remark 9. Point (1− d∗, 0) identifies a profile of the membrane when u0 is very close to the
upper disk. This poses a risk, as the membrane could touch the upper disk. Electrostatically,
considering that

1
(1− u(r))2 ≈

1
d∗

, (97)

pel becomes

pel =
1
2

ε0V2

(1− u(r))2 ≈
ε0V2

2d∗
. (98)

Thus, once V is fixed, pel does not fluctuate, so that any variations of pel are not appreciable.
Then, from (17), not even any fluctuations of p are appreciable, so that if the membrane reaches the
unstable equilibrium position, the risk of touching the upper disk is minimal.

Remark 10. The only equilibrium position that we obtained was fixed by quantity 1− d∗. It was a
constant amount once safety distance d∗ was set. The greater d∗ is, the lower the deformation of the
membrane under stable conditions. Obviously, a lower bound is obtained if d∗ = 1. This lower-
bound condition, however, requires that the membrane does not deform despite the application of an
electrical voltage V, even of strong amplitude. We, therefore, deduce that the condition of a stable
lower bound, even if it has full meaning from a mathematical point of view, from a physical point
of view, it has no relevance because it does not admit membrane deformations even if electrostatic
stress is relevant.

9. On Admissible Values of V
9.1. Minimal Value of V to Win the Mechanical Inertia of the Membrane

Proposition 3. Let us consider Model (2) and its condition of existence (42). Thus, the minimal
value of V to win membrane mechanical inertia (Vmin)inertia satisfies the following inequality:

(Vmin)inertia =
4

√
Td∗6d3

ε2
0 + 4δk2 p2

el
. (99)

Proof of Proposition 3. From (42),

λ2 >
2R2d∗2

θV2ε0k
(

1 + δ
(

kε0V2r
d∗2R2

)2) ≥ 2R2d∗2

θV2ε0k
(

1 + δ
(

kε0V2

d∗2

)2) = (100)

=
2R2d∗6

θV2ε0k(d∗4 + δ(kε0V2)2)
≥ 2R2d∗6

θV2ε0k(d∗4 + δ(kV2)2)

from which, considering that [1]

λ2 =
2ε0V2R2

d3T
, (101)

we achieve

2ε0V2R2

d3T
≥ 2R2d∗6

θV2ε0k(d∗4 + δ(kV2)2)
, (102)
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and again

V4(d∗4 + δ(kV2)2) ≥ Td∗6d3

θkε2
0

. (103)

However, from (18),

kV2 =
2kpel(d− u(r))2

ε0
(104)

from which

1 + δ(kV2)2 = 1 +
4δk2 p2

el(d− u(r))4

ε2
0

, (105)

so that (103) becomes

V4(1 + δ(kV2)2) = V4
(

1 +
4δk2 p2

el(d− u(r))4

ε2
0

)
≥ Td∗6d3

θkε2
0

(106)

from which, with θk < 1 and d− u(r) < 1, we can write

V4 ≥ Td∗6d3

θk(ε2
0 + 4δk2 p2

el(d− u(r))4)
≥ Td∗2d3

ε2
0 + 4δk2 p2

el
(107)

and

V ≥ 4

√
Td∗6d3

ε2
0 + 4δk2 p2

el
(108)

obtaining the (99).

Remark 11. Equation (99) makes sense because T appears in the numerator of its right side,
i.e., the mechanical tension of the membrane at rest. Then, the greater T is, the greater V must be to
overcome the mechanical inertia of the membrane.

9.2. Maximal Value of V so the Membrane Does Not Touch the Upper Disk

Remark 12. Equation (21) was obtained by exploiting the theory of elasticity of circular mem-
branes [1] when external V is applied. Since the considered device is circular, Equation (21) retains
its validity and the geometry has axial symmetry (with axis r = 0). This symmetry was maintained
even in the presence of a fringing field because this phenomenon (more evident at the edges of the
device) was also symmetrical with respect to the same vertical axis. Therefore, the presence of the
fringing field would seem not to invalidate the validity of (21). However, in (21), there is no trace of
Cel which represents the most influenced electrostatic parameter by the fringing-field effect, so the
presence of terms due in the fringing field is not explicitly evident. On the other hand, studying the
existence of the solution for (2), made (21) provide an algebraic condition in which the fringing field
(presence of δ) was evident. It follows that, even in the presence of a fringing field, Equation (21)
is still valid. Therefore, the achieved results in [12] and concerning the maximal value of V are
still valid.

In particular, the following results hold [12].

Proposition 4. Indicating by (Vmax)permissible the maximum value of V in order that the mem-
brane does not touch the upper desk, for Model (2), the following inequality holds (for details,
see [12]):

(Vmax)permissible <

√
2d∗(1− d∗)

kε0
(109)



Mathematics 2021, 9, 465 20 of 26

Thus, considering both (108) and (109), the range of the admissible values for V is

4

√
Td∗6d3

ε2
0 + 4δk2 p2

el
≤ V <

√
2d∗(1− d∗)

kε0
. (110)

Remark 13. Then, Equation (110) makes sense because

4

√
Td∗6d3

ε2
0 + 4δk2 p2

el
<

√
2d∗(1− d∗)

kε0
. (111)

In fact, if absurdly

4

√
Td∗6d3

ε2
0 + 4δk2 p2

el
>

√
2d∗(1− d∗)

kε0
, (112)

one would obtain

δ < ε2
0

(
Td3k2d∗4

4(1− d∗)2︸ ︷︷ ︸
<1

−1

)
︸ ︷︷ ︸

<0

1
4k2 p2

el
(113)

so that δ < 0, which represents an impossible condition because δ ∈ R+. Therefore, Equation (111)
makes sense, so that (110) is true.

10. Interesting Optimal Control Conditions

If the membrane is at rest, its distance from the upper disk is d, and the Cel of the
device along any plane whose support is the straight line r = 0, in presence of fringing
field, is [30]

(Cel)curve =
2ε0R

d

{
1 +

d
2πR

ln
(2πR

d

)}
, (114)

where d1 represents the distance so that the total Cel , (Cel)total , becomes:

(Cel)total =
∫ π

0
Z(φ)(Cel)curvedφ = (Cel)curve

∫ π

0
Z(φ)dφ. (115)

in which Z(φ) is a bounded and a continuous electrostatic function depending on angular
coordinate φ [39]. Thus, Z(φ) being both continuous and bounded,∫ π

0
Z(φ)dφ = D < +∞, (116)

so that (115) becomes

(Cel)total = (Cel)curveD =
2ε0RD

d

{
1 +

d
2πR

ln
(2πR

d

)}
. (117)

Thus, the potential energy (indicated by Winitial) when the device is at rest is

Winitial =
1
2
(Cel)totalV2 =

ε0RDV2

d

{
1 +

d
2πR

ln
(2πR

d

)}
. (118)

If the membrane deforms, and in the presence of a fringing field, Cde f
el , along with any

curve obtained by intersecting the profile of the deformed membrane with any plane of
which the support is line r = 0, would become [30]

(Cde f
el )curve = 2ε0R

∫ +R

−R

dr
d− u(r)

{
1 +

1

2πR
∫ +R
−R

dr
d−u(r)

ln
(

2πR
∫ +R

−R

dr
d− u(r)

)}
. (119)
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However,
1

d− u(r)
≤ 1

d∗
(120)

from which ∫ +R

−R

dr
d− u(r)

≤
∫ +R

−R

dr
d∗

=
2R
d∗

. (121)

Thus,

(Cde f
el )curve ≤

4ε0R2

d∗

{
1 +

1

2πR
∫ +R
−R

dr
d−u(r)

ln

(
4πR2

d∗

)}
. (122)

Moreover,
d− u(r) ≤ d, (123)

from which
1

d− u(r)
≥ 1

d
(124)

and ∫ +R

−R

dr
d− u(r)

≥
∫ +R

−R

dr
d

(125)

Thus, Equation (122), considering (125), becomes

(Cde f
el )curve ≤

4ε0R2

d∗

{
1 +

d
4πR2 ln

(
4πR2

d∗

)}
. (126)

Therefore, as (117),

(Cde f
el )total ≤

4ε0R2D
d∗

{
1 +

d
4πR2 ln

(
4πR2

d∗

)}
. (127)

From (127), considering (109), it follows that

W f inal =
1
2
(Cde f

el )totalV2 ≤ 2ε0R2D
d∗

2d∗(1− d∗)
kε0

{
1 +

d
4πR2 ln

(
4πR2

d∗

)}
. (128)

from which

(W f inal)max =
2ε0R2D

d∗
2d∗(1− d∗)

kε0

{
1 +

d
4πR2 ln

(
4πR2

d∗

)}
. (129)

Thus, considering both (118) and (129),

∆W = (W f inal)max −Winitial ≤ (130)

≤ 2ε0R2D
d∗

2d∗(1− d∗)
kε0

{
1 +

d
4πR2 ln

(
4πR2

d∗

)}
−

− ε0RDV2

d

{
1 +

d
2πR

ln

(
2πR

d

)}

On the other hand, from (110),

V2 >

√
Td∗6d3

ε2
0 + 4δk2 p2

el
; (131)
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thus,

∆W > ε0RD

√
Td∗6d3

ε2
0 + 4δk2 p2

el

{
2R
d∗

[
1 +

d
4πR2 ln

(
4πR2

d∗

)]
− (132)

−1
d

[
1 +

d
2πR

ln

(
2πR

d

)]}
.

10.1. V Maximizing ∆ W

From (130), it is clear that we obtain an upper limitation for the value of V, which
maximizes ∆W is (Vmax)permissible.

10.2. An Interesting Limitation for ∆W Starting from |E|
From the equations of Models (22) and (2):

λ2

(1− u(r))2 (1 + δ|u′(r)|2) = u′(r)
r

+
1

θλ2
(1− u(r)− d∗)2

(1 + δ|u′(r)|2) . (133)

Cconsidering that λ2

(1−u(r))2 = θ|E|2, Equation (133) becomes:

|E|2(1 + δ|u′(r)|2) = u′(r)
rθ

+
1

θ2λ2
(1− u(r)− d∗)2

(1 + δ|u′(r)|2) , (134)

so that

W f inal =
1
2

ε0|E|2 =
ε0

2

(
u′(r)

rθ(1 + δ|u′(r)|2) +
1

θ2λ2
(1− u(r)− d∗)2

(1 + δ|u′(r)|2)2

)
. (135)

Therefore, considering both (118) and (135),

∆W = W f inal −Winitial = (136)

=
ε0

2

(
u′(r)

rθ(1 + δ|u′(r)|2) +
1

θ2λ2
(1− u(r)− d∗)2

(1 + δ|u′(r)|2)2

)
−

− ε0RDV2

d

{
1 +

d
2πR

ln
(2πR

d

)}
.

Moreover, with 1−u(r)− d∗ < 1− d∗ and u′(r) < H ∈ R+ (see, [11,12]), Equation (136)
becomes:

∆W = W f inal −Winitial < (137)

<
ε0

2

(
H

rθ(1 + δ|u′(r)|2) +
1

θ2λ2
(1− d∗)2

(1 + δ|u′(r)|2)2

)
−

− ε0RDV2

d

{
1 +

d
2πR

ln
(2πR

d

)}
.

Lastly, with
1

1 + δ|u′(r)|2 ≤ 1 (138)

Equation (137) becomes

∆W <
ε0

2

(
H
rθ

+
(1− d∗)2

θ2λ2

)
− ε0RDV2

d

{
1 +

d
2πR

ln

(
2πR

d

)}
. (139)
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In (139), the right side is non-negative. In fact, if it were negative, we would eas-
ily achieve

H < rθ

{
2RDV2

d

[
1 +

d
2πR

ln

(
2πR

d

)]
− (1− d∗)2

θ2λ2

}
(140)

from which, substituting the usual values for each parameter, we would find that H was
increased by a very small non-negative quantity. This means that the slope of the membrane
at the edges is very small, as if the deformation of the membrane was extremely small even
for high values of V. It is evident that this condition is physically impossible. Hence, it
follows that the right side of (139) is always a non-negative quantity.

11. Conclusions

In this study, a new nonlinear second-order differential 2D model for a membrane
MEMS device in which fringing-field effects occur was presented and discussed. Once
the possibility of formulating |E| in terms of average membrane curvature was justified,
the mathematical model was detailed from the point of view of the actuator, highlighting the
link between p and pel , highlighting the actuator–transducer duality. Once two important
lemmas were presented, the existence of at least one solution for the proposed model was
ensured if an algebraic condition depending on fringing-field parameter δ was verified.
However, even if the uniqueness of the solution was not assured, the only permitted
equilibrium position of the model is stable. Furthermore, this equilibrium position is
associated with the profile of the membrane that was closest to the upper disk; therefore,
even if the membrane was very close to the upper disk, the stability of this equilibrium
configuration reduced the risk of touching the upper disk. The range of possible values
for V was obtained by taking into account the need, on the one hand, to overcome the
mechanical inertia of the membrane and, on the other, to prevent the membrane from
touching the upper disk, highlighting that the fringing-field effect appeared explicitly only
in the extreme of V, delegated to overcome the mechanical inertia of the membrane. Lastly,
some conditions for optimal membrane control were obtained. In particular, an increase
was obtained for ∆W when the membrane passed from the rest position to a generic
deformed configuration. This is very interesting because it contains all the parameters that
came into play when the fringing-field phenomenon occurs. Sophisticated mathematical
models describing the behavior of the membrane under the effect of V and in the presence
of fringing fields, while offering excellent food for thought, are poorly suited to real-time
industrial applications. Then, some simplifications of the model and, in our case, of the
formulation of the mean curvature, appear necessary. Locally, this is proportional to |E|,
but determines the effective deformation of the membrane inside the device. However,
the study of the model, although it does not provide results that can be superimposed
with experimental data, certainly provides qualitative indications on the electromechanical
behavior of a membrane MEMS device. Lastly, the mathematical models adhering to the
physical reality of MEMS modeling are extremely complex and obviously do not allow
for in-depth analytical studies. Then, some simplifications in the geometry of the devices
are necessary to obtain simplified analytical models so that they can be easily studied.
Obviously, the results obtained by studying the model proposed in this paper poorly agree
with any experiment results, but provide interesting qualitative indications of the behavior
of MEMS device membranes characterized by simplified geometries.
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Abbreviations
The following abbreviations are used in this manuscript:

r radial coordinate
R radius of the membrane
u(r) profile of the membrane
V external voltage
λ2 parameter depending on V
d distance between the parallel disks
E electrostatic field
θ coefficient of proportionality between u′′(r) and |E|2
δ parameter concerning the fringing field effect
K(r, u(r)) mean curvature of the membrane
d∗ critical security distance
(Vmin)inertia V to win the mechanical inertia of the membrane
(Vmax)permissible V to avoid that the membrane touches the upper disk
pel electrostatic pressure
ε0 permittivity of the free space
Cel electrostatic capacitance
p mechanical pressure
ρ density
h thickness of the plate
T mechanical tension of the membrane at rest
Y Young modulus
ν Poisson ratio
u0 displacement at the center of the membrane
fel electrostatic force
k1 coefficient of proportionality between u0 and p
k2 coefficient of proportionality between pel and p
k coefficient of proportionality between u0 and pel
u1(r), u2(r) twice continuously differentiable

functions (upper and lower solutions)
K1(r), K2(r), L1(r), L2(r) continuous functions
Z(φ) bounded and continuous electrostatic function
(Cel)curve total electrostatic capacitance when the membrane is at rest
D constant
(Cde f

el )curve electrostatic capacitance when the membrane is deformed
(Cde f

el )total total electrostatic capacitance when the membrane is deformed
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