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Abstract: A data-driven method to identify frequent sets of course failures that students should
avoid in order to minimize the likelihood of their dropping out from their university training is
proposed. The overall probability distribution of the dropout is determined by survival analysis.
This result can only describe the mean dropout rate of the undergraduates. However, due to the
failure of different courses, the chances of dropout can be highly varied, so the traditional survival
model should be extended with event analysis. The study paths of students are represented as events
in relation to the lack of completing the required subjects for every semester. Frequent patterns of
backlogs are discovered by the mining of frequent sets of these events. The prediction of dropout is
personalised by classifying the success of the transitions between the semesters. Based on the explored
frequent item sets and classifiers, association rules are formed providing the estimates of the success
of the continuation of the studies in the form of confidence metrics. The results can be used to identify
critical study paths and courses. Furthermore, based on the patterns of individual uncompleted
subjects, it is suitable to predict the chance of continuation in every semester. The analysis of the
critical study paths can be used to design personalised actions minimizing the risk of dropout,
or to redesign the curriculum aiming the reduction in the dropout rate. The applicability of the
method is demonstrated based on the analysis of the progress of chemical engineering students
at the University of Pannonia in Hungary. The method is suitable for the examination of more
general problems assuming the occurrence of a set of events whose combinations may trigger a set of
critical events.

Keywords: educational data mining; survival analysis; competing risks; event analysis; frequent
itemset mining; association rule mining

1. Introduction

Student dropout in higher education is a world-wide problem that is worth paying
attention to. The problem is especially significant in the United States, where one third
of the students give up their studies before the second year, causing significant financial
damage to the government [1]. A significant proportion of students do not complete
their studies in Latin American countries either, especially in Chile [2]. Another issue is
that dropout is significantly in different levels of education, so it also appears in students
pursuing doctoral studies [3]. Therefore, the analysis of student dropout is a significant
task from an international point of view, and this is only further confirmed by the fact
that the prestige of educational institutions lies in the success of their participants, and the
successful completion of the started training has a crucial importance from the viewpoint
of the students as well.

Educational data mining focuses on analysing the impact of various factors in this
area. The impact of artificial intelligence on education has already been reviewed [4].
The study found that artificial intelligence has been adopted and used in various fields of
educational institutions. These areas are administrative functions, grading assignments,
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improving teaching activities. The applications of big data and artificial intelligence (AI)
have become significant, and they open a novel trend. AI has enormous potential to realize
highly effective learning and teaching. However, it is still fairly novel and unfamiliar to
many researchers and educators, indicating exciting unsolved challenges [5]. This paper
aims to deal with this claim.

Student dropout has also become a popular topic of research of educational data
mining. Due to the complex nature of the topic, specific objectives need to be formulated
and methodologically developed instead of general models [6]; therefore, some studies ex-
amine the performance of the students by using a variety of data mining methods [7]. Data
mining methods are also used to examine the overlapping of the completion of individual
courses and the difficulties they are likely to cause to the participants during the training
[8]. The most popular data mining methods include decision trees, neural networks, logistic
regression and cluster analysis [9]. The traditional classification cannot directly be utilized
for estimating probability events [10]. The neural network can make predictions, but the
process of the algorithm cannot be interpreted [11]. This method is also not suitable to
determine frequent itemsets. Cluster analysis is suitable for partitioning the students, but
it cannot provide a prediction model [12]. We note that there are often only a few samples
to which to apply a complex parametric model. In this case a semi-parametric model is
proposed.

Survival analysis provides solutions to many problems, and it is possible to examine
dropouts with this technique [13]. Although the study of dropouts usinga survival models
has not yet received much attention [14], it is clear that it is worth paying attention to
explore its possibilities. The survival model is suitable for predicting the possibility of
a dropout up to several semesters. In contrast, basic machine learning tools are more
advantageous in determining the outcome of a given semester [15]. This framework has
proven to be similarly useful for predicting the success of online education [16]. Moreover,
it can also detect dropout factors [17] The significant advantage of this method is that
it can only predict which student is likely to fail in the completion of their studies, but
also indicates the time of their dropout [15]. The disadvantage of the method is that only
early predictions can be made for forecasting of few semesters and an extended model is
needed to examine the long-term students [18]. The explanation of this lies in the countless
variations of missing subjects making the task of forecasting extremely complex.

There can be a myriad of research aspects why a student becomes at-risk or drops
out of university. So far, the researches have been focusing on estimates based on high
school performance [19]. The interesting factors are the gathered background information
combined with the semester performance [20], as well as the financial [21] and family
background [22]. However, there are also some universal factors in the studies in addition
to the factors mentioned earlier. These are, for example, demographics and personal
characteristics. The literature review revealed that none of the studies published estimations
based on the student’s lack of subjects patterns. This investigation aspect is aimed at in
this paper.

One of the significant deficiencies of student dropout studies is that methodologies
focus only on early prediction. Thus, one of the future challenges is to develop a robust
and comprehensive early warning system that can also effectively predict and identify
“at-risk” students in the distant future [23]. Considering the mentioned challenge, this
paper aims to integrate survival analysis with machine learning methods to make the ap-
propriate predictions. Based on these, our research aims to identify a model that discovers
regularities in the frequently uncompleted subjects based on the available performance
data of students. Not only are the frequently occurring association rules predicting the
dropout of students determined by the association rule mining algorithms, but the associ-
ated Kaplan–Meier estimate of the empirical distribution of the dropout times is provided
as well. The association rule mining is a well-known technique. It helps to discover hidden
patterns and highlights relationships and correlations [24]. In the study of student dropout,
this is a particularly advantageous feature that can identify the dynamics that ultimately
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lead to student failure. This method is thus able to predict dropouts up to several semesters
and show critical subjects and critical subject sequences based on the requirements of a
subject. The association rule mining method has easily understandable probability theory,
and it seems to be analogous to survival analysis [25]. The initial ideas aimed to represent
the uncompleted subjects as sequences for the total study time, but it turned out that this
requires huge computing capacity. The proposed associated Kaplan–Meier methodology
has been compared to the Naive Bayes Classification method.

Association rule mining has already been used in the past to examine dropout.
One study examined failure using several methods, and the study also includes the as-
sociation rule mining [26]. The difference from the current study is that it predicts based
on factors influencing the student: family problems, health problems, personal problems,
institutional problems. Only fallen students were observed, and the significance of dropout
is caused by the individual influencing factors. In contrast, this study considers the propor-
tion of students who graduated and gives information about success. Machine learning
methods to predict dropout in the first year based on some student-specific features such
as gender and high school id were also compared [27]. The study also covered some admis-
sion tests, and this is not considered in this study. If this test is failed, the student has to
attend further specific courses and has to pass. The results show that the prediction is more
accurate and performs better if the proper features are selected.

The novelties of the paper are: (i) it uses a different aspect to predict the dropout,
namely the uncompleted subjects; (ii) it integrates the survival analysis and machine
learning methods to deeper explore the interrelations and correlations, (iii) the methodology
is able to predict the dropout in a long time range. The method was developed based on the
data of approximately 350 students of the chemical engineering undergraduate program of
the University of Pannonia in Hungary.

2. Integration of Survival Analysis and Frequent Itemset Mining

This section presents the developed methodology in a generalized form as it is suitable
for the examination of more general problems assuming the occurrence of a set of events
whose combinations may trigger a set of critical events.

The methodology starts with the integration of the various data sources needed for the
identification of the triggering and consequential events, whose probabilities are considered
as competitive risks, in order to obtain a general model that is valid for the whole dataset
(population) by the means of survival analysis. As the obtained model cannot provide
specific predictions or risk assessments for a specific individual, in-depth event analysis is
performed based on the frequent itemsets of the triggering effects.

Among the large set of itemsets generated by the frequent itemset mining algo-
rithms, only a few will be informative regarding their ability to predict the consequential
events. The applicable sets of itemsets are filtered by forming association rules that describe
how a specific consequential event is caused by the certain sets of the triggering events.

The probability of the consequential events is calculated based on the integrated
analysis of the identified association rules. By aggregating the calculated probabilities for
the whole population, the resultant estimate is suitable for the validation of the model
based on the results of the survival analysis.

The following subsections provide the details of the method.

2.1. Empirical Survival Function of the Occurrence Times

The proposed method studies the nonparametric empirical distribution of the occur-
rence of events in ordered discrete occurrence times: t0 = 0, t1, . . . , t f , . . . , tn. The S(t f )
survival function represents the conditional probability that determines that an event
occurs later than t f , provided that it has not yet occurred until the time t f−1:
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S(t f ) = P(T > t f |T > t f−1)P(T > t f−1) = (1)

1− P(T = t f |T > t f )P(T > t f−1)

Let q(t f ) = P(T > t f |T > t f−1) be the probability that gives a recursive description
of the survival function:

S(t f ) = q(t f )S(t f−1) =
f

∏
k=0

q(tk) (2)

The value of q(tk) can be estimated based on the mk number of events that occurred at time
tk and nk the number of cases at time k in which the event has not occurred until time tk−1
yet (which means nk represents the size of the risk set at time tk):

q(tk) = 1− mk
nk

(3)

Substituting Equation (3) into Equation (2), the Kaplan–Meier empirical distribution of the
occurrence of the events can be obtained [28]:

S(t f ) =
f

∏
k=0

(
1− mk

nk

)
(4)

An example for the resulted distribution function is shown in Figure 1.

Figure 1. Example of the Kaplan–Meier empirical survival function. In this example, the probability
that the event (e.g., the dropout) will occur after the second time instance (e.g., semester) is 0.8,
while the probability that the event will occur later than the sixth time instance is 0.35.

2.2. Handling Competing Risks in Survival Analysis

The presented Kaplan–Meier model cannot be directly applied when there is more
than one consequential event, e.g., besides the dropout of students, they can successfully
graduate as well (and the graduating students cannot be expelled by the university). Our
key idea is that, the probability of occurrence of these consequential events should be
handled as competing risks. Depending on what type of competing risks exist and which
survival analysis procedure is used, there are several methods to handle competing risks. In
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the case of the Kaplan–Meier survival analysis, the calculation of the Cumulative Incidence
Curves is the obvious way of extending the method to handle competing risks:

S(t f ) =
f

∏
k=0

(1−
m1

k + . . . + mc
k . . . + mC

k
nk

) (5)

where mc
k is the number of occurrences of the c = 1, . . . , Cth competing risk at time tk,

where C represents the number of competing risks.
The hazard function of the cth examined risk (hc(tk)) represents the probability of the

occurrence of the cth consequential event:

hc(tk) =
mc

k
nk

. (6)

The Incidence Curve (Ic(tk)) can be calculated from the survival function and the hazard
function as:

Ic(tk) = hc(tk)S(tk−1) (7)

By aggregating the values of the Incidence Curve, we obtain the Cumulative Incidence
Curve (CICc(t f )) [28]:

CICc(t f ) =
f

∑
k=1

Ic(tk) =
f

∑
k=1

mc
k

nk

k−1

∏
k′=1

(1−
m1

k′ + . . . + mC
k′

nk′
) (8)

One of the significant advantages of the presented empirical distribution is that it can
be easily applied even if the problem also requires the management of competing risks.
However, the disadvantage of this method is that the whole dataset is treated as one and
no additional information, like the impact of different uncompleted subjects, is provided
on individual cases. For applications where there may be a variety of causes of an event,
it is advisable to explore the impact of the sets of possible causes and their contribution
to the risk of a consequential event. The following subsection presents how such frequent
itemsets of events and association rules can be explored.

2.3. Frequent Event Pattern Mining for Survival Analysis

The formalisation of the frequent itemset mining-based event analysis is based on the
following definitions.

Similarly to the survival analysis, the studied events can occur in discrete time in-
stances t0 = 0, . . . , t1, t f , . . . , tn. Let ei

k denote the occurrence of the ith event at time tk.
We study a set of j = 1, . . . , nk cases at time tk, so when the ith event occurs at time tk in the
jth case, it is denoted as ei

k(j). The X j
k = {e

i
k(j), . . . , el

k(j)} set contains events that occur in
the tkth time instance or kth time period in case j, while the Xk = {X1

k , . . . , Xnk
k } set of these

sets represents all the events at the t f time. In our analysis a case is the set of uncompleted
subjects of a specific student, or, in more general terms, the event trace in process mining.

The purpose of frequent itemset mining is to reveal a set of φ
p
k ⊆ Xk informative

event patterns, where p represents the index of the mined patterns, p = 1 . . . , P. A pattern
is supported by the X j

k case when φ
p
k ⊆ X j

k. The importance of a pattern is measured
by its support (supp(φp

k )) that measures the relative number of cases in which the φ
p
k

pattern occurs:

supp(φp
k ) =

|φp
k ⊆ X j

k|
nk

(9)

The φ
p
k pattern is frequent, if its support exceeds a specific value: supp(φp

k ) ≥ minsup.
The frequent pattern mining algorithms aim to find all the frequent patterns. Therefore,

the higher the minsup value is, the smaller the number of generated patterns, which in-
tuitively improves the interpretability of the model, while at a smaller minsup value,
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more itemsets are extracted representing more specific cases and a more accurate, yet less
interpretable, model is produced.

We are looking for frequent patterns that can be grouped into a set of triggering events
and a consequential event as follows: φ

p
k = {φp∗

k , ec
k}, as the antecedent part of the φ

p∗
k → ec

k
association rule is the φ

p∗
k set of triggering events and the ec

k consequential part is the
triggered consequential event.

The confidence of the φ
p∗
k → ec

k association rule is the P(ec
k|φ

p∗
k ) conditional prob-

ability, that describes the probability that the φ
p∗
k set of triggering events causes the ec

k
consequential event:

con f (φp∗
k → ec

k) = P(ec
k|φ

p∗
k ) =

supp(φi
f )

supp(φp∗
k )

(10)

Based on the support and confidence measures of the association rules, the probability
of the consequential events can be calculated as it is presented in the next subsection.

2.4. Integrated Analysis of the Association Rules

As in most of the cases more φ
p∗
k frequent itemsets are generated; the proper aggrega-

tion of these association rules is a cardinal step of the analysis to calculate the probability
measures of certain consequential events.

Naturally, based on each φ
p∗
k → ec

k rule, a different probability (risk) is associated
with the occurrence of the ec

k event. A logical conclusion is that the rule with the highest
probability will have the greatest impact on the fate of a specific student; therefore, the rule
with the highest probability (P(ec

k(j))) is considered in the case of each student:

P(ec
k(j)) = max(P(φ1

k(j)→ ec
k), . . . , P(φp

k (j)→ ec
k)) (11)

The next step is to calculate the probability of drop out generalized for all students.
In this case, it is advisable to take the maximum of the maximum probability values (P(ec

k))
of individual students:

P(ec
k) = max(P(e1

k(j)) . . . P(enk
k (j))) (12)

This probability defines the hazard function hc(tk) for the ec
k competing risk of the

survival analysis:

hc(tk) =
mc

k
nk

= P(ec
k) (13)

which can be used to estimate the mc
f number of ec

f events,

m̂c
k = nkP(ec

k) =
nk

∑
j=1

P(ec
k(j)) (14)

Then, substituting Equation (13) into Equation (8), the Cumulative Incidence Curve
for survival is as follows:

CIC0(t f ) =
f

∑
k=1

P(ec
k)

k−1

∏
k′=1

(
1−

C

∑
c=1

P(ec
k′)

)
(15)

3. Application to Student Dropout Prediction

To set up the model, the course completion data of former chemical engineering
students at the University of Pannonia was used who had already either graduated or
been expelled from the university. Active and passive students were excluded from the
study because there is no information about their outcome. Reapplied students were
also excluded from the analysis. The students were completely anonymized. It was not
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necessary to obtain permissions as we use data from our university. The input of the method
was created by integrating student log files and sample curriculum. The provided data
were recorded between 2011 and 2018 and included approximately 350 students. Care had
to be taken to exclude students during the data processing as to who had already applied
and dropped out before 2011. If these students reapply after 2011, it causes confusing
factors like the student graduating too soon for incomprehensible reasons. It was also
challenging to formulate each case of uncompleted subject failure patterns.

3.1. The Description of the Analysed Dataset of Course Completions

All data was anonymized prior to your access and analysis. The studied data can
be downloaded from the website of the authors (https://www.abonyilab.com/about-us/
software-and-data, accessed on 22 October 2018.).

The integrated student log file consists of two components. The student database
records each attempt to complete a subject as an elementary event. There is also a binary
variable describing graduation and unsuccessful graduation (drop out). Combining these
with the information extracted from the sample curriculum, an integrated student log file
can be created. A sample for this log file is shown in Table 1.

Table 1. A sample for the student log file which integrates the student-specific data and the sample
curriculum.

Student ID Graduated or
Dropped Out Subject ID Subject Is Com-

pleted or Failed
Attempted
Semester

Recommended
Semester

1 graduated 1 completed 1 1
1 graduated 2 failed 2 2
1 graduated 3 failed 2 2
1 graduated 2 failed 3 2
1 graduated 3 completed 3 2
1 graduated 2 completed 4 2
2 dropped out 1 failed 1 1
2 dropped out 4 failed 1 1
2 dropped out 5 failed 1 1
2 dropped out 6 failed 1 1
2 dropped out 2 failed 2 2
2 dropped out 3 failed 2 2
3 graduated 4 failed 1 1
3 graduated 2 completed 2 2
3 graduated 3 failed 2 2
3 graduated 4 completed 2 1
3 graduated 3 completed 3 2
3 graduated 7 failed 3 3
3 graduated 7 failed 4 3
3 graduated 7 failed 5 3
3 graduated 7 completed 6 3

Based on the integrated student log file, the empirical distribution function can be spec-
ified by the Kaplan–Meier method. However, for more complex event analysis, conversion
steps must be included.

The student subject failures are represented as events. An example is shown in the
Gantt chart in Figure 2. Let τ̂i be the semester in which the student should complete
the ith subject according to the sample curriculum, and τi

j be the semester in which the

first successful completion of the subject was recorded. The ei
k(j) elementary event is

the ith lack of subject completion event of the jth student in the kth semester, if τ̂i < τi
j .

These events can be grouped according to semesters. The e f ail
k (j) causal events (whose

triggering causes are to be found) represent when the jth student does not continue his
studies in the k + 1 semester, and leaves the university due to failure. As will be presented

https://www.abonyilab.com/about-us/software-and-data
https://www.abonyilab.com/about-us/software-and-data
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in the next subsection, this event will be considered the competing risk that the student
will continue his/her studies.

Figure 2. A Gantt chart illustrating the missing subjects of students which have been not performed
until it was advised by the sample curriculum. The semesters in which the subject should have been
already completed are indicated by dark blue.

3.2. Investigation of Student Dropout with Survival Analysis Taking into Account the
Competing Risks

Examining the study path of a university student, it is clear that if someone suc-
cessfully graduates, no other outcome can happen to that person. However, if someone
interrupts his/her studies or is fired for any reason, that person can re-enrol on the train-
ing. These students are excluded from the study. Thus, the unsuccessful finishing of the
program and the successful graduation will be competing risks that need to be handled.
In this case, by determining the Cumulative Incidence Curve of the unfortunate case, the
exact dropout rate of students can be estimated. To obtain this measure, it is necessary to
identify the number of students who dropped out in a given semester and the number of
successful degrees that the students obtained. The number of graduates in the f th semester
is denoted by mgrad

f and the number of students who dropped out is indicated by m f ail
f .

Then, substituting the parameters mentioned above into Equation (15), the Cumulative
Incidence Curve can be calculated as follows:

CIC f ail(t f ) =
f

∑
k′=1

m f ail
k
nk

k−1

∏
k′=1

(
1−

m f ail
k′ + mgrad

k′

nk′

)
(16)

The calculation process of the individual results over time is collected and explained in
Table 2.

The comparison of the function estimated by the Kaplan Meier method and the
function estimated by the Cumulative Incidence method can be seen in Figure 3. The
emergence of competing risks begins in the seventh semester. Since this is the length of
the sample curriculum, this is the moment when the other output option, the graduation,
appears. If there is no other competing risk, the Cumulative Incidence Curve is the same
as the empirical distribution by Kaplan–Meier, which is well visible in the figure until the
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seventh semester as well, and the two functions begin to differ only after that. The relation
of the functions to each other is also satisfactory, since due to the typical phenomenon
that the Kaplan–Meier distribution overestimates the risks, the probability of survival is
lower than in the case of the Cumulative Incidence Curve. The difference between the two
functions determines the graduated students.

0 1 2 3 4 5 6 7 8 9 10 11

Time [semester]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
(t

f),
 C

IC
fa

il (t
f)

Empirical distribution by KM

Cumulative incidence curve

Figure 3. The empirical distribution by the Kaplan–Meier method (KM) (red) and the Cumulative
Incidence Curve of non-graduate students (blue). Since the competitive risk of graduation appears
only from the 7th semester (the length of the sample curriculum), it is expected that the two functions
will be different from this semester. The difference determines the graduated students.

As mentioned earlier, the disadvantage of the Kaplan–Meier model, which manages
competing risks, is that it describes the entire population at once. However, it must be
recognized that considerable differences can occur when students follow different subject
(in)completion pathways during their university years. The consequences of failing in
Mathematics or Chemistry in the first semester can be completely different. This is the
reason why event analysis is introduced, into the means of frequent itemset and association
rule mining.

Table 2. Calculation of Cumulative Incidence Curves for dropped out students.

Semester nk m f ail
k mgrad

k
h0(tk) S(k − 1) I0(t f ) CIC0(t f )

1 362 27 0 0.0746 1.0000 0.0746 0.0746
2 335 54 0 0.1612 0.9254 0.1492 0.2238
3 281 47 0 0.1673 0.7762 0.1298 0.3536
4 234 46 0 0.1966 0.6464 0.1271 0.4807
5 188 20 0 0.1064 0.5193 0.0552 0.5359
6 168 12 0 0.0714 0.4641 0.0331 0.5691
7 156 2 40 0.0128 0.4309 0.0055 0.5746
8 114 6 39 0.0526 0.3149 0.0166 0.5912
9 69 2 30 0.0290 0.1906 0.0055 0.5967
10 37 2 20 0.0541 0.1022 0.0055 0.6022
11 15 4 3 0.2667 0.0414 0.0110 0.6133

3.3. Event Analysis with the Mining of Frequent Itemsets and Association Rules

Based on the previously presented concepts in this case study, the event ei
k denotes the

missing completion of the ith subject in the kth semester, X j
k = {e

i
k(j), . . . , el

j(j)} is the pat-

tern of missing subjects of the jth student in the kth semester, and the Xk = {X1
k , . . . , Xnk

k }
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is the pattern of missing subject completions of the students in the kth semester. It should
be highlighted that the set Xk

f is extended to contain both the triggered ec
k consequential

events, so e f ail
k when the given student fails at the end of the kth semester.

As each case study has different types of relevant information, it is important to
note that in the case of student dropout, conditions should be made to mine frequent
itemsets. There are some results when the support of a certain uncompleted subject is
the same as the support of that certain uncompleted subject and some other subjects
together. In this case, the other subjects do not affect the dropout and may determine
poor results after aggregating. To avoid this phenomenon, we use the Closed Frequent
Itemset Mining method [29]. The frequent itemsets are mined based on the Xk set of X j

k
patterns. The method has an important hyper-parameter, which is the minimum support
of the frequent itemset mining algorithm. A smaller number of supports results in a higher
number of rules, so the complexity of the rule base can be fine-tuned by this parameter.
Similarly to other machine learning tasks, the optimal complexity of the model can be
fine-tuned by cross validation as will be presented in the following section.

3.4. Integrated Analysis of Student Dropout

In order to verify the authenticity of the data and to handle the over-fitting issue,
we used five-fold cross-validation. After performing the steps mentioned in the previous
sections, the analysis of the results can be performed. The five most critical rules of every
semester are summarized in Table 3. Based on the critical dropout rules, the subjects
with their names are summarized in Table 4, using the ID-s and names of the subjects
according to Appendix A. Apparently, every semester has its subject, which seems to be
critical, for example, in the first semester, the core subjects providing the basic engineering
knowledge such as mathematics, physics and chemistry. Moreover, there are uncompleted
subjects that reoccur over multiple semesters. Examples are the comprehensive exam in
chemistry, which appears from the fifth semester and lasts until the end of the analysis,
or the transportphenomena, which is a critical subject in three semesters as well.

The Cumulative Incidence Curve generated from the association rules and the Cumula-
tive Incidence Curve generated from the survival analysis is shown in Figure 4. This model
apparently approximates the Cumulative Incidence Curve of survival analysis very well
with the aggregation strategy of the maximum confidences method. It can be said that
a student can easily be accepted at an engineering course in Hungary, even at ones that
are supported by the government, as it is a highly deficient profession. Therefore, many
students try to complete the course, but they soon realize that they cannot make it. In the
first few semesters, more than half of the students abandon the study by the end of the
fifth semester. In the first two semesters, students leave who realize on their own that
course is too hard for them. A higher dropout rate is seen in the third semester. Its reason
is that there are requirements to continue the course. Every student must complete all
subjects recommended by the sample curriculum in the first semester by the end of the
third semester. However, one time, it is possible to request a so-called fairness request,
and this allows for one subject to be completed in the fourth semester. The dropout rate
in the fourth semester usually affects those who have not managed this request well ei-
ther. The last significant dropout is seen in the fifth semester. Its reason is that there is
also a requirement to continue the course. Another dropout phenomenon is that students
can decide to reapply for the course at any time. This is done to obtain better chances
by erasing their previous bad results and resetting the requirement system. Thus, as the
method examines only the first attempt of performing the training, these students are also
considered as dropped out. Previous studies have shown that there are few students who
complete the training after reapplying. However, experience shows that it is not worth
applying again because the failure is still significant. Once students reach the 5th semester,
they are less likely to drop out after this semester. Finally, based on the 11th semester, it can
be stated that approximately 40% of students can graduate on their first attempt.
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Table 3. The critical dropout rules of given semesters. It shows the pattern of uncompleted subjects
which should definitely be avoided by active students.

Rule
ID

Rule
Length

Support
(%)

Confidence
(%)

Rule
ID

Rule
Length

Support
(%)

Confidence
(%)

1st Semester 2nd Semester

222 7 0.0353 0.5263 900 13 0.0498 0.5417
189 8 0.0318 0.5294 966 11 0.0728 0.5429
283 3 0.0459 0.5417 971 10 0.0728 0.5429
256 6 0.0424 0.5455 964 13 0.0383 0.5556
191 7 0.0389 0.5500 965 12 0.0728 0.5588

3rd Semester 4th Semester

60 23 0.0370 0.8889 10300 23 0.0608 0.9167
59 23 0.0417 0.9000 4110 23 0.0663 0.9231
46 23 0.0463 0.9091 4443 22 0.0663 0.9231
54 23 0.0463 0.9091 5003 21 0.0663 0.9231
61 22 0.0556 0.9231 5020 24 0.0663 0.9231

5th Semester 6th Semester

769 26 0.0552 0.8889 3508 17 0.0469 0.8571
1080 26 0.0552 0.8889 1532 20 0.0547 0.8750
467 23 0.0621 0.9000 2323 20 0.0547 0.8750
503 23 0.0621 0.9000 3550 16 0.0547 0.8750
2249 25 0.0621 0.9000 2324 19 0.0625 0.8889

7th Semester 8th Semester

723 11 0.0086 0.2500 77 11 0.0370 0.6000
727 7 0.0086 0.2500 3 24 0.0247 0.6667
794 16 0.0086 0.2500 31 10 0.0247 0.6667
810 16 0.0086 0.2500 33 7 0.0247 0.6667
1053 13 0.0086 0.2500 22 14 0.0370 0.7500

9th Semester 10th Semester

5 15 0.0208 0.5000 15 4 0.0455 0.5000
6 4 0.0208 0.5000 23 1 0.0909 0.5000
13 14 0.0208 0.5000 24 2 0.0909 0.5000
18 11 0.0208 0.5000 18 2 0.0909 0.6667
21 12 0.0208 0.5000 19 3 0.0909 0.6667

Table 4. Grouping of critical objects by their names according to the subject identifiers in Appendix A.

Semester Subject ID Name of Subject Semester Subject ID Name of Subject

1 7 Physics I. 6 2 Introduction to chemical engineering
1 46 Computer science for engineers I. 6 47 Modelling of chemical processes
1 60 General and inorganic chemistry 6 56 Selected chemical technologies
1 24 Mathematical analysis I. 6 59 Process design III.

2 11 Physical chemistry I. 6 64 Hydrocarbons and petrochemical technologies
2 26 Mathematical analysis II. 8 20 Comprehensive exam in chemistry
2 40 Numerical mathematics 8 48 Modelling of chemical processes

(laboratory practice)
2 62 Problem solving in general and inorganic

chemistry II.
8 49 Design of technological systems

3 3 Biochemistry 8 51 Design project II.
3 36 Technical fluid mechanics 8 53 Chemical process engineering laboratory practice
3 52 Transportphenomena 8 59 Process design III.

4 2 Introduction to chemical engineering 10 20 Comprehensive exam in chemistry
4 15 Process control 10 35 Flow and heat engineering machines (lab. pract)
4 17 Process dynamics and control 10 51 Chemical process engineering laboratory practice

5 3 Biochemistry 10 53 Chemical process engineering laboratory practice
5 15 Process control 10 59 Process design III.
5 20 Comprehensive exam in chemistry 11 20 Comprehensive exam in chemistry
5 45 Laboratory practice on organic chemistry 11 35 Flow and heat engineering machines (lab. pract)
5 52 Transportphenomena 11 52 Transportphenomena
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Figure 4. The Cumulative Incidence Curve (CIC) formed from Event Analysis (EA) by association
rules (training dataset—blue; validation dataset—red) and Survival Analysis (SA) (green) for non-
graduate students. The functions illustrates well that the proposed methodology is able to predict
the dropout of a student.

The obtained results suggest that it would be necessary for university management to
reconsider some functional elements. First, it would be essential to reschedule the sample
curriculum subjects. There are subjects whose primary skills are created for subjects that
are recommended in later semesters. Since many people dropped out in the 3rd semester
due to the requirement there, it would be important to rethink its terms. Furthermore,
it can be noticed that, in many cases, there is a connection between the given subject and
the teacher. In this regard, it would be important to organize useful training for these
educators based on the section 1.5 of the European Standards and Guidelines [30].

In order to present the effectiveness of the developed methodology from several
perspectives, we also performed comparative analysis. The Naive Bayes Classification
method was selected for comparison. Based on the results, it can be said that the classifier
is very poorly able to estimate dropout based on uncompleted subjects. The Cumulative
Incidence Curve of the Naive Bayes classifier and the survival analysis is compared in
Figure 5 for one-fold change. It can be said that the Naive Bayes model overestimated the
number of failures. Based on this, the method proved to be weak for prediction. However,
in the case of failed students, the model was accurate, so the method may still be suitable
as an alerting system.
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Figure 5. Cumulative Incidence Curves formed from the Naive Bayes classifier (validation dataset—
blue) and survival analysis (test dataset—green) for non-graduate students in the case of one-fold
change. The functions illustrates well, that the Naive Bayes classifier can poorly predict the dropout
of a student.

To illustrate the effectiveness of the two methods, in both cases we determined the
mean of the absolute difference between the Cumulative Incidence Curve function derived
from the Naive Bayes and the proposed model as can be seen in Table 5.

Table 5. Mean value of absolute errors of the proposed method and the Naive Bayes classifier. It can
be considered that the proposed method outperforms the Naive Bayes classifier.

Method 1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold

Naive Bayes 0.4081 0.4052 0.3998 0.4268 0.3988
Proposed Method 0.0411 0.0176 0.0207 0.0188 0.0168

Based on the confidence of the association rules, the proposed method is also suitable
for estimating the probability of dropping out of an active student who is still in training
based on his/her current uncompleted subjects. Since the student already has a given φ

p∗
k

pattern of uncompleted subjects, the conditional probability con f (φp∗
k → ec

k) = P(ec
k|φ

p∗
k )

must be calculated. Based on the missing subject completions, personalized predictions
can be made by looking for what new uncompleted subjects can most likely follow the φ

p∗
k

pattern of uncompleted subjects. Thus, the developed method also answers what kind of
uncompleted subjects are expected of the student. Like any methodology, this one also
has its limitations. It can be observed that after a given semester, the majority of students
who have not dropped out will graduate. There are very few students who reached the
11th semester, so there are significantly fewer data available in proportion, which results in
uncertainty in the forecast for the last semesters. If much more data are available, more
accurate results can be obtained, but the proportions still result a minimal amount of data.

4. Conclusions

Student drop-out is one of the problems of our age, causing significant economic
loss and social tension. Despite the fact that more and more researchers analyse the issue,
to our knowledge, so far no method has been developed that would predict the student’s
academic success based on the student’s uncompleted subjects.

The present paper illustrates that the survival analysis based on a competing risk
model effectively provides an estimate of the probability of graduation. The disadvantage
of survival analysis, however, is that by itself it cannot incorporate the impact of different
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(currently) uncompleted subjects into the probability of drop out from the course. However,
deviations from the sample curriculum can be present in innumerable permutations and
can show significant differences in terms of risk. After identifying the problem, it was
highlighted that it is expedient to extend the survival analysis model with event analysis
methods. Representing subject completion deficiencies as events, frequent patterns can be
identified by frequent itemset mining, from which association rules are formed to discover
the lack of subject completions that leads to the dropout of a student. A method to estimate
the probability of a student progressing from semester to semester and obtaining a degree
based on the characteristics of the pattern of uncompleted subjects was also developed.

The probability of surviving (remaining active student in the next semester) calcu-
lated by the model approximates well the results of the survival analysis, that is, the
Kaplan–Meier estimate of the empirical distribution. By extending the method, it is also
possible to estimate subjects are likely to be uncompleted in the future by an active student
still in training. The method can be further developed into an automated personalized
counselling system.

The model may also be suitable for examining a wide class of problems. An important
characteristic of the applications is the presence of overlapping process steps and the
occurrence of transitions caused by the triggering phenomenon. Examples include the
development activities, so the method seems to be suitable to support capability maturity
model integration processes which will be one of our future research avenues.
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Appendix A. Information about the Sample Curriculum

Table A1. Summary of the Identifiers, Names Used in the Study and the Number of Recommended
Semesters of Subjects According to the Sample Curriculum part 1.

Subject ID Subject Name Recommended
Semester

1 Material science 1
2 Introduction to chemical engineering 4
3 Biochemistry 3
4 Electronics 4
5 Electronics laboratory practice 4
6 Process design I. 4
7 Physics I. 1
8 Physics (problem solving practice) 1
9 Physics II. 2
10 Physics lab. Pract. 2
11 Physical chemistry I. 2
12 Physical chemistry II. 3
13 Laboratory practice in physical chemistry 3
14 Problem solving practice in physical chemistry 3
15 Process control 4
16 Machine elements and presentation 1
17 Process dynamics and control 4
18 Introduction to law 4
19 Corrosion Basics 4
20 Comprehensive exam in chemistry 5
21 Chemical analysis 3
22 Chemical analysis laboratory practice 4
23 Economics 1
24 Mathematical analysis I. 1
25 Mathematical analysis I. Practice 1
26 Mathematical analysis II. 2
27 Mathematical analysis I. Practice 2
28 Quality assurance 2
29 Industrial quality management 6
30 Effective technical communication 6
31 Effective technical communication practice 6
32 IT tools for effective technical communication 6
33 Engineering thermodynamics 3
34 Technical thermodynamics 3
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Table A2. Summary of the Identifiers, Names Used in the Study and the Number of Recommended
Semesters of Subjects According to the Sample Curriculum part 2.

Subject ID Subject Name Recommended
Semester

35 Flow and heat engineering machines (lab. pract) 4
36 Technical fluid mechanics 3
37 Basic energetics for unit operations 2
38 Unit operations A 4
39 Unit operations B 4
40 Numerical mathematics 2
41 Statistics 2
42 Basics of radiation 1
43 Organic chemistry I. 2
44 Organic chemistry II. 3
45 Laboratory practice on organic chemistry 4
46 Computer science for engineers I. 1
47 Modeling of chemical processes 5
48 Modeling of chemical processes (laboratory practice) 5
49 Design of technological systems 6
50 Design project I. 6
51 Design project II. 7
52 Transportphenomena 3
53 Chemical process engineering laboratory practice 5
54 Chemical Engineering BSc Field Practice 7
55 Chemical process safety 6
56 Selected chemical technologies 5
57 Selected chemical technologies (laboratory practice) 5
58 Process design II. 5
59 Process design III. 6
60 General and inorganic chemistry 1
61 Problem solving in general and inorganic chemistry I. 1
62 Problem solving in general and inorganic chemistry II. 2
63 Laboratory practice in general and inorganic chemistry 2
64 Hydrocarbons and petrochemical technologies 5
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