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Abstract: In this paper, we study the singularly perturbed problem for the Schrodinger—Poisson
equation with critical growth. When the perturbed coefficient is small, we establish the relationship
between the number of solutions and the profiles of the coefficients. Furthermore, without any
restriction on the perturbed coefficient, we obtain a different concentration phenomenon. Besides,
we obtain an existence result.
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1. Introduction

In this paper, we consider the Schrodinger—Poisson equation with critical growth:
— Au+ V(x)u + pu = h(x)f(u) + g(x)u’, in R?,
@
—Ap = u?, in R?,
The Schrodinger—Poisson equation arises while looking for standing wave solutions
of a Schrodinger equation interacting with an electrostatic field. In recent years, many

researchers are interested in semiclassical states of

—&2Au+ V(x)u+ K(x)pu = f(x,u), in RS, )
— 2Ap = K(x)u?, in R3,
which can be used to describe the transition from quantum to classical mechanics.
When K = 0, problem (2) reduces to the singularly perturbed problem
—2Au+V(x)u = g(u) in RN, 3)

In the past decade, there is a lot of results on problem (3). By using variational methods,
Rabinowitz [1] first obtained the existence of solutions of (3) under the assumption

h}ggolfV(x) > xlerl}KfN V(x) > 0. 4)

In [2], Wang proved the concentration behavior of solutions of (3) as € — 0. In [3], del
Pino and Felmer introduced a penalization approach and obtained a localized version of
the results in [1,2]. In [4], Jeanjean and Tanaka extended the results of [3] to a more general
case. For other related results, see [5-8] and the reference therein.

When K # 0, a lot of research focus on the case K = 1, f = u? (1 < p < 5). By
using the Lyapunov-Schmidt reduction method, the authors in [9,10] obtained positive
bound state solutions and multi-bump solutions concentrating around a local minimum
of the potential V. In [11,12], the authors proved the existence of radically symmetric
solutions concentrating on the spheres. It should be pointed it out that, the Lyapunov—
Schmidt reduction method is based on the uniqueness or non-degeneracy of solutions
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of the corresponding limiting equation. Recently, by using variational methods, he [13]
considered the subcritical problem

— Au+ V(x)u+ou = f(u), in R3,
©)

— A = 12, in R3.
Under the assumption (4), he related the number of solutions with the topology of
the set where V attains its minimum and obtained the multiplicity of positive solutions.
Subsequently, the authors in [14] studied the problem

{ — &2Au+ V(x)u+ Apu = b(x)f(u), in RS,
(6)

— AP = 1, in R3.

Under suitable assumptions on A, V, b and f, they proved the existence and concen-
tration behavior of positive ground state solutions. For the critical case, He and Zou [15]
studied the Schrédinger—Poisson equation

— 2Au+ V(x)u+ pu = f(u) +u°, in RS,

@)
— Ay = 1, in R3.

By using (4), they obtained the ground state solution concentrating around the global

minimum of the potential V. Furthermore, in [16,17], the authors considered the existence,
multiplicity and concentration behavior of the critical Schrodinger-Poisson equation

{ — EAu+V(x)u+ou = f(u) +u’, in R?,
®)

—Ap =12, in R3.

Motivated by the above results, in this paper, we study the multiplicity and concen-
tration behavior of positive solutions of (1). Before stating the results, we introduce the
following conditions:

(hy) h(x) € C(R3,R), h(x) > 0 and limyy| e 1(x) = hoo > 0. Moreover, there exist k
points x1, x2, ... xF in R3 such that each point is the strict global maximum of h.

(V1) V(x) € C(R%,R) and inf s V(x) := V > 0.

(Vo) V(x') = Vo, i =1,2,...kand lim,|_,o V(x) = Veo > 0.

(g1) g(x) € C(R3,R) and 0 < g(x) < 1. Moreover, g(x') = 1,i = 1,2, ...k and

lim|x|ﬁoog(x) =800 > 0.

(1) f(w)

(f1) f € CY(R*,R) and lim,, 0, f? = limy— 4o % = 0. Moreover, -3 is increasing

for u > 0 and limy,_, % = +o0.
Theorem 1. Assume that (hy), (V1)-(V2), (1) and (f1) hold. Then there exists * > 0 such that
pifoblem (1) has at least k dzﬁ’erent positive solutions wé, i=1,2,...kfore € (0,&*). Moreover,
wg, possesses A maximum point g € R3 satisfying h(y.) — sup,.gs h(x) as e — 0. Besides, there
exist C', ¢' > 0 such that for e € (0,¢*),

. . REY
wi(x) < C' exp<—0’|x€y€|>, x € R3.

Remark 1. In Theorem 1, we obtain the existence of spikes (multiple solutions concentrating at
a single point) on the strict global maximum of h. The behavior of solutions of (1) describes the
transition between quantum mechanics and classical mechanics in some sense.
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Remark 2. Some ideas to prove Theorem 1 come from [18], where the authors studied the subcritical
problem

—Au+ pu = Q(x)|u|P?u in RV,
In [18], the authors imposed the condition

sup Q(x) > limsup Q(x) > 0, )

x€RN |x|—o00

which plays an important role in proving the compactness of the Palais—Smale sequences. This type
condition is first introduced by Rabinowitz in [1]. We pointed out that, when we seek multiplicity of
solutions, it is crucial to prove the compactness of the Palais—Smale sequence. Many authors solved
the problem by imposing the Rabinowitz type assumption, which is restrictive. Similar results can
be found in [13,15,16] and the reference therein. In this paper, by estimating the Palais—Smale
sequences delicately, we remove this technical condition. In fact, we use a different arqument.
Compared with the existing results, in this paper, we also need to study the influence of the variable
coefficient of the critical term on the problem.

Inspired by Theorem 1, a natural question is whether (1) has multiple solutions
without any restriction on . In this paper, by using the Lusternik—Schnirelman category,
we obtain a new result. We assume the following conditions:

(hy) h(x) € C(R3,R) is positive and sup g 1 (x) := hp < +oo.

(Vh)limg_ 4 0o Sup|y|>g % =0.

(g2) g(x) € C(R3,R) and 0 < g(x) < 1. Moreover, there exists pyp > 0 such that g(x) = 1
for pg < |x| < 2pp.

Theorem 2. Let ¢ > 0. Assume that (hy), (V1), (Vh), (g2) and (f1) hold with g(0) < 1. Then
there exists hy > 0 such that for ||h|| < ho, problem (1) has two positive solutions u;j, i =1, 2.

When ¢ = 1, there are an enormous amount of papers studying problem (1) or the
more general form

_ — i 3
{ Au+V(x)u+K(x)pu = f(x,u), in R’ 10)

— Ap = K(x)u?, in R3.

Many papers, see for example, [19-27], focus on the case V and K being positive
constant or radially symmetric functions, f = |u|P~2uor f = f(u). If V isnon-radial, K = 1,
f=ulf ~2y, the authors in [20,28] obtained the existence of ground state solutions of (10)
forp € (3,6). If V =1, f = a(x)|u|P~2u is non-radial, by requiring suitable assumptions
on K and g4, the authors in [29] obtained ground state and bound state solutions. For
other related results, see [30-33] and the reference therein. Usually, in order to ensure
the boundedness of the Palais-Smale sequences, the Ambrosetti-Rabinowitz condition or
some monotonicity condition on f is needed. It is natural to ask whether we can prove the
boundedness of the Palais-Smale sequences without the above restrict conditions. When
we study (1), we solve the problem under mild conditions and get an interesting result.
Instead of (g2) and (f1), we assume the following conditions.

d x) € C(R3,R) and inf, 3 ¢(x) > 0. Moreover, ¢(x) < 1 and there exists pg > 0
(82) g(x) € C( xR 8 8 P
such that g(x) = 1 for pg < |x| < 2po.
(f{) f € C(R",R) and f(u) > 0 for u > 0. Moreover, lim,,_,o % =limy 4o fb(l?) =0
fw)

and limu*)+oo 7 - +OO.

Theorem 3. Let ¢ > 0. Assume that (hy), (V1), (Vh), (g5) and (f]) hold. Then problem (1) has
a positive solution.
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The outline of this paper is as follows: in Section 2, we give some important lemmas;
in Section 3, we prove Theorems 1; in Section 4, we prove Theorem 2 and 3; in Section 5,
we make the conclusions.

Notations:
1
o ulls = (Jgs lu[fdx)®,1 <5 < oo
e H! = H!(R®) denotes the Hilbert space equipped with the inner product (u,v) =
Jr3(VuVos. + uv)dx and the norm [|u|2, = [ps(|Vul? + |u]?)dx, D' = DV*(R3) =
{u € L5(R3) : Vu € L2(R®)} denotes the Sobolev space equipped with the norm

Hu”%l/z = fRB |Vu|2dx.

Vul?d
ﬁ‘@‘iulxl denotes the best Sobolev constant.

(Jia lulodx) ®

e  C denotes a positive constant (possibly different).

*  S=infepia\

2. Preliminary Lemmas

Since we look for positive solutions, we assume f(u) = 0 for u < 0. Make the change
of variable x — ex, problem (1) becomes

— Au+ V(ex)u + pyu = hex)f(u) + g(ex)u® in R3. (11)

For any ¢ > 0, deflne He = {u € H': g3 V(ex)|u|?dx < +oo} the Hilbert space with
the inner product (1, v)e = [g3(VuVus. + V(ex)uv)dx and the norm ||ul|e = ( [gs |Vul? +

V(ex)|u de)%. By the Lax-Milgram theorem, for any u € H,, there exists a unique
¢u € D2 satisfying —A¢, = u?. Moreover, by [20,26,28], we have the following results.

Lemma 1.

(i) ¢u > 0and ¢y = t>¢py forany t € R.

(i) Ify € R3and d(x) = u(x +y), then ¢pa(x) = ¢pu(x +y) and [ps pgit*dx = [ps Ppuudy.
(iii) If uy — u weakly in H, then ¢y, — ¢y, weakly in D'2. Moreover, let v, = u, — u, then

/R3 P, usdx — /R3 Py utdx = /R3 Po, v5dx 4 0, (1),

[ (Gt = ui)pdx = [ o, 009x] = 0u() gl Vg € H'.

lull,

(iv) H‘Pu”Dn = frs puuPdx < Br

The functional associated with (11) is
) =a 2+ 1 [ guiar— [ neF(dr— L [ gleolufar,  a2)
¢ 2170 T g Jps T JRr3

where F(u fo s)ds. Obviously, I, : He — R is of class C! and critical points of I
are weak solutlons of (11). Let me = inf{I(u) : u € M.}, where My = {u € H,\ {0} :

(I(u), u) = 0}.

From [34], we know S is attained by

—_

1
—%% __ whered > 0. Letus,(x) = M‘*l/

(o+]x2) (5+[x—2P2) 2
where ¢ € C§°(By(z)) such that p(x) = 1 on B,(z), 0 < ¢(x) < 1and |Vy| < 2. By the
direct calculation, we have the following results.
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Lemma 2. For 6 > 0 small,
[ |VuszPdx = Ki+0(6h), [ usslPdx = Ko +O(63),
i
/Ra uslfdr = 0(s%),  te(1,3),

where S = —K% .
3
2

=

3. Proof of Theorem 1
By (f1), we derive that

if(u)u >F(u) >0, f(u)u*—=3f(u)u>0, YuecR. (13)

By (1), we have h(x') = hyy, i = 1,2, ...k. We consider the equation:

— Au A+ Vou + pyu = by f(u) +u° in RS, (14)

1
Let |[u|lv, = (fgs |Vu|* + Volu|>dx) . Then the functional of (14) is

. 1 1 1
1) = S lulify + 5 /Rs puuldx — /Rs haF(u)dx - ¢ /RS |u|dx.

Let i = inf{I(u) : u € N}, where N = {u € H'\ {0} : (I'(u),u) = 0}. It is well
known that 71 is attained by w. Moreover, 71 € (0, %S%) and I'(w) = 0. Let |ully, =

1
(fgs [Vu|?> + Veo|u|?dx) 2. Define the functional on H' by

9

1 1 1
I(u) = EHuH%,w + 1/R3 Puutdx — /R3 heoF (11)dx — 6/]@3 goo|u|®dx.

Let meo = inf{I(u) : u € Neo}, where Neo = {u € H'\ {0} : (I'(u),u) = 0}. For any
v € N, by (f1), we have I(v) = Sup;~ I(tv). Moreover, there exists a unique t, > 0
satisfying t,vs. € N. Then by Voo 2> Vo, hoo < hipt, 8o < 1, we get

I(v) = sup I(tv) > I(t,0) > [(t,0) > 1in.
£>0

50 Mmoo > 1i1. Similarly, we have m, > . . ' ‘ S
For 17 > 0, denote C; (x") the hypercube H?Zl (x; =7, x;+7) centered at x* = (x7, x5, x3),

i =1,2,...k Denote Cy(x') and 9C;(x) the closure and the boundary of C, (x'), respec-

tively. By (h1), we have h(x") = hy1. Moreover, there exist 77, Ly > 0 such that C (x),i =1,
2,...kare disjoint, h(x) < h(x') for x € Cy(x') \ x' and Cy (x) C I_I?:l(—LO, Lp).

Lete € (0,1). Define ¢, € C3°(R?) such that g.(x) = 1 for |x| < % -1, pe(x) =0

for|x|>%,0§(pg§1and|V(pg|§2.Let§£(x):w(x—"?i>gog(x—%),i:1,2,...k.
et o > maxy|x* |+, |x°|+71,...,|x"| + 4. Detine x : — such that x(x) = x for
Let p Y, |62 +71 k| + 1} Defi R3R3hh6 f
x| < p, x(x) = £ for |x| > p. For u € H!\ {0}, define Be(u) = XL o g 56

= T Julfdx

continuous in H! \ {0}.

For simplicity, denote C; (x') = Cj,. Set Mi = {u EM::u>0, Be(u) € Cé}, oM! =
{u €EMe:u>0, Be(u) € SC,Z'Y},I' =1,2,...k. Letyl = infueMé L(u), . = infueaMé I(u),
i=1,2,...k
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Lemma3. Leti =1,2,...k. Then forany v € (0,1), there exists e, > 0 such that m, < . <
1+ v fore e (0,e,).

Proof of Lemma 3. It is clear that 4. > m,. Let le(t) = Ig(tg’é), where t > 0. By (f1), we
derive that I, (t) admits a unique critical point t. > 0 corresponding to its maximum. Then
le(t)) = sup,~q le(tCL), IL(t)) = 0. So t.Zl € M. Note that lim,_,o ||wge — w||y, = 0. By the
Lebesgue dominated convergence theorem,

: i1\ _ 1; i\ _
lim pe (K2E) = lim pe (¢1) =
Then B, (téCé) € Cf] for e > 0 small. Since t.{i € M., by the definition of 7%, we get

v < L(HT) = Sup;~ It(tZ!). So we just prove L(t.{l) < 7+ v for e > 0 small. By
lim;_o ||wge — wl|y, = 0 and Lemma 1 (ii), we derive that

hm/ Vi [2dx = hm/ (wee)[*dx = /3 |Vw|?dx,

. ' L ) B )
lim /R3 (Pgé ge dx = 15%/1[%3 (]bwqo£ ZU(Pg) dx = ,/R3 (wa dx.

e—0

(15)

By V(x') = Vo, h(x') = hy, g(x') = 1 and the Lebesgue dominated convergence
theorem, we get

hm/ (ex)|¢E]?dx = hm/ (ex + x')|[wee|*dx = /R3 Volw|*dx,
- 63y — 6 : iy —
igr(l) - g(ex)|t|°dx = /R3 |w|°dx, 2135 /R3 h(ex)F()dx = /R3 hpF(w)dx, (16)

lim [ h(ex)f(¢)Zidx = /R3 hy f(w)wdx.

e—0 JRR3

By tigi € ML, we have
(EPICIE+ ()" [ 0y (i dx .
= [ hex) FEED (gDdx + (1)° [ glex)|gtiodx > (#)° [ glex)Ict|Pdx

From (15)~(17), we obtain that t. is bounded. Furthermore, by (17), (f1), (h1), (g1), for
n= 2 , there exists C;; = Cv, > 0 satisfying
7z

(210, < U [ pars o 0 [ ioax
€ ellVg = 2 R3 € TO € Jr3 € .

Then t. — # > 0 in view of (15) and (16). By (15)~(17),
|, = /R3 (af (Fw)tiw -+ [#0]® ) d

that is, tiw € N. By (f1), there exists a unique t > 0 satisfying tw € N. Since w € N, we
have t' = 1. Then by (15) and (16),

Le(tCE) = 1e(82) +O(e) = I(w) + O(e) = 1t + O(e).
So there exists ¢, > 0 such that 4 < iz +v fore € (0,¢,). O

Lemmad4. Leti=1,2,...k. Then there exist 6, e5 > 0 such that '?é > 1fi 4 & for e € (0, &5).
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Proof of Lemma 4. Assume to the contrary that there exists ¢, | 0 such that ’ﬂn — ¢ < 1.
Then there exists {u,} C OM! satisfying I, (14) — ¢ < 1. By (f1), there exists a unique
t, > 0 such that t,u, € N. Then

2 Ie, (tn) 4+ 0n (1) =sup I, (fun) + 0n (1)
£>0

>, (tnttn) + 00 (1) > [(tgttn) + 0, (1) > 114 04(1),

from which we get [(t,u,) = 1t + 0,(1). Moreover,
/RS (h(enx) — hap) E(buity)dx = 0, (1). (18)

Since t,u, € N, by the Ekeland’s variational principle, there exist {v,} C N, u, € R
satisfying ||on — tuttn|lv, = 0n(1), I(vn) = 1+ 04(1), I'(0n) — pnG'(0n) = 0 (1), where
G(vn) = (I'(vn), vn). By the standard argument, we derive that y, — 0 as n — co. Then

[(vp) = +0,(1), I'(v4) =0a(1). (19)

By (13), we get ||v,|y, is bounded. By the Lions Lemma, [s |[04|'dx — 0 for any

t € (2,6), or there exists y, € R3 such that w, = vn( +yn) ~w 7& 0 weakly in H!(RR3).

If [gs|vn|'dx — O for any t € (2,6), then [ps F(vy)dx = [ps f(va)vadx = 04(1). Let

fR3|vn|6dx — 1. Then limnﬁmanH%/o < I. Since it > 0, we have ! > 0. By S <

anH%/O
(Jp3 \Un\édx)%

contradiction with 11 < %S% So w, — w # 0 weakly in H'. By (19), we have [(w,) =
it 4 0,(1), I'(wy,) = 04(1). Then ['(w) = 0. Moreover,

,we get] > S2. Thus, it = [(v,) — L(I'(vs),04) + 04(1) > 157 +0,(1),a

i+ on(1) :f(wn) - i(f’(wn),wn)
= lalBy + g [ walocx+ [ hM< 1w )wn—F(wn))dx.

By Fatou’s Lemma,
i ol + g5 [ ol [ (3 f o~ Fw) )dx
Zalwllv, + 13 |, s 1M 4f

—1(w) — i(f’(w),w) — I(w) > 1.

So wy, — w in H'. Note that B¢, (tnttn) = Be, (Un) € acg. By ||vn — tnutn|ly, — 0, we
get Be, (vn) — zo € 9Cy. Thus,

2 — lim Jgs x(enx)|vn|®dx tim Jrs X(enx + €nyn) |, |®dx

20
n—co fR3 |Un|6d_x n—co fR3 |wn|6dx (20)

If |enyn| — o0, by w, — w in H', we get |z9| = p, a contradiction with zq € BC}'7 and
p > x| 4+ 17. So |enyn| is bounded. Assume that .y, — yo as n — oo. If [yo| > p, by (20),
we get |zo| = p, a contradiction. If [yo| < p, we have yo = zp € 9C}. Then h(yo) < hym. By
[on — tattn|lvy — 0, wn = On(. +yu) — win HY,

lim/ HnE (it )dx = hm/ T F(0n dx—/ hinE (w)dx.

n—o00
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Furthermore,

lim h(enx)F(tyuy)dx = nlgxgo s h(enx + enyn) F(vn (. 4+ yu))dx

n—oo JR3

= [ o) F(w)dx

Then by (18), we get [ps i F(w)dx = [ h(yo) F(w)dx, a contradiction with h(yg) <
hy. O

By Lemmas 3 and 4, there exists ¢; > 0 such that i1 < 9L < 4L for e € (0,¢7).
Furthermore, v, — mrase — 0. By (f1), for ¢ = 2h , there exists Cz = C Yo > 0 such that

Voo
max{|F(u)|, | f(u)ul} < %|M|Z+C2%|M|6- (21)

Note that /i1 < %S% We choose ¢g € (0,¢1) small such that for € € (0,¢),

NI

s3, 5 e (22)

42@&m+0
2hco

Q=

’yé < min

Following the ideas of [18,35], we can use the implicit function theorem to get the
following result. Since the proof is standard, we omit it here.

Lemmab. Lete € (0,69),i=1,2,...k. Then foranyu € Mé, there exist p > 0 and a dzﬁ’erentia'l
function s(w) > 0, where w € Hg and ||wl||e < p, satisfying s(0) = 1, s(w)(u + w) € M.
Moreover, for any ¢ € He,

(s'(0), 9)
=2, @)e — 4 [pa puupdx + fR3 ex) f(u) + h(ex) f' (u)u + 6g(ex)u’) pdx
 20[ullF 4 fps purdx — fps h(ex)(f(w)u + f(u)u?) + b6g(ex) ulodx

. —(Gg
that is, (s'(0), ¢) = % where Ge(u) = (I[(u),u).
Lemma 6. Lete € (0,e9),i = 1,2, ...k Then there exists {u,} C M. satisfying Is(u,) — 7.,
I[(uy) — 0. Moreover, u, converges strongly in He up to a subsequence.

Proof of Lemma 6. By the definition of 7/, there is u, € M satisfying I (u,) — L. Then
||t4n || is bounded in view of (13). By the Ekeland’s variational principle, I (u,,) < 7 + 1,

Ie(v) > Ie(un) — Lllun —0|le forany v € M. By Lemma 5, there exist p,, | 0 and s, (w) > 0
satisfying s, (w) (u, + w) € M for any w € H, with ||w||¢ < pu. Let w = t¢$, where ¢ € H,
t > 0. Fort > 0 small,

(tsn(t@)[|@lle + [5n(tP) — 1|[[1in]le]

I |-

| \/

EH”n — sn(tP) (un + t)l

> Ie(un) — Le(sn(tp) (un + t))

[Le(un) — Le(un + t@)]

+ (1= su(t)) (L(0n (1t + td) + (1 = 0,) (50 (t) (un + 1)), tn + t),
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where 0, € (0,1). Dividing by t and let t — 0, 1[|(s},(0), ¢)|[|tnlc + | plle] > — (I (1n), §).
By Lemma 5, (s/,(0),¢) = % By (13),

(Gé(u”)/ Mﬂ) - (G:{:(un)/ Mn) _4(Ié(un)/ un)
< —2jun? —2/R3g(£x)|un|6dx <o.

S0 limy,—y0 (GL(1tn), un) < 0. If limy oo (GL(1tn), un) = 0, we get ||un|le — 0, a contra-
diction with I(uy,) — 9% > 0. Then limy,_ye0(G.(up), un) < 0. Since ||u, || is bounded, we
know |(s},(0), ¢)| is bounded. So I}(u,) — 0. Assume u,, — u weakly in H,.

Case 1. uy, — 0 weakly in H,.

Define the functional on H! by

T 2 1 6
Jew) = 3l + 5 [ gudy— [ hoF(wdx— ¢ [ glex)|uf’dx,

By limyy oo V(x) = Voo, im0 h(x) = hteo, We get v{ = Je(utn) +0n(1), Ji(un) =
0,(1). By the Lions Lemma, f]R3 |un|'dx — 0 for any t € (2,6), or there exists y, € R?
with [y,| — oo satisfying v, = (. +yu) — vs. # 0 weakly in HL. If [ps |uy|'dx — 0 for
any t € (2,6), by Lemma 1 (iv), we get [ps ¢u, u>dx = 0,(1). Moreover, [gs F(uy)dx =
Jgs f(un)undx = 0,(1). Then

; 1 1
thtou(1) = Slmallf, — 5 [ glen)lnlod,

ol = [ (ex) ual°x = 0,(1).

H”HH%/OQ
(Jio £(ex)litnlodx) 3
limy—eo H”"”%/m > S3. So > %S%, a contradiction. Thus, v, = u,(.+yn) — vs. # 0
weakly in H! with |y,| — co. Define

Since 7% > 0, we assume lim,_,c ”””H%/oo > 0. By S < , we get

1 1
Le(on) =3 loull} + 5 [, #ou03dr— [ heoF(on)dx

1
~ 6 gex + syn)|vn|6dx.
Then

lyn| = 00, 7t = Le(vn) +0u(1), Li(vn) = 0u(1). (23)

By v, — vs. # 0 weakly in H' and lim 00 §(X) = goo, We get
/R3g(£x + ey, ) vy pdx — /]1%3 g0 pdx, ¥V ¢ € HL.
Then I'(v) = 0. Let w,, = v, — v. By Lemma 1.3 in [36], we have
/RS F(on)dx — /R3 F(o)dx = /R3 F(wy)dx + 0n(1). (24)
By the Brezis-Lieb Lemma in [34], [ps g(ex + eyn)||0n|® — [0]® — |wn|®|dx = 0, (1).
By the Lebesgue dominated convergence theorem, [p; g(ex + €y )|v]0dx — [gs §eo|v|0dx.

Then

/R3 g(ex +eyy)|vg|0dx = /}R3 g(sx+£yn)\wn|6dx+/R3 goo|v|0dx 4+ 0,(1).  (25)
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Combining (24) and (25) and Lemma 1 (iii), we get
= Le(vn) 4+ 0u(1) = Le(wy) + I(v) + 0,(1). (26)
If w, — 0in H!, thatis, v, — v in Hl,by [yn| — oo,

Jgs x(ex + eyn) |0, |dx
Jgs |vntdx

Jgs x(ex)u,|®dx
Jgs lun|®dx

|Be(un)| =

a contradiction with u, € Cy(x'). So wy, converges weakly and not strongly to 0 in H'.
By Lemma 8.9 in [34], | [z §(ex + eyn) (v — 0° — w)) dx| = 04(1)||@||v,, for any ¢ €
H'. By the Lebesgue dominated convergence theorem, | [ps(g(ex + €yu) — goo)v° pdx| =
on(1)|l@|lv, for any ¢ € H'. Then

=on(ll¢lv., ¥ ¢ € H'.

’/]1&3 (g(ex + ey, ) V5 — Qoo — glex + eyn)wg)(pdx
Similar to Lemma 8.1 in [34], we derive that

/R3(f(vn)*f(v)*f(wn))fpdx =on(Dlgllv., ¥oeH.

Together with Lemma 1 (iii), L.(v,) = 0,(1), I'(v) = 0, we get L.(w,) = 0,(1). Thus,

0n(1) =(Li(wn), wn)
:HwnH%/w +/R3 (pwnw%dx—/]R3 hmf(wn)wndx—/]R3 g(sx—|—gyn)|wn|6dx.

By (21), (27) and g(ex + ey, ) < 1, we derive that

V 3
2 Vs 2 6
lonly, < 5> [, lwonlPdx+ (hwczvhc; +1) /R3 |wa|Cdx + 0n (1).
hoociﬁ-l
So 3 [lwnll},, < —2=—Illwall$,, +0n(1). Since w, converges weakly and not strongly
§ 13 ~
to 0in H!, we get lim; 0 Hwn||%/00 > 52 Since I'(v) = 0, we have [(v) >
2<hwc Ve +1
Yo

Me > 1. Then by (26) and (27),

(L (wn), w0a) + 1(0) + 04(1)

’Yi =Le(wy) — 1

+ 14 o04(1),

1 i
> llwnllf, + 7+ 0u(1) >

s3
a contradiction with (22).

4 /Z(thvoo +1>
oo
Case 2. uy, — u # 0 weakly in H,.

By u, — u # 0 weakly in H,, we have I/(u) = 0. By Lemma 1.3 in [36],

/R3 h(ex)F(uy,)dx — /R3 h(ex)F(u)dx = /R3 h(ex)F(i,)dx 4+ 0,(1),
where 1, = u, — u. Together with the Brezis-Lieb Lemma in [34] and Lemma 1 (iii), we
get vt = L(un) +04(1) = L(dy) + (1) + 0,(1). By Lemma 8.9 in [34], for any ¢ € H,,
| Jzs §(ex) (u — u® — @23 pdx| = 04(1)]|@]|¢. Similar to Lemma 8.1 in [34], for any ¢ € H;,
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| Jgs h(ex)[f (un) — f(u) — f(n)]@dx| = 0,(1) | @|le. Together with Lemma 1 (iii), we get
I[(y) = 04(1). Thus,

Ve = L) + L(u) + 04(1),  I{(n) = 04(1). 27)

We claim 11, — 0 in H,. Otherwise, 11,, converges weakly and not strongly to 0 in H,.
By lim|y| e V(%) = Vo, lim|y| 00 (X)) = hoo, e have

7= Je(@n) + Ie(u) +0u(1),  J(i1) = 04 (1). @8

By (21), g(ex) < Land (J{(i1n), 1in) = on(1),

A Ve . -
|3, < 7"" - |t ?dx + <hwcm +1) /R3 |0 |0dx + 0, (1).
3
By the Sobolev embedding theorem, we get limy, e ||1,]|3,_ > 52 . Since
2<hooC Voo +1
Zoo
I[(u) =0, we have I.(u) > m, > 1. Then by (28),
, A 1,
Ve =Je(tln) — Z(]é(un)r un) + Ie(u) +0,(1)
3
1 S2
>y, + 0+ 0u(1) > + 1+ 04 (1),

4, /2<thvm + 1)
2heo

a contradiction with (22). So #i,, — 0in H, thatis, u, — uin H.. [J

Lemma 7. Let e € (0,&), Then problem (11) has at least k different positive solutions ul, i =1,
2,...k

Proof of Lemma 7. Let i = 1, 2, ...k. By Lemma 6, we have u), € M, I(u},) — 7,
I;(uj;) — 0. Moreover, ul, — u} in He. Then u} € ML, Ie(u}) = 9L, I(ul) = 0. By 9% < Y,
we have u; € M;. Since B(ug) € C), where C;, i = 1,2, ...k are disjoint, we derive that ug,

i=1,2,...kare different. Obviously, # is non-negative. By the maximum principle, u. is
positive. [

Now we study the behavior of ul as e — 0.

Lemma 8'. Leti=1,2,...k. Then there exist e* € (0,¢p), {xé} C R3 R,, 00 > 0 satisfying
fBRO(xg) |”§|2dx > oo fore € (0,€%).

Proof of Lemma 8. Otherwise, there exists €, | 0 such that for any R > 0,

lim sup ul |2dx = 0.
n
xeR3 /Br(¥)

By the Lions Lemma, [ps |ul ['dx — O for any t € (2,6). Since I, (ul ) = 7L — 1,

I, (uén) = 0, similar to the argument of (19), we get 11 > %S%, a contradiction. [

Lemma?9. ex. — x ase — 0.

Proof of Lemma 9. We first prove |exi| is bounded. Assume to the contrary that there
exists ¢, | 0 satisfying |e,x | = oo. By I, (u ) = vi, — 1, I} (u; ) = 0, we derive that
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||uL, ||, is bounded. Letv! = ul (.+ x. ). By Lemma 8, we get v. — 0’ # 0 weakly in
H'. Let

1 ; 1
T.(u) :E/Ra(Wu\z—l-V(ex+£xf¢_)|u|2)dx+7/ puii’dx
—/3h(£x+sx F(u )dx—f/ (ex + exi)|ul®dx, u € He.
R
Then T, (0! ) — i1, T, (vl ) = 0. Furthermore,

/ (VZJEHVU + V(enx + 52l )U o' dx+/ i, ol de

—/ (enx + €nx} )f(vén)v dx—l—/ng Snx+snxgn)( fgﬂ) v'dx.

By |enxi | — oo, we derive that

2 i]2 _ i\,,0 i16
1013 + [ 9ol Pdx = [ hof(eidr+ [ gufo'fdx,
thatis, o' € N. By T, (vl ) — i1, T} (vl ) =0,

n

NN VAN
i =Te, (vh,) = 3 (T, 04,0k, ) + ou(1)

1 1 . .
= 1 /R3 (lvvén |2 + V(enx + enXEn) |vlgn |2)dx
(29)
) 1 S .
+ /1‘{3 h(Snx + €nxén) <4f(vén)01€n — F(vén)) dx
1 S
by [ e+ et ol [ -+ ou(1).

Then by Fatou’s Lemma and \snxén | — oo,

i 2 [0 + [ e (37000 — F@) Jdx+ 5 [ galoifodx
4 o R3 4 12 (30)

Since v/ € N, we have I(v') > me > 17i1. Combining (29) and (30), we get vén —2'in
H!. Note that

Jgs x(enx)|ul |6dx _ Jgs x(enx + €nxt )|0L |6dx
f]R3 |ui |edx fR3 ot 16dx

Then by |e,x! | — oo, we get p = lim,_e0 | B(14%, )|, a contradiction with B(ul ) € Cf].

Now we prove exi — x’ as ¢ — 0. Since [exl| is bounded, we assume exi — x}) as
e — 0. Letv! = ul(.+x!). By Lemma 8, we get v. — v # 0 weakly in H!. Then by
I/(ul) = 0, we derive that

Blui,) =

/(|VU\2+V xb) [0 |2 dx+/ ¢,i|0'[Fdx

:/ vdx—i—/ g(xbh)|o'[Cdx.
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Let
Lo(u) :1/ (1Vul + V) P )dx — [ (o) Flu)dx
0 2 Jr3 0 R3 0
- % - g(xb)|ul®dx, u e H.
Then (Ly(0'),v') = 0. By L(ul) = v — 1, IL(ul) = 0,
. NN YN
i =Te(u) — 7 (1), ud) +0e(1)
1 ) o 1 L
- /R3(\Vvél2 +V(ex +ext)oi?)dx + /R3g(sx+£xé)|v§|6dx 31)

[ ex b exd) ( Aed)ed - FGD ) +ou(1),

Then by Fatou’s Lemma,
m>1/ (1Ve2+ VOl ) dx + [ i) L foiyo — F(o') ) dx
~ 4 Jrs 0 rs 0\ 4
+

1 L
ol EEOIIR: (32)
(

Since (Ly(0'),0') = 0, by (f1), we have Lo(v') = sup,- Lo(tv). Moreover, there
exists a unique F' > 0 satisfying f'v' € N. Then

Lo(0') = sup Lo(to') > Lo(Fio') > I(Fv') > . (33)
t>0

Combining (31)+33), we get hi(x!)) = hy and vl — o' in H'. Then h(exl) — hy. Note that

by = S XENEL AT Joo x(ex & exy)log|°d
‘ Ja [ué|odx Jro [0e[0dx

If |xi| > p, then lim,_o |B(ul)| = p, a contridiction with B(ul) € C,"7. So [x}| < p,
frqm which we derive that lim,_,o (ul) = xi € Cé. Since exi — xi), hi(x}) = hy, we get
ext - xtase — 0. O

Proof of Theorem 1. By Lemma 7, problem (11) has at least k different positive solutions
ul,i=1,2,...k. Let vl = ul(. + x1). Then

— v+ V(ex + exg)vf + v = hlex + exp) f(v) + g ex + exp) (7). (34)

By Lemma 9,}0@ — vl #0in H', exi — x'. By the argument of Lemmas 3.8 and 3.11
in [15], limy| e v (x) = O uniformly for ¢ € (0,&*) and there exists C' > 0 independent
of ¢ € (0,¢*) satisfying |||l < C'. Furthermore, there exist C’, ¢! > 0 such that vi(x) <
C'exp(—c[x]) uniformly fore € (0,¢*).

We claim there exists ¢ > 0 such that ||0}||c > o uniformly fore € (0,¢*). Otherwise,
[0} ]|ec — Oase — 0. By (34) and (f;), we get ||v’€||%/0 < % Jgs [01]2dx + C [gs |01[6dx. Then
|\vf¢_||%/0 < 2C||0L |4, [gs [0i]*dx — 0, a contradiction with o) — o' # 0in H'. Let z! be the
maximum point of v;. Then [v;(z¢)| > 0. By lim|y| . v¢(x) = 0 uniformly for e € (0,¢"),
we derive that there exists Z' > 0 such that |z| < Z'.
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Since vl = ul(. + xi), we know yi := x! + z! is the maximum point of u!. By exi — x
ase — Oand |zL| < Z', we get e(xl + zL) — x' as ¢ — 0. Moreover, for ¢ € (0,¢%),

N

ix)=dl(.—x) < exp(—ci|x - xé|> <Cl exp(—ci|x —(xf +zé)|>.

~ Let wh=ul(z), yl = e(x! +z 1). Then wi is the positive solution of (1). Furthermore,
y! is the maximum point of w!, h(y.) — sup, gs h(x) and there exist C', ¢ > 0 such that

wi(x) < Ciexp< o= yf‘) fore € (0,¢*). O

4. Proof of Theorems 2 and 3
For simplicity, let ¢ = 1. Denote H = {u € H! fR3 x)|u|?dx < +oo} the Hilbert

space with the norm |[u|| = (fgs |Vu|* + V(x)|u|2dx) . Let

1 1
I(u) = §Hu||2+1/wcpuu2dx—/wh( u)dx — f/ (x)|u|®dx.

Letm = inf{I(u): u € M}, where M = {u € H\ {0} : (I'(u), u) = 0}.
We first prove Theorem 3. Let X be the Banach space. Recall that {u, } C Xisa (C).
sequence for the functional I if I(u,) — cand (1 + ||un||x)||I'(un)|| — 0 as n — oco.

Theorem 4 ([37]). Let X be the Banach space and I € C'(X, R) satisfying

max{I(O),I(ul)} <ap <ap < | 1an I(Ll)
uj|x=p

for some p > 0 and uy € X with ||uq||x > p. Let ¢ = infycr maxo<i<1 I(y(t)), where

I'={yeC([0,1],X) :v(0) =0,7(1) = uy}. Then there exists a (C). sequence {uy} for the
functional I satisfying ¢ > aj.

For any y € R3 with |y| = 1, by (h,), there exist ¢, & > 0 such that h(x) > ¢ for

1
|x — 3poy| < 0. Let r < min{pg, 10}. Define Usg = Uy 3p0y(x) = %, where

(s-+1x—3poyl2) 2
¥ € CF(Bar (3poy)) such that (x) = 1 for |x — 3pey| < 7,0 < y(x) < 1, |Vy| < 2.

Lemma 10. Assume that (hy), (V1), (g,) and (f{) hold. Then there exists &y > 0 independent of
y € R3 with |y| = 1 such that for any 6 € (0,5),

1
sup I(tusy) < ~S2 — 41,
£>0 3

Proof of Lemma 10. From Lemma 1 (iv), there exists Cy > 0 such that

i’6

~ 6 Jes g(x)\uw 6dx.

Cot
+7II g g|*

I<tu(5 ) H 5,y

By Lemma 2 and (g5 ), there exists §; > 0 independent of y such that for é € (0,41),

3K K
12 < 22 16 16 2
[us5]17 < 5 /3g(x)|u5,y\ dx = ./3 |us, 5| dx > >

Then there exist a small t; > 0 and a large t, > 0 independent of ¢ € (0, 6;) satisfying

sup  I(tusy) < =3, (35)
te [O,tl] @] [t2,+00)
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By Lemmas 1 and 2, we get

10 6 t 4
2 Clhusgls) + sl

— inf F(tugs)dx
gte[tl t] ]R3 ( M)

sup I(tusy) < sup(

telty,ta

1 Nusgl*\?
> +0(0) —¢ inf F(tugz)dx
3 <||u(5,y 6 ( ) telty, ] JR3 ( ,y)
13 1

<3582 +02 —¢ inf F(tug )dx.

<3 + ¢ tel[ﬂ,tz] - (tus,g)dx

By (f1), we have limy; 4o & = +o0. Then for L > there exists Ry > 0

Ct4f¥\<1d !
satisfying F(u) > Llu[* for |u| > Rp. Let r < min{}po, 30}. Note that us4(x) > 54
for |x — 3pgy| < 57 < r. Letdy = min{d1,7?} and 6 € (0,89). Then for t € [t;, 1] and
Ix — 3poy| < 57, we have F(tusg) > Lt‘llu%’g > Lt}6~ L. Since F(tusy) > 0, we derive that

inf F(tus;)dx > inf / F(tu dx>Lt4(52 / dx.
e[ty o] JR (tsg) teltyto] Jjx—3poy| <62 (tg) x|<1

Thus, for § € (0,4),

1

3 1
52 —42. 36
. (36)

53 46t —th;*(s%/ dx <

1
sup I(tu < —
p ( (S,y) ‘lel 3

te[tl ,tz]
Combining (35) and (36), we get Lemma 10. O

Define the functional on H by

1 1
) = glulP+ 5 [ puidr—¢ [ golulfds.

Lemma 11. Assume that (hy), (V1), (Vh), (g5) and (f]) hold. If {u,} C H such that u, — u
weakly in H, I(uy) — ¢ € (O, %S%> and I'(uy) — 0, then I'(u) = 0 and u, — u # 0 weakly
in H. Moreover, if (1) > 0, then u, — u in H.

Proof of Lemma 11. By u,, — u weakly in H, we have I’( ) =0. Letv, = un —u. By
Lemma 1.3 in [36], we obtain that [ps h(x)F(vn)dx = [ps h(x)F (uy dx — Ja B(x)F(u)dx +
04(1). By (hp) and (f{), for any ¢ > 0, there exists C¢c > 0's ch that |h(x) (vn)] <
e|vn|® + Ceh(x)|vn|?. Then for any R > 0,

/|XIER |h(x)F(v,)|dx < 8/ |0, |®dx + Ce sup ‘h/((i)) X /RS V (x)|on|Adx.

[x|>R
Since ||vy|| is bounded, by (Vh), for any &€ > 0, there exists R > 0 such that

sup ‘}i(&)) X /R3 V(x)|vn|*dx < e

[x|>Re

By v, — 0 weakly in H, we have f ‘<R (x)F(vy)dx = 04(1). Thus,

/R3h(x)l-"(un)dx—/Rah(x)l—"(u)dx: /3h(x)1—"(vn)dx+on(1):on(l). (37)

JR
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By the Brezis-Lieb Lemma in [34], we get |[v,]|? = |lun]|® — ||u|* + 0x(1) and
Jrs §(x) [0 [0dx = [Rs g(x)|un|®dx — [gs g(x)|u[®dx + 0, (1). Together with Lemma 1 (iif),
we have

c—1I(u) = I(uy) — I(u) + 0x(1) = J(vn) + 04 (1). (38)

By Lemma 8.9 in [34], we have | [ps ¢(x) (15 — u° — v5) pdx| = 04(1)]|¢@]| for any
@ € H. Similar to Lemma 8.1 in [34], we derive for any ¢ € H, there holds
| Jzs h(X)[f (un) — f(u) = f(vn)]@dx| = 0,(1)] ¢||. Together with Lemma 1 (iii), we get
I'(v) = 0n(1). So (I'(vy), vy) = 04(1). Similar to (37), we get [ps h(x) f(vy)vpdx = 0,(1).
Thus, we have (J'(v,),v,) = 0,(1).

Assume to the contrary that u, — 0 weakly in H. Then v, = u,,. Assume fR3 g(x)]v,l®
dx — 1. Then lim;,;_c0 ||vn||2 <L IflI>0DbyS< o] T, we get | > S3. So

(fR3 g(x)‘z’n‘édf)g

c—I(1) = J(0n) = L(J'(0n),00) + 0n(1) > 157 4+ 0,(1). Since I(u) = 0, we get ¢ > 153, a
contradiction. So I = 0. By (J'(vx), vn) = 04(1), we get u, = v, — 0in H, a contradiction
with I(u,) — ¢ > 0. So u, — u # 0 weakly in H.

If I(u) > 0, similar to the above argument, we can derive that 1, — u in H. We omit
the proof here. O

Proof of Theorem 3. From (hy), (f]), for e = %, there exists Ce = C % > 0 such that

|h(x)F(u)| < % |u|?> 4+ Cy, |u|®. By the Sobolev embedding theorem,
T

I(u) > = — = > - SN S A—
(1) 2 gl = (Cy+ 5 ) [, Iuloar = ) =

Then there exist pg, yo > 0 such that I(u) > 7y for ||u|| = po. Furthermore, I(0) = 0.
By the argument of Lemma 4.1, lim;_, o [ (tutg/g) = —o0. So by Lemma 10 and Theorem 4,
there is {u, } C H such that

1
1) € (0,35%), (L ) I )] 0,

If ||uy || is bounded, by Lemma 11, we have u, — u # 0 weakly in H and I'(u) = 0,
that is, (1) has a positive solution. So we just need to prove that ||u,|| is bounded.
Otherwise, we have ||u,|| — co. Let v, = ﬁ Then v, — v weakly in H.

Case 1. v(x) = 0 a.e. x € R3. Let 6 € (4,6) and inf, s g(x) := go. By (h2), (f{) and
(gh), fore e (O,go X (% — %)), there exists C, > 0 such that

‘éh(x)f(un)un —h(x)F(uy)| < e|un|6 + Cgh(x)|un|2.

Then
1 1

(I<un> - ;(1’<un>,un)) > (2 - 9) il = Ce [ ()l (39)

From (39), we derive that

|141||2 <I(un) — ;(I'(un),un)) > (; — ;) -G /]1%3 h(x)|v,|*dx.
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Similar to (37), we have [ps hi(x)|v,[*dx — 0. Then by I(uy) — ¢, (I'(uy), un) — 0
and [Juy|| — oo, we get 0 > (7 - %), a contradiction.

Case 2. v(x) # 0. Let Q = {x € R?: v(x) # 0}. Then the measure of () is positive.
For x € O, by v,(x) = Hu( H) — v(x), we get lim, o0 |Un(x)| = +o0. Letq € (4,6). By (h2),
(f{) and Fatou’s Lemma,

L OO F () + 380
n—oo JO) ||unH‘7

dx > 80 hm/ 100|716~ 9dx = 400, (40)

Furthermore, for ¢ € (0,82), there exists C¢ > 0 such that |h(x)F(u,)| < e|u,|® +
Ce|un|?. Then

Joo o HOOF (un)dx+6/ x)lun|odlx
2 80 6 2
—C, /]Rs\n |ty |~dx + (Z —s) /]1&3\0 |uy|°dx > —Ce /RB\Q |ty |“dx,

from which we get

h(x)F 1 6
lim (OF(un) + 58(x) |t dx > —C, lim ¥/ |og[?dx > 0. (41)
[un]l =2 Jr2\0

n—co JR3\ ) 7K n—co

Combining (40) and (41), we derive that

h(x)F(un) + 58(x) |utn|®

lim dx = 4o0. 42
n—oo JR3 ||un||‘7 (42)
On the other hand, by Lemma 1, (iv),
1 C
1)+ (B (n) + g0l b < 5 a2+ .
So nlgrolo fRs H)unH”( )t dx = 0, a contradiction with (42). O

Now we prove Theorem 2. By the Lagrange multipliers Theorem, we can derive the
following result. Since the proof is standard, we omit it here.

Lemma 12. Assume that (hy), (V1), (g2) and (f1) hold. Let {u,} C M such that I(u,) — ¢ €
(O, %S%> and I (uy) — 0. Then I' (u,) — 0. Moreover, ||uy,|| is bounded.

Lemma 13. Assume that (V7),

(82) and (f1) hold. Then there exists 1jg > 0 such that [, ‘—§||Vu\2
dx # 0 for u € My with J(u) < 1S

+ 1o, where My = {u € H\ {0} : (J'(u),u) = 0}.

a
3
2

W=
n
NI

Proof of Lemma 13. Assume to the contrary that there exists u, € My such that J(u,) — 3

3 2
and [ps ﬁ|Vun|2dx = 0. Then [ps |Vun|?dx < [ps g(x)|un|®dx. By S < h@‘v—u”‘dxl
(fRB g(x)|un|6dx)3

7

we get [rs g(%)|ua|dx > 2. So
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% -40,(1) = () = ¢ (r) 1)

1
3 Lo (190 V() a2 v

1
5 6 3. S . 1,
3</Ra|u”| dx> = 3(/Rgg<x)|unl dx) > 352,

from which we derive that lim,,_,c ng, V(x)|up|?dx =0,

1
3

lim | [Vig|?dx = 53, hm/ ity |Cdx = hm/ (x)|unlCdx = 3. (43)
n—oo JR3
Letv, = ———. We get [ps V( x)|v,|?dx — 0, Jrs |Vo,|[2dx — S, Jrs & T Vo, |?

(le3 \un|6dx)
dx = 0. By Theorem 1.41 in [34], there exist y, € R3 and tin € (0,+00) such that

— 0. (44)

So fR3 |Voo|2dx = S, Jgs [v0l®dx = 1, that is, S is attained by vy. By [38], vy =

— % wherecy #0,dy >0, x € R3 Thus,
(1+|do(x—x0)[2)2

3
Coln

(.”% + d%| = Yn — xOVn|2)

— 0. (45)

Oy —

N—

D1,2

By ¢(0) < 1, there exist o9 > 0 and g, € (0,1) such that g(x) < g for |x| < 9.
Case 1. y, — +ooasn — oo.

Let x = ynz + yn. By V(x) > Vo, we get [ps|oa(x)?dx = yn fR3|ynvn(ynz+

Yn)|?dz — 0. Then [ps \ynvn HnZ —|—yn)\2dz — 0. By (44), we have jj; Un(ynx +yn) — 0o
a.e. By Fatou’s Lemma, we get [gs [vg|?dz = 0, a contradiction.
Case 2.y, — ji #0asn — oo.
Similar to Case 1, we get a contradiction.
Case 3. py, — 0asn — oo and |y,| < g for large n.
Assume v, — yo. Then [yo| < go. By (43), we have [53(1 — g(x))[va[°dx = 0,(1).

Then by (44),
1l % (x — Yn )
Ha #n

6

on(1) = [ (1)) dx = [ (1= gunx + i) lool*dx.

By the Lebesgue dominated convergence theorem, we derive that 0 = [p5(1
¢(y0))|vo|®dx > 0, a contradiction.

Case 4. jt; — 0 as n — co and there exists a subsequence of {y, }$_; (still denoted by
{yn}iy) satisfying |ya| > 0. By [gs 1 |V, |2dx = 0 and (45),

|2
dx

1) = X Yt Xopn pn|X — Yn — Xoptn
o) = Je\ e ™ Tyn ol ) (2 1.2 T
R3 \ |X Yn + Xoln (Vn‘i‘do\x—yn—xo#ﬂ )

Yn + Xokn ,un‘x_]/n_XOVnF
|Yn + xopn| JR3 (p2 + d3|x —y, — Jc()‘14n|2)3

dx.
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By uy, — 0and |y,| > 0o, we have |y, + xoun| > |y2”| > % for large n. For any x,

z e B3\ {0},

x oz |z = fx) +xf(x—2)|  2fx 2]
x| |z] |x|z] I
Thus,
/ X Yn T+ Xokn ,un|x_]/n_x0,un|2 dx
|x—yu—sxopal<pn| [ X [Yn + Xoptn] (y%+d%|x—yn—x0yn|2)3
S/ 2|x — yn — Xopn| P X — yn — Xoptn|? ~dx (47)
Jx—yu—xopn|<pn  [Yn + Xopn| (1% + d3|x — yn — xopn|?)
4 2
< ﬂ/g 7”2' sdx < Copin.
@ Jo 1 @)
Furthermore,
/ X Yncxopn | palx—yn—xomal®
r—yu—opnl=pn | 1X] (Y +X0pnl | (42 + d3|x — v — xopa]?)®
o 3
S — BnlX = yn = 30"y, (48)
[Yn 4 Xopn| Jx—yn—xopn| > (y% + d(z)|x — Yy — xO‘un|2)

3
00 21 (14 d2Jx2)

From (46)—(48), we get

| 2

/ X pn|x = Yn — Xopin

3dx
B [x| (.”% —I—d%|x —Yn — xOVn|2)

0= lim
n—oo

2
= / 7|x| zdx,
R3 (l + d%|x|2)
a contradiction. [

Lemma 14. Assume that (hy), (V1), (82) and (f1) hold. Then there exists hy > 0 such that for
Illoo < o and u € Mwith 1(u) < §52, there holds g 5| Vul?dx # 0.

Proof of Lemma 14. By (f1), for any u € M, there exists a unique ¢, > 0 such that t,u €
Mjy. Then

lul+ [ | guidx = [ h(o)f(wudx+ [ g(x)luldx,
12| u||® + '/R3 puu*dx = t§ ./R3 g(x)|uldx.

Ift, <1, then
tﬁ<|u||2+/RS <puu2dx> <t (/RSh(x)f(u)udx—l—/RSg(x)|u\6dx)

5 (P + [ purid),

thatis, t, > 1, a contradiction. So ¢, > 1. By (49),

2 < H”Hz + fRS 4)uu2dx

YT Jre8(x)[ulbdx

(49)
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Since u € M, by (hy), (f1), for e = Vj, there exists Cc = Cy, > 0 such that [|u[|* <
7)o fgs Volul?dx + Cy, ||]leo s |1]dx + [gs g(x)|u|®dx. Then for ||i]|e < 1,

1
3
s(/]RS |u|6dx> < CVOHhHOO/RS |u|6dx+/R3g(x)|u\6dx. (50)

Since g(x) < 1, we obtain that there exists 7o > 0 such that [p; |u|dx > 5o. By
I(u) < %S% with u € M, we get |[ul|? < %S%. Then [gs |u[dx < ”;’%‘6 < %S%. So
o < Jgo [ulbdx < %S%. By (50), there exists i, € (0,1) such that for ||h|e < g,

i(/ﬂ{3g<x>|u|6dx)% <3 (L. |u|6dx)§ < [ sluldx.

Then [ps g(x)|u|dx > (g)% Together with (49) and ||u||?> < %S%, we derive that
there exists Tp > 0 such that t, < Tp. By (f1), we obtain that for u € M with I(u) < %S%,

NI

S2 > I(u) = sup I(tu) > I(t,u) > J(tyu) — ||h\|oo/R3 F(t,u)dx.

t>0

Q| =

By t, < Tpand |ul? < %S%, there exists hy € (0,h)) such that J(t,u) < %S% + 10
for ||h]jc < ho. Since t,u € My, by Lemma 13, we get [ps ﬁ|V(tuu)|2dx # 0, that is,

Jgs T§||w|2c1x #0. O
We introduce the Lusternik-Schnirelman category.

Definition 1. For a topological space X, a nonempty,closed subset A C X is contractible to a point
y in X if and only if there exists a continuous mapping 1 : [0,1] x A — X such that (0, x) = x
forx € Aand n(1,x) =y for x € A.

Definition 2. Define

cat(X) = min{k € N : there exist closed subsets A, ..., Ay C X such that

Aj is contractible to a point in X for all 7 and

In particular, if there does not exist finitely many closed subsets Aq,..., Ay C X such that
UfleAi = X and A; is contractible to a point in X for all i, denote cat(X) = oo.

The following two lemmas are introduced to prove Theorem 2.

Lemma 15 (Lemma 2.5 in [39]). Let X be a topological space. Assume there exist two continuous
mapping

P:SP={ycR:|y=1} =X, Q: X = §*
such that Q o P is homotopic to identity, that is, there is a continuous mapping o : [0,1] x S? — S?
such that o(0,x) = (Qo P)(x) for x € S* and o(1,x) = x for x € S?. Then cat(X) > 2.

Lemma 16 (Proposition 2.4 in [39]). Let M be a Hilbert manifold and I € C'(M,R). If there
exist co € Rand k € N such that I(u) satisfies the Palais—Smale condition for ¢ < co and cat({u €
M : I(u) <co}) > k, then 1(u) admits at least k critical points in {u € M : I(u) < co}.

Proof of Theorem 2. We note that I(0) = 0. By the proof of Theorem 3, there exist po,
Yo > 0 such that
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I[(u) = 7o, ¥ |lull = po.

By the argument of Lemma 10, lim;— 10 I(fu55) = —oo. Then I(tusy ) attained its
maximum at a t, > 0. So %I(tu@g) |t=t, = 0. We note that

d 1 " 1 "
dtl(tu) = [t2|u||2 + /R3 Puutdx — 7 /R3 h(x) f(tu)udx — 2 /}R3 g(x)|u|6dx}

By (f1), we get ty is unique. Moreover, t,us; € M. By Lemma 10, for & € (0,6),

NI
N|—

sup I(tusy) = I(tyusy) < 352 =9

1
= (51)
£>0 3

Define P : S> — M by P(y) = tyus . Then P is continuous and
P(S?) C {u eM:I(u) < %S% —5%}. Define

Nl

Q: {ueM:I(u)S;S —5%}—>SZ

3 | VuPdx
b O = [ ]
[0,1] x S* — §? such that o(6,y) = Q((1—20)P(y) + 20us ;) for 6 € [0,3), 0(6,y) =
Q(Uz(l_g)(g,g> for 6 € [},1) and ¢(6,y) = y for 6 = 1. By the argument of Case 4 in
Lemma 13, we have

By Lemma 14, we know Q is continuous. Define ¢(6,y) :

X[ Beoyl| = 13p0v]

x ey | _ 2x = 3oy

By a direct calculation, for |x — % poy| <,

1
) (2= 6)0)}|x = 3oyl

[Viy1-g)s5]° = (2(1—0)6 + |x — 2poy[2)°
Then
/ x 300y ||Vu2 _ovs.q|2dx
x=3oov<r| x| [3poy] o

1
< Alx — Spoy| (2(1—-0)8)2|x — Spoy?
TR 300 (2(1-6)6 + |x — 3pey?)°

_ 4(2(1-0)0): [ o
B TR )

By a direct calculation, for r < |x — %p0y| <2r,

2 2VPR(1-0)0)F | 242(2(1-6)8) |x — Jpoyl?
T 2(1-6)6 + [x — 300y[? (2(1-6)5+ |x—%p0y|2)3
10(2(1 — 6)6)2
T 2(1-0)8+ [x — ooy

|Vip1_6)s,4]
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Then

X 300y
m— 2 ‘W“zl 9)oy| dx

1

/rﬁlx—ipoyﬂr
< / 40[x — zpoy\ (2(1—-10)9)2
T <Gyl 3p0 2(1—0)5+ |x — 3poyl?

1
< 2021 -0)9): / dx.
3p0r <|x|<2‘r

dx

Thus, we have limg_,; fR3<|x\ |J\) |Vity(1_g)s,5/*dx = 0. By Lemma 2,

91;)1_ /Ri*\ ||Vu21 9§y| dx = i |y|/ |Viy(q— 9)5y| dx = Kyy.

Then by the continuity of Q, we obtain that o(6,y) € C([0,1] x S?,§?), 0(0,y) =
Qo P(y) fory € S>and o(1,y) = y for y € S. By Lemma 15, we have

53—5%}) > 2.

By Lemmas 11 and 12, we know I satisfies the (PS) condition for ¢ € (O, %S%> Then

by Lemma 16, we obtain that I has two nonnegative critical points u;j, i = 1, 2. By the
maximum principle, u; j, is positive. [

W=

cat({u eEM:I(u) <

5. Conclusions

We first study multiplicity of solutions of the singularly perturbed Schrodinger—
Poisson equation with critical growth. When the perturbed coefficient is small, we establish
the relationship between the number of solutions and the profiles of the coefficients, which
is different from the existing results. We pointed out that, when we seek multiplicity of
solutions, it is crucial to prove the compactness of the Palais-Smale sequence. Many authors
solved the problem by imposing the Rabinowitz type assumption, which is restrictive.
In this paper, we remove the technical assumption. Furthermore, we study multiplicity
of solutions without any restriction on the perturbed coefficient. By using the Lusternik—
Schnirelman category and developing some techniques, we obtain a multiplicity result.
Besides, we study the existence of solutions of non-autonomous Schrédinger—Poisson
equations without the classical (AR) condition or the monotony condition. We introduce a
new argument to solve the problem.
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