
mathematics

Article

Unified Polynomial Dynamic Programming Algorithms
for P-Center Variants in a 2D Pareto Front †

Nicolas Dupin 1,* , Frank Nielsen 2 and El-Ghazali Talbi 3

����������
�������

Citation: Dupin, N.; Nielsen, F.;

Talbi, E.-G. Unified Polynomial

Dynamic Programming Algorithms

for P-Center Variants in a 2D Pareto

Front. Mathematics 2021, 9, 453.

https://doi.org/10.3390/math9040453

Academic Editor: Frank Werner

Received: 21 December 2020

Accepted: 16 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400 Orsay, France
2 Sony Computer Science Laboratories Inc., Tokyo 141-0022, Japan; Frank.Nielsen@acm.org
3 CNRS UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille,

Université Lille, F-59000 Lille, France; el-ghazali.talbi@univ-lille.fr
* Correspondence: nicolas.dupin@universite-paris-saclay.fr
† This paper is an extended version of our paper published in OLA 2020, International Conference in

Optimization and Learning, Cadiz, Spain, 17–19 February 2020.

Abstract: With many efficient solutions for a multi-objective optimization problem, this paper aims
to cluster the Pareto Front in a given number of clusters K and to detect isolated points. K-center
problems and variants are investigated with a unified formulation considering the discrete and
continuous versions, partial K-center problems, and their min-sum-K-radii variants. In dimension
three (or upper), this induces NP-hard complexities. In the planar case, common optimality property
is proven: non-nested optimal solutions exist. This induces a common dynamic programming
algorithm running in polynomial time. Specific improvements hold for some variants, such as
K-center problems and min-sum K-radii on a line. When applied to N points and allowing to uncover
M < N points, K-center and min-sum-K-radii variants are, respectively, solvable in O(K(M +

1)N log N) and O(K(M + 1)N2) time. Such complexity of results allows an efficient straightforward
implementation. Parallel implementations can also be designed for a practical speed-up. Their
application inside multi-objective heuristics is discussed to archive partial Pareto fronts, with a
special interest in partial clustering variants.

Keywords: discrete optimization; operational research; computational geometry; complexity; algo-
rithms; dynamic programming; clustering; k-center; p-center; sum-radii clustering; sum-diameter
clustering; bi-objective optimization; Pareto Front; parallel programming

1. Introduction

This paper is motivated by real-world applications of multi-objective optimization
(MOO). Some optimization problems are driven by more than one objective function,
with conflicting optimization directions. For example, one may minimize financial costs,
while maximizing the robustness to uncertainties or minimizing the environmental impact
[1,2]. In such cases, higher levels of robustness or sustainability are likely to induce financial
over-costs. Pareto dominance, preferring one solution to another if it is better for all the
objectives, is a weak dominance rule. With conflicting objectives, several non-dominated
points in the objective space can be generated, defining efficient solutions, which are the
best compromises. A Pareto front (PF) is the projection in the objective space of the efficient
solutions [3]. MOO approaches may generate large sets of efficient solutions using Pareto
dominance [3]. Summarizing the shape of a PF may be required for presentation to decision
makers. In such a context, clustering problems are useful to support decision making to
present a view of a PF in clusters, the density of points in the cluster, or to select the most
central cluster points as representative points. Note than similar problems are of interest
for population MOO heuristics such as evolutionary algorithms to archive representative
points of a partial Pareto fronts, or in selecting diversified efficient solutions to process
mutation or cross-over operators [4,5].

Mathematics 2021, 9, 453. https://doi.org/10.3390/math9040453 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3775-5629
https://orcid.org/0000-0001-5728-0726
https://orcid.org/0000-0003-4549-1010
https://doi.org/10.3390/math9040453
https://doi.org/10.3390/math9040453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040453
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/453?type=check_update&version=2

Mathematics 2021, 9, 453 2 of 30

With N points in a PF, one wishes to define K � N clusters while minimizing the
measure of dissimilarity. The K-center problems, both in the discrete and continuous
versions, define the cluster costs in this paper, covering the PF with K identical balls while
minimizing the radius of the balls used. By definition, the ball centers belong to the PF
for the discrete K-center version, whereas the continuous version is similar to geometric
covering problems, without any constraint for the localization of centers. Furthermore,
sum-radii or sum-diameter are min-sum clustering variants, where the covering balls are
not necessarily identical. For each variant, one can also consider partial clustering variants,
where a given percentage (or number) of points can be ignored in the covering constraints,
which is useful when modelling outliers in the data.

The K-center problems are NP-hard in the general case, [6] but also for the specific
case in R2 using the Euclidean distance [7]. This implies that K-center problems in three-
dimensional (3D) PF are also NP-hard, with the planar case being equivalent to an affine
3D PF. We consider the case of two-dimensional (2D) PF in this paper, focusing on the
polynomial complexity results. It as an application to bi-objective optimization, the 3D PF
and upper dimensions are shown as perspectives after this work. Note that 2D PF are a
generalization of one-dimensional (1D) cases, where polynomial complexity results are
known [8,9]. A preliminary work proved that K-center clustering variants in a 2D PF are
solvable in polynomial time using a Dynamic Programming (DP) algorithm [10]. This paper
improves these algorithms for these variants, with an extension to min-sum clustering
variants, partial clustering, and Chebyshev and Minkowski distances. The properties of
the DP algorithms are discussed for efficient implementation, including parallelization.

This paper is organized as follows. The considered problems are defined formally with
unified notations in Section 2. In Section 3, related state-of-the-art elements are discussed.
In Sections 4 and 5, intermediate results and specific complexity results for sub-cases are
presented. In Section 6, a unified DP algorithm with a proven polynomial complexity is
designed. In Section 7, specific improvements are presented. In Section 8, the implications
and applications of the results of Sections 5–7 are discussed. In Section 9, our contributions
are summarized, with a discussion of future research directions.

2. Problem Statement and Notation

In this paper, integer intervals are denoted as [[a, b]] = [a, b]∩Z. Let E = {x1, . . . , xN} =
{xi}i∈[[1,N]] a set of N elements of R2, such that for all i 6= j, xi I xj defining the binary
relations I ,≺ for all y = (y1, y2), z = (z1, z2) ∈ R2 with

y ≺ z ⇐⇒ y1 < z1 and y2 > z2 (1)

y 4 z ⇐⇒ y ≺ z or y = z (2)

y I z ⇐⇒ y ≺ z or z ≺ y (3)

These hypotheses on E define 2D PF considering the minimization of two objectives [3,11].
Such configuration is illustrated by Figure 1. Without loss of generality, transforming ob-
jectives to maximize f into − f allows for the consideration of the minimization of two
objectives. This assumption impacts the sense of the inequalities of I ,≺. A PF can also be
seen as a Skyline operator [12]. A 2D PF can be extracted from any subset of R2 using an
output-sensitive algorithm [13], or using any MOO approach [3,14].

The results of this paper will be given using the Chebyshev and Minkowski distances,
generically denoting d(y, z) the l 8 and lm norm-induced distance, respectively. For a given
m > 0, the Minkowski distance is denoted dm, and given by the formula

∀y = (y1, y2), z = (z1, z2) ∈ R2, dm(y, z) = m
√
|y1 − z1|m + |y2 − z2|m (4)

Mathematics 2021, 9, 453 3 of 30

The case m = 2 corresponds to the Euclidean distance; it is a usual case for our
application. The limit with m→ 8 defines the Chebyshev distance, denoted d 8 and given
by the formula

∀y = (y1, y2), z = (z1, z2) ∈ R2, d 8(y, z) = max
(∣∣∣y1 − z1

∣∣∣, ∣∣∣y2 − z2
∣∣∣) (5)

Once a distance d is defined, a dissimilarity among a subset of points E′ ⊂ E is defined
using the radius of the minimal enclosing ball containing E′. Numerically, this dissimilarity
function, denoted as fC , can be written as

∀E′ ⊂ E, fC(E′) = min
y∈R2

max
x∈E′

d(x, y) (6)

A discrete variant considers enclosing balls with one of the given points as the center.
Numerically, this dissimilarity function, denoted fD , can be written as

∀E′ ⊂ E, fD(E′) = min
y∈E′

max
x∈E′

d(x, y) (7)

For the sake of having unified notations for common results and proofs, we define
γ ∈ {0, 1} to indicate which version of the dissimilarity function is considered. γ = 0
(respectively, 1) indicates that the continuous (respectively, discrete) version is used, fγ,
thus denoting f1 = fC (respectively, f0 = fD). Note that γ ∈ {0, 1} will be related to
complexity results which motivated such a notation choice.

For each a subset of points E′ ⊂ E and integer K > 1, we define ΠK(E), as the set of all
the possible partitions of E′ in K subsets. Continuous and discrete K-center are optimization
problems with ΠK(E) as a set of feasible solutions, covering E with K identical balls while
minimizing the radius of the balls used

min
π∈ΠK(E)

max
P∈π

fγ(P) (8)

The continuous and discrete K-center problems in the 2D PF are denoted K-γ-CP2DPF.
Another covering variant, denoted min-sum-K-radii problems, covers the points with
non-identical balls, while minimizing the sum of the radius of the balls. We consider the
following extension of min-sum-K-radii problems, with α > 0 being a real number

min
π∈ΠK(E)

∑
P∈π

fγ(P)α (9)

α = 1 corresponds to the standard min-sum-K-radii problem. α = 2 with the standard
Euclidean distance is equivalent to the minimization of the area defined by the covering
disks. For the sake of unifying notations for results and proofs, we define a generic operator
⊕ ∈ {+, max} to denote, respectively, sum-clustering and max-clustering. This defines the
generic optimization problems

min
π∈ΠK(E)

⊕
P∈π

fγ(P)α (10)

Lastly, we consider a partial clustering extension of problems (10), similarly to the
partial p-center [15]. The covering with balls mainly concerns the extreme points, which
make the results highly dependent on outliers. One may consider that a certain number
M < N of the points may be considered outliers, and that M points can be removed in the
evaluation. This can be written as

min
E′⊂E:|E\E′ |6M

min
π∈ΠK(E′)

⊕
P∈π

fγ(P)α (11)

Mathematics 2021, 9, 453 4 of 30

Problem (11) is denoted K-M-⊕-(α, γ)-BC2DPF. Sometimes, the partial covering is
defined by a maximal percentage of outliers. In this case, if M is much smaller than N,
we have M = Θ(N), which we have to keep in mind for the complexity results. K-center
problems, K-γ-CP2DPF, are K-M-max-(α, γ)-BC2DPF problems for all α > 0; the value
of α does not matter for max-clustering, defining the same optimal solutions as α = 1.
The standard min-sum-k-radii problem, equivalent to the min-sum diameter problem,
corresponds to k-0-+-(1, γ)-BC2DPF problems for discrete and continuous versions, k-M-
+-(1, γ)-BC2DPF problems consider partial covering for min-sum-k-radii problems.

3. Related Works

This section describes works related to our contributions, presenting the state-of-the-
art for p-center problems and clustering points in a PF. For more detailed survey on the
results for the p-center problems, we refer to [16].

3.1. Solving P-Center Problems and Complexity Results

Generally, the p-center problem consists of locating p facilities among possible loca-
tions and assigning n clients, called c1, c2, . . . , cn, to the facilities in order to minimize the
maximum distance between a client and the facility to which it is allocated. The continuous
p-center problem assumes that any place of location can be chosen, whereas the discrete
p-center problem considers a subset o m potential sites, denoted f1, f2, . . . , fm, and dis-
tances di,j for all i ∈ [[1, n]] and j ∈ [[1, m]]. Discrete p-center problems can be formulated
with bipartite graphs, modeling that si unfeasibile for some assignments. In the discrete
p-center problem defined in Section 2, points f1, f2, . . . , fm are exactly c1, c2, . . . , cn, and
the distances are defined using a norm, so that triangle inequality holds for such variants.

P-center problems are NP-hard [6,17]. Furthermore, for all α < 2, any α-approximation
for the discrete p-center problem with triangle inequality is NP-hard [18]. Two approxi-
mations were provided for the discrete p-center problem running in O(pn log n) time and
in O(np) time, respecitvely [19,20]. The discrete p-center problem in R2 with a Euclidean
distance is also NP-hard [17]. Defining binary variables xi,j ∈ {0, 1} and yj ∈ {0, 1} with
xi,j = 1 if and only if the customer i is assigned to the depot j, and yj = 1 if and only if loca-
tion f j is chosen as a depot, the following Integer Linear Programming (ILP) formulation
models the discrete p-center problem [21]

min
x,y,z

z (12a)

s.t :
n

∑
j=1

di,jxi,j 6 z ∀i ∈ [[1, n]] (12b)

m

∑
j=1

yj = p (12c)

m

∑
j=1

xi,j = 1 ∀i ∈ [[1, n]] (12d)

xi,j 6 yj ∀(i, j) ∈ [[1, N]]× [[1, n]], (12e)
xi,j, yj ∈ {0, 1} ∀i, j ∈ [[1, n]]× [[1, m]], (12f)

Constraints (12b) are implied by a standard linearization of the min–max original
objective function. Constraint (12c) fixes the number of open facilities to p. Constraints
(12d) assign each client to exactly one facility. Constraints (12e) are necessary to induce
that any considered assignment xi,j = 1 implies that facility j is open with yj = 1. Tighter
ILP formulations than (12) were proposed, with efficient exact algorithms relying on the
IP models [22,23]. Exponential exact algorithms were also designed for the continuous
p-center problem [24,25]. An nO(

√
p)-time algorithm was provided for the continuous

Euclidean p-center problem in the plane [26]. An nO(p1−1/d)-time algorithm is available for
the continuous p-center problem in Rd under Euclidean and L 8 -metric [27].

Mathematics 2021, 9, 453 5 of 30

Specific cases of p-center problems are solvable in polynomial time. The continu-
ous 1-center problem is exactly the minimum covering ball problem, which has a linear
complexity in R2. Indeed, a “prune and search” algorithm finds the optimum bounding
sphere and runs in linear time if the dimension is fixed as a constant [28]. In dimension d,
its complexity is in O((d + 1)(d + 1)!n) time, which is impractical for high-dimensional
applications [28]. The discrete 1-center problem is solved in time O(n log n), using furthest-
neighbor Voronoi diagrams [29]. The continuous and planar 2-center problem is solved in
randomized expected O(n log2 n) time [30,31]. The discrete and planar 2-center problem
is solvable in O(n4/3 log5 n) time [32].

1D p-center problems, or those with equivalent points that are located in a line,
have specific complexity results with polynomial DP algorithms. The discrete 1D k-center
problem is solvable in O(n) time [33]. The continuous and planar k-centers on a line, finding
k disks with centers on a given line l, are solvable in polynomial time, in O(n2 log2 n) time
in the first algorithm by [29], and in O(nk log n) time and O(n) space in the improved
version provided by [34]. An intensively studied extension of the 1D sub-cases is the
p-center in a tree structure. The continuous p-center problem is solvable in O(n log3 n)
time in a tree structure [7]. The discrete p-center problem is solvable in O(n log n) time in a
tree structure [35].

Rectilinear p-center problems, using the Chebyshev distances, were less studied. Such
distance is useful for complexity results; however, it has fewer applications than Euclidean
or Minkowski norms. For the planar and rectangular 1-center and 2-center problems,
O(n) algorithms are available for the 1-center problem, and such 3-center problems can be
solved in O(n log n) time [36]. In a general dimension d, continuous and discrete versions
of rectangular p-center problems are solvable in O(n) and O(n logd−2 n log log n + n log n)
running time, respectively. Specific complexity results for rectangular 2-center problems
are also available [37].

3.2. Solving Variants of P-Center Problems and Complexity Results

Variants of p-center problems were studied less intensively than the standard p-center
problems. The partial variants were introduced in 1999 by [15], whereas a preliminary
work in 1981 considered a partial weighted one-center variant and a DP algorithm to solve
it running in O(n2 log n) time [38]. The partial discrete p-center can formulated as an ILP
starting from the formulation provided by [21] as written in (12). Indeed, considering
that n0 points can be uncovered, constraints (12.4) become inequalities ∑m

j=1 xi,j 6 1 for
all i, j and the maximal number of unassigned points is set to n0, adding one constraint
∑n

j=i ∑m
j=1 xi,j > n− n0. Similarly, the sum-clustering variants K-M-+-(α, γ)-BC2DPF can

be written as the following ILP

min
z,r>0

N

∑
n=1

rn (13a)

s.t :
N

∑
n=1

d(xn, xn′)
αzn,n′ 6 rn′ ∀n′ ∈ [[1, N]] (13b)

N

∑
n′=1

zn′ ,n′ = K (13c)

N

∑
n′=1

zn,n′ 6 1 ∀n ∈ [[1, N]] (13d)

N

∑
n=1

N

∑
n′=1

zn,n′ > N −M (13e)

zn,n′ 6 zn′ ,n′ ∀(n, n′) ∈ [[1, N]]2, (13f)
zn,n′ ∈ {0, 1} ∀(n, n′) ∈ [[1, N]]2, (13g)

rn > 0 ∀n ∈ [[1, N]], (13h)

Mathematics 2021, 9, 453 6 of 30

In this ILP formulation, binary variables zn,n′ ∈ {0, 1} are defined such that zn,n′ = 1
if and only if the points xn and xn′ are assigned in the same cluster, with xn′ being the
discrete center. Continuous variables rn > 0 denote the powered radius of the ball centered
in xn, if xn is chosen as a center, and rn = 0 otherwise. Constraint (13b) is a standard
linearization of the non-linear objective function. zn,n indicates that if point xn is chosen as
the center, then this implies with (13c) that K such variables are nonzero, and with (13f)
that a nonzero variable zn,n′ implies that the corresponding zn′ ,n′ is not null. (13d) and (13e)
allow the extension with partial variants, as discussed before.

Min-sum radii or diameter problems were rarely studied. However, such objective
functions are useful for meta-heuristics to break some “plateau” effects [39]. Min-sum di-
ameter clustering is NP-hard in the general case and polynomial within a tree structure [40].
The NP-hardness is also proven, even in metrics induced by weighted planar graphs [41].
Approximation algorithms were studied for min-sum diameter clustering. A logarithmic
approximation with a constant factor blowup in the number of clusters was provided
by [42]. In the planar case with Euclidean distances, a polynomial time approximation
scheme was designed [43].

3.3. Clustering/Selecting Points in Pareto Frontiers

Here, we summarize the results related to the selection or the clustering of points in
PF, with applications for MOO algorithms. Polynomial complexity resulting in the use of
2D PF structures is an interesting property; clustering problems have a NP-hard complexity
in general [17,44,45].

To the best of our knowledge, no specific work focused on PF sub-cases of k-center
problems and variants before our preliminary work [10]. A Distance-Based Representative
Skyline with similarities to the discrete p-center problem in a 2D PF may not be fully
available in the Skyline application, which makes a significant difference [46,47]. The
preliminary results proved that K-γ-CP2DPF is solvable in O(KN logγ N) time using O(N)
additional memory space [10]. Partial extensions and min-sum-k-radii variants were not
considered for 2D PF. We note that the 2D PF case is an extension of the 1D case, with 1D
cases being equivalent to the cases of an affine 2D PF. In the study of complexity results,
a tree structure is usually a more studied extension of 1D cases. The discrete k-center
problem on a tree structure, and thus the 1D sub-case, is solvable in O(N) time [33]. 3F PF
cases are NP-complete, as already mentioned in the introduction, this being a consequence
of the NP-hardness of the general planar case.

Maximization of the quality of discrete representations of Pareto sets was studied with
the hypervolume measure in the Hypervolume Subset Selection (HSS) problem [48,49].
The HSS problem is known to be NP-hard in dimension 3 (and greater dimensions) [50].
HSS is solvable with an exact algorithm in NO(

√
K) and a polynomial-time approximation

scheme for any constant dimension d [50]. The 2D case is solvable in polynomial time
with a DP algorithm with a complexity in O(KN2) time and O(KN) space [49]. The
time complexity of the DP algorithm was improved in O(KN + N log N) by [51], and in
O(K(N − K) + N log N) by [52].

The selection of points in a 2D PF, maximizing the diversity, can also be formulated
using p-dispersion problems. Max–Min and Max-Sum p-dispersion problems are NP-
hard problems [53,54]. Max–Min and Max-Sum p-dispersion problems are still NP-hard
problems when distances fulfill the triangle inequality [53,54]. The planar (2D) Max–Min
p-dispersion problem is also NP-hard [9]. The one-dimensional (1D) cases of Max–Min
and Max-Sum p-dispersion problems are solvable in polynomial time, with a similar DP
algorithm running in O(max{pN, N log N}) time [8,9]. Max–Min p-dispersion was proven
to be solvable in polynomial time, with a DP algorithm running in O(pN log N) time and
O(N) space [55]. Other variants of p-dispersion problems were also proven to be solvable
in polynomial time using DP algorithms [55].

Similar results exist for k-means, k-medoid and k-median clustering. K-means is
NP-hard for 2D cases, and thus for 3D PF [44]. K-median and K-medoid problems are

Mathematics 2021, 9, 453 7 of 30

known to be NP hard in dimension 2, since [17], where the specific case of 2D PF was
proven to be solvable in O(N3) time with DP algorithms [11,56]. The restriction of k-means
to 2D PF would be also solvable in O(N3) time with a DP algorithm if a conjecture was
proven [57]. We note that an affine 2D PF is a line in R2, where clustering is equivalent to
1D cases. 1D k-means were proven to be solvable in polynomial time with a DP algorithm
in O(KN2) time and O(KN) space. This complexity was improved for a DP algorithm
in O(KN) time and O(N) space [58]. This is thus the complexity of K-means in an affine
2D PF.

4. Intermediate Results
4.1. Indexation and Distances in a 2D PF

Lemma 1. 4 is an order relation, and ≺ is a transitive relation

∀x, y, z ∈ R2, x ≺ y and y ≺ z =⇒ x ≺ z (14)

Proposition 1 implies an order among the points of E, for a re-indexation in
O(N log N) time

Obj1

Obj2
x1•
x2•

x3• x4• x5•x6• x7• x8•
x9• x10• x11• x12• x13• x14• x15•

Figure 1. Illustration of a 2D Pareto Front (PF) with 15 points and the indexation implied by
Proposition 1.

Proposition 1 (Total order). Points (xi) can be re-indexed in O(N log N) time, such that

∀(i1, i2) ∈ [[1; N]]2, i1 < i2 =⇒ xi1 ≺ xi2 (15)

∀(i1, i2) ∈ [[1; N]]2, i1 6 i2 =⇒ xi1 4 xi2 (16)

Proof. We index E such that the first coordinate is increasing. This sorting procedure runs
in O(N log N) time. Let (i1, i2) ∈ [[1; N]]2, with i1 < i2. We thus have x1

i1
< x1

i2
. Having

xi1Ixi2 implies that x2
i1
> x2

i2
. x1

i1
< x1

i2
and x2

i1
> x2

i2
is by definition xi1 ≺ xi2 .

The re-indexation also implies monotonic relations among distances of the 2D PF

Lemma 2. We suppose that E is re-indexed as in Proposition 1. Letting d be a Minkowski,
Euclidean or Chebyshev distance, we obtain the following monotonicity relations

∀(i1, i2, i3) ∈ [[1; N]]3, i1 6 i2 < i3 =⇒ d(xi1 , xi2) < d(xi1 , xi3) (17)

∀(i1, i2, i3) ∈ [[1; N]]3, i1 < i2 6 i3 =⇒ d(xi2 , xi3) < d(xi1 , xi3) (18)

Proof. We first note that the equality cases are trivial, so we can suppose that i1 < i2 < i3
in the following proof. We prove the propriety (17); the proof of (18) is analogous.

Mathematics 2021, 9, 453 8 of 30

Let i1 < i2 < i3. We note that xi1 = (x1
i1

, x2
i1
), xi2 = (x1

i2
, x2

i2
) and xi3 = (x1

i3
, x2

i3
).

Proposition 1 re-indexation ensures x1
i1
< x1

i2
< x1

i3
and x2

i1
> x2

i2
> x2

i3
. With x1

i3
− x1

i1
>

x1
i2
− x1

i1
> 0, |x1

i1
− x1

i2
| < |x1

i1
− x1

i3
|

With x2
i3
− x2

i1
< x2

i2
− x2

i1
< 0, |x2

i1
− x2

i2
| < |x2

i1
− x2

i3
|

Thus, for any m > 0, dm(xi1 , xi2) < |x1
i1
− x1

i3
|m + |x2

i1
− x2

i3
|m = dm(xi1 , xi3) and also

d 8(xi1 , xi2) = max(|x1
i1
− x1

i2
|, |x2

i1
− x2

i2
|) < max(|x1

i1
− x1

i3
|, |x2

i1
− x2

i3
|) = d 8(xi1 , xi3).

Hence, the result is proven for Euclidean, Minkowski and Chebyshev distances.

4.2. Lemmas Related to Cluster Costs

This section provides the relations needed to compute or compare cluster costs. Firstly,
one notes that the computation of cluster costs is easy in a 2D PF in the continuous
clustering case.

Lemma 3. Let P ⊂ E, such that card(P) > 1. Let i (resp i′) be the minimal (respective maximal)
index of points of P with the indexation of Proposition 1. Then, fC(P) can be computed with
fC(P) = 1

2 d(xi, xi′).

To prove the Lemma 3, we use the Lemmas 4 and 5.

Lemma 4. Let P ⊂ E, such that card(P) > 1. Let i (resp i′) the minimal (resp maximal) index of
points of P with the indexation of Proposition 1. We denote with O =

xi+xi′
2 the midpoint of xi, xi′ .

Then, using a Minkowski or Chebyshev distance d, we have for all x ∈ P: d(x, O) 6 d(xi, O) =
d(xi′ , O).

Proof of Lemma 4: We denote with r = d(xi, O) = d(xi′ , O) = 1
2 d(xi, xi′), with the equality

being trivial as points O, xi, xi′ are on a line and d is a distance. Let x ∈ P. We calculate
the distances using a new system of coordinates, translating the original coordinates such
that O, is a new origin (which is compatible with the definition of Pareto optimality). xi
and xi′ have coordinates (−a, b) and (a,−b) in the new coordinate system, with a, b > 0
and am + bm = rm if a Minkowski distance is used, otherwise it is max(a, b) = r for the
Chebyshev distance. We use (a′, b′) to denote the coordinates of x. xi ≺ x ≺ xi′ implies
that −a 6 a′ 6 a and −b 6 b′ 6 b, i.e., |a′| 6 a and |b′| 6 b, which implies d(x, O) 6 r,
using Minkowski or Chebyshev distances.

Lemma 5. Let P ⊂ E such that card(P) > 1. Let i (respective i′) be the minimal (respective
maximal) index of points of P with the indexation of Proposition 1. We denote, using O =

xi+xi′
2 ,

the midpoint of xi, xi′ . Then, using a Minkowski or Chebyshev distance d, we have for all y ∈ R2:
d(xi, O) = d(xi′ , O) 6 max(d(xi, y), d(xi′ , y)).

Proof of Lemma 5: As previously noted, let r = d(xi, O) = d(xi′ , O) = 1
2 d(xi, xi′). Let

y ∈ R2. We have to prove that d(xi′ , y) > r or d(xi, y) > r. If we suppose that d(xi, y) < r,
this implies that y ≺ O. Then, having y ≺ O ≺ xi′ implies d(xi′ , y) > d(xi′ , 0) = r with
Lemma 2.

Proof of Lemma 3: We first note that fC(P) = miny∈R2 maxx∈P d(x, y) 6 maxx∈P d(x, O),

using the particular point O =
xi+xi′

2 . Using Lemma 4, maxx∈P d(x, O) 6 r, and thus
fC(P) 6 r with r = d(xi, O) = d(xi′ , O) = 1

2 d(xi, xi′). Reciprocally, for all y ∈ R2,
r 6 max(d(xi, y), d(xi′ , y)) using Lemma 5, and thus r 6 maxx∈P d(x, y). This implies that
r 6 miny∈R2 maxx∈P d(x, y) = fC(P).

Mathematics 2021, 9, 453 9 of 30

Lemma 6. Let P ⊂ E such that card(P) > 3. Let i (respective i′) the minimal (respective maximal)
index of points of P.

fD(P) = min
j∈[[i+1,i′−1]],xj∈P

max
(
d
(
xj, xi

)
, d
(
xj, xi′

))
(19)

Proof. Let y ∈ P− {xi, xi′}. We denote j ∈ [[i, i′]], such that y = xj. Applying Lemma 2 to
i < j < i′, for all k ∈ [[i, i′]],, we have d

(
xj, xk

)
6 max

(
d
(
xj, xi

)
, d
(
xj, xi

))
. Then

fD(P) = min
y=xj∈P

max
x∈P

d(x, y)

fD(P) = min
j∈[[i,i′]],xj∈P

max
(

max
(
d
(

xj, xi
)
, d
(

xj, xi
))

, max
k∈[[i,i′]]

d
(
xj, xk

))
fD(P) = min

j∈[[i,i′]],xj∈P
max

(
d
(
xj, xi

)
, d
(
xj, xi′

))
Lastly, we notice that extreme points are not optimal centers. Indeed,

max(d(xi, xi), d(xi, xi′)) = d(xi, xi′) > max(d(xi+1, xi′), d(xi+1, xi)) with Proposition 2,
i.e., i, is not optimal in the last minimization, dominated by i + 1. Similarly, i′ is dominated
by i′ − 1.

Lemma 7. Let γ ∈ {0, 1}. Let P ⊂ P′ ⊂ E. We have fγ(P) 6 fγ(P′).

Proof. Using the order of Proposition 1, let i (respectively, i′) the minimal index of points of
P (respectively, P′) and let j (respectively, j′) the maximal indexes of points of P (respectively,
P′). fC(P) 6 fC(P′) is trivial using Lemmas 2 and 3. To prove fD(P) 6 fD(P′), we use
i 6 i′ 6 j′ 6 j, and Lemmas 2 and 6

fD(P) = min
k∈[[i,j]],xk∈P

max
(
d(xk, xi), d

(
xj, xk

))
6 min

k∈[[i′ ,j′]],xk∈P
max

(
d(xk, xi), d

(
xj, xk

))
6 min

k∈[[i′ ,j′]],xk∈P′
max

(
d(xk, xi′), d

(
xj′ , xk

))
= fD(P′)

Lemma 8. Let γ ∈ {0, 1}. Let P ⊂ E, such that card(P) > 1. Let i (respectively, i′) the minimal
(respectively, maximal) index of points of P. For all P′ ⊂ P, such that xi, xi′ ∈ P′, we have
fγ(P) = fγ(P′)

Proof. Let P′ ⊂ P such that xi, xi′ ∈ P′. With Lemma 7, we have fγ(P′) 6 fγ(P). fC(P′) =
fC(P) is trivial using Lemma 3, so that we have to prove fD(P) 6 fD(P′).

fD(P) = min
k∈[[i,i′]],xk∈P

max(d(xk, xi), d(xi − xi′)) 6 min
k∈[[i′ ,j′]],xk∈P′

max(d(xk, xi), d(xk, xi′)) =

fD(P′)

4.3. Optimality of Non-Nested Clustering

In this section, we prove that non-nested clustering property, the extension of interval
clustering from 1D to 2D PF, allows the computation of optimal solutions, which will
be a key element for a DP algorithm. For (partial) p-center problems, i.e., K-M-max-
(α, γ)-BC2DPF, optimal solutions may exist without fulfilling the non-nested property,
whereas for K-M-+-(α, 0)-BC2DPF problems, the nested property is a necessary condition
to obtaining an optimal solution.

Mathematics 2021, 9, 453 10 of 30

Lemma 9. Let γ ∈ {0, 1}; let M > 0. There is an optimal solution of 1-M-⊕-(α, γ)-BC2DPF on
the shape Ci,i′ = {xj}j∈[[i,i′]] = {x ∈ E | ∃j ∈ [[i, i′]], x = xj}, with |i′ − i| > N −M.

Proof. Let π ∈ ΠK(E) represent an optimal solution of 1-M-⊕-(α, γ)-BC2DPF, let OPT be
the optimal cost, and C ⊂ E with |C| > N −M and fγ(C) = OPT. Let i (respectively, i′) be
the minimal (respectively maximal) index of C using order of Proposition 1. C ⊂ Ci,i′ , so
Lemma 8 applies and fγ(Ci,i′) = fγ(C) = OPT. |Ci,i′ | > |C| > N −M, thus Ci,i′ defines an
optimal solution of 1-M-⊕-(α, γ)-BC2DPF.

Proposition 2. Let E = (xi) be a 2D PF, re-indexed with Proposition 1. There are optimal
solutions of K-M-⊕-(α, γ)-BC2DPF using only clusters on the shape Ci,i′ = {xj}j∈[[i,i′]] = {x ∈
E | ∃j ∈ [[i, i′]], x = xj}.

Proof. We prove the results by the induction on K ∈ N∗. For K = 1, Lemma 9 gives
the initialization.

Let us suppose that K > 1 and the Induction Hypothesis (IH) that Proposition 2 is
true for K-M-⊕-(α, γ)-BC2DPF. Let π ∈ ΠK(E) be an optimal solution of K-M-⊕-(α, γ)-
BC2DPF; let OPT be the optimal cost. Let X ⊂ E be the subset of the non-selected points,
|X| 6 M, and C1, . . . , CK be the K subsets defining the costs, so that X, C1, . . . , CK is a
partition of E and

⊕K
k=1 fγ(Ck)

α = OPT. Let N′ be the maximal index, such that xN′ /∈ X,
which is, necessarily, N′ > N −M. We reindex the clusters Ck, such that xN′ ∈ CK. Let i be
the minimal index such that xi ∈ CK.

We consider the subsets C ′K = {xj}j∈[[i,N′]], X′ = X ∩ [[1, i − 1]] and C ′k = Ck ∩
{xj}j∈[[1,i−1]] for all k ∈ [[1, K− 1]]. It is clear that X′, C ′1, . . . , C ′K−1 is a partition of {xj}j∈[[1,i−1]],
and X′, C ′1, . . . , C ′K is a partition of E. For all k ∈ [[1, K− 1]], C ′k ⊂ Ck, so that fγ(C ′k) 6 fγ(Ck)
(Lemma 7).

X′, C ′1, . . . , C ′K is a partition of E, and
⊕K

k=1 fγ(C ′k)
α 6 OPT. C ′1, . . . , C ′K is an optimal

solution of K-|X′|-⊕-(α, γ)-BC2DPF. C ′1, . . . , C ′K−1 is an optimal solution of (K− 1)-|X′|-⊕-
(α, γ)-BC2DPF, applied to points E′ = ∪K−1

k=1 C
′
1 ∪ X′. Letting OPT′ be the optimal cost of

(K− 1)-|X′|-⊕-(α, γ)-BC2DPF, we have OPT = OPT′ ⊕ fγ(C ′K)α. Applying IH for of (K−
1)-|X′|-⊕-(α, γ)-BC2DPF to points E′, we have C ′′1 , . . . , C ′′K−1 an optimal solution of (K− 1)-
|X′|-⊕-(α, γ)-BC2DPF among E′ on the shape Ci,i′ = {xj}j∈[[i,i′]] = {x ∈ E′ | ∃j ∈ [[i, i′]], x =

xj}.
⊕K

k=1 fγ(C ′′k)
α = OPT′, and thus

⊕K
k=1 fγ(C ′′k)

α⊕ fγ(C ′K)α = OPT. C ′′1 , . . . , C ′′K−1, C ′K is
an optimal solution of K-M-⊕-(α, γ)-BC2DPF in E using only clusters Ci,i′ . Hence, the result
is proven by induction.

Proposition 3. There is an optimal solution of K-M-⊕-(α, 0)-BC2DPF, removing exactly M
points in the partial clustering.

Proof. Starting with an optimal solution of K-M-+-(α, 0)-BC2DPF, let OPT be the optimal
cost, and let X ⊂ E be the subset of the non-selected points, |X| 6 M, and C1, . . . , CK,
the K subsets defining the costs, so that X, C1, . . . , CK is a partition of E. Removing
random M− |X| points in C1, . . . , CK, we have clusters C ′1, . . . , C ′K such that, for all k ∈
[[1, K − 1]], C ′k ⊂ Ck, and thus fγ(C ′k) 6 fγ(Ck) (Lemma 7). This implies

⊕K
k=1 fγ(C ′k)

α 6⊕K
k=1 fγ(Ck)

α = OPT, and thus the clusters C ′1, . . . , C ′K and outliers X′ = E \ ∪kC ′k define
and provide the optimal solution of K-M-⊕-(α, 0)-BC2DPF with exactly M outliers.

Reciprocally, one may investigate if the conditions of optimality in Propositions 2 and 3
are necessary. The conditions are not necessary in general. For instance, with E =
{(3, 1); (2, 2); (1, 3)}, K = M = 1 and the discrete function FD , ie γ = 1, the selection
of each pair of points defines an optimal solution, with the same cost as the selection of
the three points, which do not fulfill the property of Proposition 3. Having an optimal
solution with the two extreme points also does not fulfill the property of Proposition 2. The

Mathematics 2021, 9, 453 11 of 30

optimality conditions are necessary in the case of sum-clustering, using the continuous
measure of the enclosing disk.

Proposition 4. Let an optimal solution of K-M-+-(α, 0)-BC2DPF be defined with X ⊂ E as the
subset of outliers, with |X| 6 M, and C1, . . . , CK as the K subsets defining the optimal cost. We
therefore have

(i)
∣∣∣⋃K

k=1 Ck

∣∣∣ = M, in other words, exactly M points are not selected in π.
(ii) For each k ∈ [[1, K]], defining ik = min{i ∈ [[1, N]]|xi ∈ Ck} and jk = max{i ∈

[[1, N]]|xi ∈ Ck}, we have Ck = {xi}i∈[[ik ,jk]].

Proof. Starting with an optimal solution of K-M-+-(α, 0)-BC2DPF, let OPT be the optimal
cost, and let X ⊂ E be the subset of the non-selected points, |X| 6 M, and C1, . . . , CK be
the K subsets defining the costs, so that X, C1, . . . , CK is a partition of E. We prove (i) and
(ii) ad absurdum.

If |X| < M, one may remove one extreme point of the cluster C1, defining C ′1.
With Lemmas 2 and 3, we have fC(C ′1) < fC(C1), and fC(C ′1)α + ∑K

k=1 fC(Ck)
α < fC(C1)

α +

∑K
k=1 fC(Ck)

α = OPT. This is in contraction with the optimality of C1, . . . , CK, C ′1, C2 . . . , CK,
defining a strictly better solution for K-M-+-(α, 0)-BC2DPF. (i) is thus proven ad absurdum.

If (ii) is not fulfilled by a cluster Ck, there is xi /∈ Ck with i ∈ [[ik, jk]]. If xi ∈ X, we have
a better solution than the optimal one with X′ = X∪ {xik} \ {xi} and C ′k = Ck ∪ {xi} \ {xik}.
If xi ∈ Cl with l 6= k, we have nested clusters Cl and Ck. We suppose that ik < il (otherwise,
reasoning is symmetrical). We define a better solution than the optimal one with C ′l =
Ck ∪ {xi} \ {xil} and C ′k = Ck ∪ {xil} \ {xi}. (ii) is thus proven ad absurdum.

4.4. Computation of Cluster Costs

Using Proposition 2, only cluster costs Ci,i′ are computed. This section allows the
efficient computation of such cluster costs. Once points are sorted using Proposition
1, cluster costs fC(Ci,i′) can be computed in O(1) using Lemma 3. This makes a time
complexity in O(N2) to compute all the cluster costs fC(Ci,i′) for 1 6 i 6 i′ 6 N.

Equation (19) ensures that cluster costs fD(Ci,i′) can be computed in O(i′ − i) for all
i < i′. Actually, Algorithm 1 and Proposition 5 allow for computations in O(log(i′ − i))
once points are sorted following Proposition 1, with a dichotomic and logarithmic search.

Lemma 10. Letting (i, i′) with i < i′. fi,i′ : j ∈ [[i, i′]] 7−→ max
(
d
(
xj − xi

)
, d
(

xj − xi′
))

decreases before reaching a minimum fi,i′(l), fi,i′(l + 1) > fi,i′(l), and then increases for j ∈
[[l + 1, i′]].

Proof : We define gi,i′ ,j, hi,i′ ,j with gi,i′ : j ∈ [[i, i′]] 7−→ d
(

xj − xi
)

and hi,i′ : j ∈ [[i, i′]] 7−→
d
(

xj − xi′
)
.

Let i < i′. Proposition 2, applied to i and any j, j + 1 with j > i and j < i′, ensures
that g is decreasing. Similarly, Proposition 2, applied to i′ and any j, j + 1, ensures that h
is increasing.

Let A = {j ∈ [[i, i′]]|∀m ∈ [[i, j]]gi,i′(m) < hi,i′(m)}.gi,i′(i) = 0 and
hi,i′(i) = d(xi′ − xi) > 0, so that i ∈ A. A is a non-empty and bounded subset of N, so that
A has a maximum. We note that l = max A.hi,i′(i′) = 0 and gi,i′(i′) = d(xi′ − xi) > 0, so
that i′ /∈ A and l < i′.

Let j ∈ [[i, l− 1]]. gi,i′(j) < gi,i′(j + 1) and hi,i′ ,j(j + 1) < hi,i′(j), using the monotony of
gi,i′ and hi,i′ . fi,i′(j + 1) = max

(
gi,i′(j + 1), hi,i′(j + 1)

)
= hi,i(j + 1) and

fi,i′(j) = max(gi,i′(j), hi,i′(j)) = hi,i(j) as j, j + 1 ∈ A. Hence, fi,i′(j + 1) = hi,i′(j + 1) <
hi,i′(j) = fi,i′(j). This proves that fi,i′ is decreasing in [[i, l]].

l + 1 /∈ A and gi,i′(l + 1) > hi,i′(l + 1) have to be coherent with the fact that l = max A.
Let j ∈ [[l + 1, i′ − 1]]. j + 1 > j > l + 1, so gi,i′(j + 1) > gi,i′(j) > gi,i′(l + 1) >

hi,i′(l + 1) > hi,i′(j) > hi,i′(j + 1) using the monotony of gi,i′ and hi,i′ .This proves that fi,i′ is
increasing in [[l + 1, i′]].

Mathematics 2021, 9, 453 12 of 30

Lastly, the minimum of f can be reached in l or in l + 1, depending on the sign of
fi,i′(l + 1) − fi,i′(l). If fi,i′(l + 1) = fi,i′(l), there are two minimums l, l + 1. Otherwise,
there is a unique minimum l0 ∈ {l, l + 1}, fi,i′ , which decreases before increasing.

Algorithm 1: Computation of fD(Ci,i′)

input: indexes i < i′, a distance d
output: the cost fD(Ci,i′)

define i := i, v := d(xi − xi′), i := i′, v := d(xi − xi′),
while i− i > 2

i′′ :=
⌊

i+i
2

⌋
if d(xi − xi′′) < d(xi′ − xi′′) then i := i′′ and v := d(xi′ − xi′′)

else i := i′′ and v := d(xi − xi′′)
end while

return min(v, v)

Proposition 5. Let E = {x1, . . . , xN} be N points of R2, such that for all i < j, xi ≺ xj. The
computing cost fD(Ci,i′) for any cluster Ci,i′ has a complexity in O(log(i′ − i)) time, using O(1)
additional memory space.

Proof. Let i < i′. Let us prove the correctness and complexity of Algorithm 1. Algorithm 1
is a dichotomic and logarithmic search; it iterates O(log(i′ − i)) times, with each iteration
running in O(1) time. The correctness and complexity of Algorithm 1 is a consequence
of Lemma 10 and the loop invariant, which exists as a of minimum of fi,i′ , fi,i′(j∗) with
i 6 j∗ 6 i, also having v = fi,i′(i) and v = fi,i′(i). By construction in Algorithm 1, we
have d

(
xi − xi

)
< d

(
xi′ − xi

)
, and thus fi,i′(i) = d

(
xi′ − xi

)
. This implies that fi,i′(i− 1) =

d
(

xi′ − xi−1
)
> fi,i′(i), and thus i 6 j∗, using Lemma 10. Similarly, we always obtain

d
(

xi − xi
)
> d

(
xi′ − xi

)
, and thus fi,i′(i) = d

(
xi − xi

)
, fi,i′(i + 1) = d

(
xi − xi+1

)
> fi,i′(i),

so that i > j∗ with Lemma 10. At the convergence of the dichotomic search, i− i = 1 and
j∗ is i or i; therefore, the optimal value is fD(Ci,i′) = fi,i′(j∗) = min(v, v).

Remark 1. Algorithm 1 improves the previously proposed binary search algorithm [10]. If it
has the same logarithmic complexity, this leads to two times fewer calls of the distance function.
Indeed, in the previous version, the dichotomic algorithm is computed at each iteration fi,i′(i′′)
and fi,i′(i′′ + 1) to determine if i′′ is in the increasing or decreasing phase of fi,i′ . In Algorithm 1,
the computations that are provided for each iteration are equivalent to the evaluation of only fi,i′(i′′),
computing d(xi − xi′′) and d(xi′ − xi′′).

Proposition 5 can compute fD(Ci,i′) for all i < i′ in O(N2 log N). Now, we prove
that the costs fD(Ci,i′) of all i < i′ can be computed in O(N2) time instead of O(N2 log N)
using O(N2)-independent computations. Two schemes are proposed, computing the
lines of the cost matrix in O(N) time, computing fD(Cj,j′)

α for all j′ ∈ [[j; N]] for a given
j ∈ [[1; N]] in Algorithm 2, and computing fD(Cj′ ,j)

α for all j′ ∈ [[1; j]] for a given j ∈ [[1; N]]
in Algorithm 3.

Lemma 11. Let i, i′ ∈ [[1, N]], with i + 1 < i′. Let c ∈ [[i + 1, i′ − 1]], such that fi,i′(c) =
fD(Ci,i′).

(i) If i′ < N, then there is c′, such that c 6 c′ 6 i′, with fi,i′+1(c′) = minl∈[[i+1,i′−1]] fi,i′(l) =
fD(Ci,i′+1).

(ii) If i > 1, then there is c′′, such that i 6 c′ 6 c, with fi−1,i′(c′) = minl∈[[i+1,i′−1]] fi−1,i′(l) =
fD(Ci−1,i′).

Proof. We prove (i); we suppose that i′ < N and we prove that, for all c′ < c fi,i′+1(c) 6
fi,i′+1(c′), so that either c is an argmin of the minimization, and the superior minimum to

Mathematics 2021, 9, 453 13 of 30

c. (ii) is similarly proven. Let c′ < c. fi,i′(c) = fD(Ci,i′), which implies fi,i′(c) 6 fi,i′(c′)
and, with Lemma 10, fi,i′ is decreasing in [[c′, c]], i.e., fi,i′(c′′) = d(xc′′ , xi′) for all c′′ ∈ [[c′, c]]
We thus have d(xc′ , xi′) > d(xc′ , xi), and, with lemma 2, d(xc′ , xi′+1) > d(xc′ , xi′). Thus,
fi,i′+1(c′′) = d(xc′ , xi′+1. With lemma 2, d(xc′ , xi′+1 > d(xc, xi′+1. fi,i′(c) = d(xc, xi′) implies
that d(xc, xi′) > d(xc, xi), and then d(xc, xi) 6 d(xc, xi′) 6 d(xc, xi′+1). Thus fi,i′+1(c) =
d(xc′ , xi′+1, and fi,i′(c) 6 fi,i′(c′).

Proposition 6. , Let E = {x1, . . . , xN} be N points of R2, such that for all i < j, xi ≺ xj.
Algorithm 2 computes fD(Cj,j′)

α for all j′ ∈ [[j; N]] for a given j ∈ [[1; N]] in O(N) time using
O(N) memory space.

Proof. The validity of Algorithm 2 is based on Lemmas 10 and 11: once a discrete center c
is known for a fD(Cj,j′)

α, we can find a center c′ of fD(Cj,j′+1)
α with c′ > c, and Lemma 10

gives the stopping criterion to prove a discrete center. Let us prove the time complexity;
the space complexity is obviously within O(N) memory space. In Algorithm 2, each
computation f j′ ,j(curCtr) is in O(1) time; we have to count the number of calls for this
function. In each loop in j′, one computation is used for the initialization; the total number
of calls for this initialization is N − j 6 N. Then, denoting, with cN 6 N, the center found
for Cj,N , we note that the number of loops is cN − j 6 N. Lastly, there are less that 2N
computations calls f j′ ,j(curCtr); Algorithm 2 runs in O(N) time.

Algorithm 2: Computing fD(Cj,j′)
α for all j′ ∈ [[j; N]] for a given j ∈ [[1; N]]

Input: E = {x1, . . . , xN} indexed with Proposition 1, j ∈ [[1; N]], α > 0, N points of R2,
Output: for all j′ ∈ [[1; j]], vj′ = f α

D(Cj′ ,j)

define vector v with vj′ := 0 for all j′ ∈ [[j; N]]
define curCtr := j + 1, curCost := 0
for j′ := j + 1 to N

curCost := f j′ ,j(curCtr)
while curCost 6 f j′ ,j(curCtr + 1)

curCtr := curCtr + 1
curCost := f j′ ,j(curCtr)

end while
vj′ := curCostα

end for
return vector v

Proposition 7. Let E = {x1, . . . , xN} be N points of R2, such that for all i < j, xi ≺ xj.
Algorithm 3 computes fD(Cj′ ,j)

α for all j′ ∈ [[1; j]] for a given j ∈ [[1; N]] in O(N) time, using
O(N) memory space.

Mathematics 2021, 9, 453 14 of 30

Algorithm 3: Computing fD(Cj′ ,j)
α for all j′ ∈ [[1; j]] for a given j ∈ [[1; N]]

Input: E = {x1, . . . , xN} indexed with Proposition 1, j ∈ [[1; N]], α > 0, N points of R2,
Output: for all j′ ∈ [[1; j]], vj′ = fD(Cj′ ,j)

α

define vector v with vj′ := 0 for all j′ ∈ [[1; j]]
define curCtr := j− 1, curCost := 0
for j′ := j− 1 to 1 with increment j′ := j′ − 1

curCost := f j′ ,j(curCtr)
while curCost 6 f j′ ,j(curCtr− 1)

curCtr := curCtr− 1
curCost := f j′ ,j(curCtr)

end while
vj′ := curCostα

end for
return vector v

Proof. The proof is analogous with Proposition 6, applied to Algorithm 2.

5. Particular Sub-Cases

Some particular sub-cases have specific complexity results, which are presented in
this section.

5.1. Sub-Cases with K = 1

We first note that sub-cases K = 1 show no difference between 1-0-+-(α, γ)-BC2DPF
and 1-0-max-(1, γ)-BC2DPF problems, defining the continuous or the discrete version of
1-center problems. Similarly, 1-M-+-(α, γ)-BC2DPF and 1-M-max-(1, γ)-BC2DPF prob-
lems define the continuous or the discrete version of partial 1-center problems. 1-center
optimization problems have a trivial solution; the unique partition of E in one subset is
E. To solve the 1-center problem, it is necessary to compute the radius of the minimum
enclosing disk covering all the points of E (centered in one point of E for the discrete
version). Once the points are re-indexed with Proposition 1, the cost computation is in
O(1) time for the continuous version using Proposition 3, and in O(log N) time for the
discrete version using Proposition 5. The cost of the re-indexation in O(N log N) forms the
overall complexity time with such an approach. One may improve this complexity without
re-indexing E.

Proposition 8. Let E = {x1, . . . , xN}, a subset of N points of R2, such that for all i 6= j, xi I xj.
1-0-⊕-(α, γ)-BC2DPF problems are solvable in O(N) time using O(1) additional memory space.

Proof. Using Lemma 3 or Lemma 6, computations of fγ are, at most, in O(N) once the
extreme elements following the order ≺ have been computed. Computation of the extreme
points is also seen in O(N), with one traversal of the elements of E, storing only the
current minimal and maximal element with the order relation ≺. Finally, the complexity of
one-center problems is in linear time.

Proposition 9. Let M ∈ N∗, let E = {x1, . . . , xN} a subset of N points of R2, such that for
all i 6= j, xi I xj. The continuous partial 1-center, i.e., 1-M-⊕-(α, 0)-BC2DPF problems, is
solvable in O(N min(M, log N)) time. The discrete partial 1-center, i.e., 1-M-⊕-(α, 1)-BC2DPF
problems, is solvable in O(N log N) time.

Proof. Using Proposition 2, one-center problems are computed equivalently:
min

m∈[[0;M]]
fγ(C1+m,N−m)

α.

Mathematics 2021, 9, 453 15 of 30

For the continuous and the discrete case, re-indexing the whole PF with Proposition 1
runs in O(N log N) time, leading to M computations in O(1) or O(log(N − M)) time,
which are dominated by the complexity of re-indexing. The time complexity for both cases
are highest in O(N log N). In the continuous case, i.e., γ = 0, one requires only the M
minimal and maximal points with the total order ≺ to compute the cluster costs using.
If M < log N, one may use one traversal of E, storing the current m minimal and extreme
points, which has a complexity in O(MN). Choosing among the two possible algorithms,
the time complexity is in O(N min(M, log N)).

5.2. Sub-Cases with K = 2

Specific cases with K = 2 define two clusters, and one separation as defined in
Proposition 2. For these cases, specific complexity results are provided, enumerating all
the possible separations.

Proposition 10. Let N points of R2, E = {x1, . . . , xN}, such that for all i 6= j, xiIxj. 2-0-⊕-
(α, γ)-BC2DPF problems are solvable in O(N log N) time, using O(Nγ) additional memory space.

Proof. Using Proposition 2, optimal solutions exist, considering two clusters: C1,i and
Ci+1,N . One enumerates the possible separations i ∈ [[1; N]]. First, the re-indexation phase
runs in O(N log N) time, which will be the bottleneck for the time complexity. Enumerat-
ing the (N-1) values fγ(C1,i)

α ⊕ fγ(Ci+1,N)
α and storing the minimal value induces (N-1)

computations in O(1) time for the continuous case γ = 0, and uses O(1) additional mem-
ory space: the current best value and the corresponding index. Considering the discrete
case, one uses O(N) additional memory space fγ(C1,i)

α, fγ(Ci+1,N)
α to maintain the time

complexity result.

One can extend the previous complexity results with the partial covering extension.

Proposition 11. Let E = {x1, . . . , xN} be a subset of N points of R2, such that for all i 6= j,
xiIxj. 2-M-⊕-(α, γ)-BC2DPF problems are solvable in O(N((M + 1)2 + log N)) time and
O(Nγ) additional memory space, or in O(N((M + 1)2 logγ N) + log N)) time and O(1) addi-
tional memory space.

Proof. After the re-indexation phase running in O(log N) time), Proposition 2 ensures that
there is an optimal solution for 2-M-⊕-(α, γ)-BC2DP, removing the m1 > 0 first indexes,
the m3 > 0 last indexes, and m2 > 0 points between the two selected clusters, with
m1 + m2 + m3 6 M. Using Proposition 3, there is an optimal solution, exactly defining the
M outliers, so that we can consider that m1 + m2 + m3 = M. Denoting i as the last index of
the first cluster, the first selected cluster is C1+m1,i; the second one is Ci+m2+1,N−M+m1+m2 .
We have i > m1 + 1 and i + m2 + 1 6 N −M + m1 + m2 i.e., i 6 N −M + m1. We denote,
with X, the following feasible i, m1, m2

X = {(i, m1, m2) ∈ [[1; N]]× [[0; M]]2, 0 6 m1 + m2 6 M and m1 + 1 6 i 6 N −M + m1}

Computing an optimal solution for 2-M-⊕-(α, γ)-BC2DP brings the following enu-
meration

OPT = min
(i,m1,m2)∈X

fγ(C1+m1,i)
α + fγ(Ci+m2+1,N−M+m1+m2)

α (20)

In the continuous case (ie γ = 0), we use O((M + 1)2) computations to enumerate
the possible m1, m2, and O(N) computations to enumerate the possible i once m1, m2
are defined. With cost computations running in O(1) time, the computation of (20) by
enumeration runs in O(N(M + 1)2) time, after the re-indexation in O(N log N) time. This
induces the time complexity announced for γ = 0. This computation uses O(1) additional
memory space, storing only the best current solution (i, m1, m2) ∈ X and its cost; this is
also the announced memory complexity .

Mathematics 2021, 9, 453 16 of 30

In the discrete case (i.e., γ = 1), we use O((M + 1)2) computations to enumerate the
possible m1, m2, and O(N) computations to enumerate the possible i once m1, m2 are fixed.
This uses O(1) additional memory space, and the total time complexity is O(N log N((M +
1)2). To decrease the time complexity, one can use two vectors of size N to store a given
m1, m2, for which the cluster costs fγ(C1+m1,i)

α and fγ(Ci+m2+1,N−M+m1+m2)
α are given by

Algorithms 2 and 3, so that the total time complexity remains in O(N((M + 1)2 + log N))
with an O(N) additional memory space. These two variants, using O(1) or O(N) additional
memory space, induce the time complexity announced in Proposition 11.

5.3. Continuous Min-Sum K-Radii on A Line

To the best of our knowledge, the 1D continuous min-sum k-radii and the min-sum
diameter problems were not previously studied. The specific properties hold, as proven in
Lemma 12. This allows a time complexity of O(N log N).

Lemma 12. Let E = {x1, . . . , xN} be N points in a line of R2, indexed such that for all i < j,
xi ≺ xj. The min-sum k-radii in a line, K-0-+-(1, 0)-BC2DPF, is equivalent to selecting the
K− 1 highest values of the distance among consecutive points, with the extremity of such segments
defining the extreme points of the disks.

Proof. Let a feasible and non-nested solution of K-0-+-(1, 0)-BC2DPF be defined with
clusters Ca1,b1 , Ca2,b2 , . . . , CaK ,bK such that 1 = a1 6 b1 < a2 6 b2 < · · · < aK 6 bK = N.
Using the alignment property, we can obtain

d(x1, xN) =
n−1

∑
i=1

d(xi, xi+1) =
K

∑
k=1

d(xak , xbk
) +

K

∑
k=2

d(xbk−1
, xak) =

K

∑
k=1

f0(Cak ,bk
) +

K

∑
k=2

d(xbk−1
, xak)

Reciprocally, this is equivalent to considering K-0-+-(1, 0)-BC2DPF or the maximiza-
tion of the sum of K − 1 sa a different distance among consecutive points. The latter
problem is just computing the K− 1 highest distances among consecutive points.

Proposition 12. Let E = {x1, . . . , xN} be a subset of N points of R2 on a line. K-0-+-(1, 0)-
BC2DPF, the continuous min-sum-k-radii, is solvable in O(N log N) time and O(N) mem-
ory space.

Proof. Lemma 12 ensures the validity of Algorithm 4, determining the K− 1 highest values
of the distance among consecutive points. The additional memory space in Algorithm 4
is in O(N), computing the list of consecutive distances. Sorting the distances and the
re-indexation both have a time complexity in O(N log N).

Mathematics 2021, 9, 453 17 of 30

Algorithm 4: Continuous min-sum K-radii on a line

Input: K ∈ N∗, N points of R2 on a line E = {x1, . . . , xN}

re-index E using Proposition 1
initialize vector v with vi := (i, d(xi+1)− d(xi)) for i ∈ [[1; N − 1]]
initialize vector w with vj := 0 for j ∈ [[1; K− 1]]
sort vector v with d(xi+1)− d(xi) increasing
for the K− 1 elements of v with the maximal value d(xi+1)− d(xi), store the indexes

i in w
sort w in the increasing order
initialize P = ∅, i = i = 1, OPT = 0.
for j ∈ [[1; K− 1]] in the increasing order

i := wj
add Ci,i in P
OPT := OPT + fC(Ci,i)

i := i + 1
end for
add Ci,N in P
OPT := OPT + fC(Ci,N)

return OPT the optimal cost and the partition of selected clusters P

6. Unified DP Algorithm and Complexity Results

Proposition 2 allows the design of a common DP algorithm for p-center problems and
variants, and to prove polynomial complexities. The key element is to design Bellman
equations.

Proposition 13 (Bellman equations). Defining Oi,k,m as the optimal cost of k-m-⊕-(α, γ)-
BC2DPF among points [[1, i]] for all i ∈ [[1, N]], k ∈ [[1, K]] and m ∈ [[0, M]], we have the
following induction relations

∀i ∈ [[1, N]], Oi,1,0 = fγ(C1,i)
α (21)

∀m ∈ [[1, M]], ∀k ∈ [[1, K]], ∀i ∈ [[1, m + k]], Oi,k,m = 0 (22)

∀m ∈ [[1, M]], ∀i ∈ [[m + 2, N]], Oi,1,m = min(Oi−1,1,m−1, fγ(C1+m,i)
α) (23)

∀k ∈ [[2, K]], ∀i ∈ [[k + 1, N]], Oi,k,0 = min
j∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

(24)

∀m ∈ [[1, M]], ∀k ∈ [[2, K]], ∀i ∈ [[k + m + 1, N]],

Oi,k,m = min
(

Oi−1,k,m−1, min
j∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
))

(25)

Proof. (21) is the standard 1-center case. (22) is a trivial case, where it is possible to fill the
clusters with singletons, with a null and optimal cost. (23) is a recursion formula among
the partial 1-center cases, an optimal solution of 1-m-⊕-(α, γ)-BC2DPF among points [[1, i]],
selecting the point xi, and the optimal solution is cluster C1+m,i with Proposition 3, with a
cost fγ(C1+m,i)

α or an optimal solution of 1-m− 1-⊕-(α, γ)-BC2DPF if the point xi is not se-
lected. (24) is a recursion formula among the k-0-⊕-(α, γ)-BC2DPF cases among points
[[1, i]]; when generalizing the ones from [10] for the powered sum-radii cases, the proof
is similar. Let k ∈ [[2, K]] and i ∈ [[k + 1, N]]. Let j ∈ [[k, i]], when selecting an optimal
solution of k-0-⊕-(α, γ)-BC2DPF among points indexed in [[1, j− 1]], and adding cluster
Cj,i, a feasible solution is obtained for k-0-⊕-(α, γ)-BC2DPF among the points indexed in

Mathematics 2021, 9, 453 18 of 30

[[1, i]] with a cost Oj−1,k−1,0 ⊕ fγ(Cj,i)
α. This last cost is lower than the optimal cost, thus

Oi,k,0 6 Oj−1,k−1,0 ⊕ fγ(Cj,i)
α. Such inequalities are valid for all j ∈ [[k, i]]; this implies

Oi,k,0 6 min
j∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

(26)

Let j1 < j2 < · · · < jk−1 < jk = i indexes, such that C1,j1 , Cj1+1,j2 , . . . , Cjk−1+1,i defines
the optimal solution of k-0-⊕-(α, γ)-BC2DPF among the points indexed in [[1, i]]; its cost is
Oi,k,0. Necessarily, C1,j1 , Cj1+1,j2 , . . . , Cjk−2+1,jk−1

defines the optimal solution of k− 1-0-⊕-
(α, γ)-BC2DPF among the points indexed in [[1, jk−1]]. On the contrary, a better solution for
Oi,k,0 would be constructed, adding the cluster Cjk−1+1,i. We thus have Oi,k,0 = Ojk−1,k−1,0 ⊕
fγ(Cjk−1+1,i)

α. Combined with (26), this proves Oi,k,0 = minj∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

.
Lastly, we prove (25). Let m ∈ [[1, M]], k ∈ [[2, K]], i ∈ [[k + m + 1, N]]. Oi,k,m 6

Oi−1,k,m−1; each solution of k-m− 1-⊕-(α, γ)-BC2DPF among the points indexed in [[1, i− 1]]
defines a solution of k-m-⊕-(α, γ)-BC2DPF among the points indexed in [[1, i]], with the
selecting point xi as an outlier. Let O′i,k,m, with the cost of k-m-⊕-(α, γ)-BC2DPF among the
points indexed in [[1, i]]; necessarily selecting the point i, we obtain Oi,k,m 6 O′i,k,m. O′i,k,m is
defined by a cluster Cj,i and an optimal solution of k-m-⊕-(α, γ)-BC2DPF among the points

indexed in [[1, j− 1]], so that O′i,k,m = minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

. We thus have

Oi,k,m 6 min
(

Oi−1,k,m−1, min
j∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
))

(27)

Reciprocally, let 1 = a1 < b1 < a2 < b2 < · · · < ak < bk indexes, such that
Ca1,b1 , Ca2,b2 , . . . , Cak ,bk

defines an optimal solution of k-m-⊕-(α, γ)-BC2DPF among the
points indexed in [[1, i]]; its cost is Oi,k,m. If bk = i, then Oi,k,m = O′i,k,m and (27) is an
equality. If bk < i, then Ca1,b1 , Ca2,b2 , . . . , Cak ,bk

defines an optimal solution of k-m− 1-⊕-
(α, γ)-BC2DPF among the points indexed in [[1, i− 1]]; its cost is Oi,k,m−1. We thus have
Oi,k,m = Oi,k,m−1, and (27) is an equality. Finally, (25) is proven by disjunction.

Bellman equations of Proposition 13 can compute the optimal value Oi,k,m by induc-
tion. A first method is a recursive implementation of the Bellman equations to compute the
cost ON,K,M and store the intermediate computations Oi,k,m in a memoized implementa-
tion. An iterative implementation is provided in Algorithm 5, using a defined order for
the computations of elements Oi,k,m. An advantage of Algorithm 5 is that independent
computations are highlighted for a parallel implementation. For both methods computing
the optimal cost ON,K,M, backtracking operations in the DP matrix with computed costs
allow for recovery of the affectation of clusters and outliers in an optimal solution.

In Algorithm 5, note that some useless computations are not processed. When having
to compute ON,K,M, computations ON,k,m with k + m < K + M are useless. ON−1,K,M will
also not be called. Generally, triangular elements ON−n,k,m with n + k + m < K + M are
useless. The DP matrix On,k,m is not fully constructed in Algorithm 5, removing such
useless elements.

Mathematics 2021, 9, 453 19 of 30

Algorithm 5: unified DP algorithm for K-M-⊕-(α, γ)-BC2DPF

Input: - N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- Parameters: K ∈ N∗, M ∈ N, ⊕ ∈ {+, max}, γ ∈ {0, 1} and α > 0 ;

sort E following the order of Proposition 1
initialize matrix O with Oi,k,m := 0 for all m ∈ [[0; M]], k ∈ [[1; K− 1]],

i ∈ [[k; N − K + k]]

compute fγ(C1,i)
α for all i ∈ [[1; N − K + 1]] and store in Oi,1,0 := fγ(C1,i)

α

for i := 2 to N
compute and store fγ(Ci′ ,i)

α for all i′ ∈ [[1; i]]
compute Oi,k,0 := minj∈[[k,i]]

(
Oj−1,k−1,0 ⊕ fγ(Cj,i)

α
)

for all k ∈ [[2; min(K, i)]]
for m = 1 to min(M, i− 2)

compute Oi,1,m := min(Oi−1,1,m−1, fγ(C1+m,i)
α)

for k = 2 to min(K, i−m)

compute Oi,k,m := min
(

Oi−1,k,m−1, minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
))

end for
end for
delete the stored fγ(Ci′ ,i)

α for all i′ ∈ [[1; i]]
end for

initialize P = ∅, i = i = N, m = M
for k = K to 1 with increment k← k− 1

compute i := min{i ∈ [[i−m; i]]|Oi,k,m := Oi−i,k,m−i+i}
m := m− i + i
compute and store fα(Ci′ ,i) for all i′ ∈ [[1; i]]

find i ∈ [[1, i]] such that i := arg minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

add Ci,i in P
delete the stored fα(Ci′ ,i) for all i′ ∈ [[1; i]]

end for

return ON,K,M the optimal cost and the selected clusters P

Theorem 1. Let E = {x1, . . . , xN} a subset of N points of R2, such that for all i 6= j, xiIxj.
When applied to the 2D PF E for K > 2, the K-M-⊕-(α, γ)-BC2DPF problems are solvable to
optimality in polynomial time using Algorithm 5, with a complexity in O(KN2(1 + M)) time and
O(KN(1 + M)) space.

Proof. The validity of Algorithm 5 is proven by induction; each cell of the DP matrix
Oi,k,m is computed using only cells that were previously computed to optimality. Once
the required cells are computed, a standard backtracking algorithm is applied to compute
the clusters. Let us analyze the complexity. Let K > 2. The space complexity is in
O(KN(1 + M)), along with the size of the DP matrix, with the intermediate computations
of cluster costs using, at most, O(N) memory space, only remembering such vectors due
to the deleting operations. Let us analyze the time complexity. Sorting and indexing the
elements of E (Proposition 1) has a time complexity in O(N log N). Once costs fγ(Ci′ ,i)

α

are computed and stored, each cell of the DP matrix is computed, at most, in O(N)
time using Formulas (21)–(24). This induces a total complexity in O(KN2(1 + M)) time.
The cluster costs are computed using N times Algorithm 3 and one time Algorithm 2;
this has a time complexity in O(N2), which is negligible compared to the O(KN2(1 +
M)) time computation of the cells of the DP matrix. The K backtracking operations
requires a O(N2) time computation of the costs fα(Ci′ ,i) for all i′ ∈ [[1; i]] and a given

Mathematics 2021, 9, 453 20 of 30

i, M operations in O(1) time to compute min{i ∈ [[i − m; i]]|Oi,k,m = Oi−i,k,m−i+i} and

O(N) operations in O(1) time to compute arg minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

. Finally,

the backtracking operations requires O(KN2) time, which is negligible compared to the
previous computation in O(KN2(1 + M)) time.

7. Specific Improvements

This section investigates how the complexity results of Theorem 2 may be improved,
and how to speed up Algorithm 5, from a theoretical and a practical viewpoint.

7.1. Improving Time Complexity for Standard and Partial P-Center Problems

In Algorithm 5, the bottleneck for complexity are the computations
minj∈[[k+m,i]]

(
Oj−1,k−1,m ⊕ fγ(Cj,i)

α
)

, for i ∈ [[2, N]], k ∈ [[2, min(K, i)]], m ∈ [[0, i − k]].
When⊕ = max, it is proven that such a minimization can be processed in O(log N) instead
of O(N) for the naive enumeration, leading to the general complexity results. This can
improve the time complexity in the p-center cases.

Lemma 13. Let k ∈ [[1, K]] and j ∈ [[1, N]]. The application m ∈ [[0, M]] 7−→ Oj,k,m is decreasing.

Proof. Let m ∈∈ [[1, M]]. For each E′ ⊂ E, any feasible solution of k-(m − 1)-⊕-(α, γ)-
BC2DPF in E′ is a feasible solution of k-m-⊕-(α, γ)-BC2DPF, with the partial versions
defined by problems (11). An optimal solution of k-m− 1-⊕-(α, γ)-BC2DPF is feasible for
k-(m− 1)-⊕-(α, γ)-BC2DPF, it implies Oj,k,m−1 > Oj,k,m.

Lemma 14. Let k ∈ [[1, K]] and m ∈ [[0, M]]. The application j ∈ [[1, N]] 7−→ Oj,k,m is increasing.

Proof. We yfirst note that the case k = 1 is implied by the Lemma 7, so that we can
suppose in the following, that k > 2. Let k ∈ [[2, K]], m ∈ [[0, M]] and j ∈ [[2, N]]. Let
π ∈ ΠK(E) be an optimal solution of k-m-⊕-(α, γ)-BC2DPF among the points indexed in
[[1, j]]; its cost is Oj,k,m. Let X ⊂ E, the subset of the non-selected points, |X| 6 M, and
C1, . . . , Ck with the k subsets defining the costs, so that X, C1, . . . , Ck is a partition of E and⊕k

k′=1 fγ(Ck′)
α = Oj,k,m. If xj ∈ X, then Oj,k,m = Oj−1,k,m−1 > Oj−1,k,m using Lemma 13,

which is the result. We suppose to end the proof that xj /∈ X and re-index the clusters
such that xj ∈ Ck. We consider the clusters C ′1, . . . , C ′k = C1, . . . , Ck−1, Ck − xk. With X, a
partition of (xl)l∈[[1,j−1]] is defined, with, at most, M outliers, so that it defines a feasible
solution of the optimization problem, defining Oj−1,k,m as a cost OPT′ > Oj−1,k,m. Using
Lemma 7, OPT′ 6 Oj,k,m, so that Oj−1,k,m−1 > Oj−1,k,m.

Lemma 15. Let i ∈ [[2, N]], k ∈ [[2, min(K, i)]], m ∈ [[0, i − k]]. Let gi,k,m : j ∈ [[2, i]] 7−→
max(Oj−1,k−1,m, fγ(Cj,i)

α). There is l ∈ [[2, i]], such that gi,k is decreasing for j ∈ [[2, l]], and then
increases for j ∈ [[l + 1, i]]. For j < l, gi,k = fγ(Cj,i)

α and for j > l, gi,k = Oj−1,k−1,m.

Proof. Similarly to the proof of Lemma 10, the following applications are monotone:
j ∈ [[1, i]] 7−→ fγ(Cj,i)

α decreases with Lemma 7,
j ∈ [[1, N]] 7−→ Oj,k,m increases for all k with Lemma 14.

Proposition 14. Let i ∈ [[2, N]], k ∈ [[2, K]], m ∈ [[0, M]]. Let γ ∈ {0, 1}. Once the val-
ues Oi′ ,k−1,m′ in the DP matrix of Algorithm 2 are computed, Algorithm 6 computes Oi,k,m =

minj∈[[k+m,i]] max
(

Oj−1,k−1,m, fγ(Cj,i)
α
)

calling O(log i) cost computations fγ(Cj,i). This in-

duces a time complexity in O(log1+γ i) using straightforward computations of the cluster costs
with Propositions 3 and 5.

Mathematics 2021, 9, 453 21 of 30

Algorithm 6: Dichotomic computation of minj∈[[k+m,i]] max
(

Oj−1,k−1,m, fγ(Cj,i)
α
)

input: indexes i ∈ [[2, N]], k ∈ [[2, min(K, i)]], m ∈ [[0, i− k]], α > 0 γ ∈ {0, 1};
a vector v containing vj := Oj,k−1,m for all j ∈ [[1, i− 1]].

define i := k + m, v = fγ(Ck+m,i)
α,

define i := i, v := vi−1,
while i− i > 2

i′′ :=
⌊

i+i
2

⌋
if fγ(Cj,i)

α < vi′′ then set i := i′′ and v := vi′′

else i := i′′ and v := fγ(Cj,i)
α

end while
return min(v, v)

Proof. Algorithm 6 is a dichotomic search based on Lemma 15, similarly to Algorithm
1, derived from Lemma 10. The complexity in Algorithm 6 is O(log i) cost computations
fγ(Cj,i). In the discrete case, such computations run in O(log i) time with Proposition 5,
whereas it is O(1) in the continuous case with Lemma 3. In both cases, the final time
complexity is given by O(log1+γ i).

Computing minj∈[[k+m,i]] max
(

Oj−1,k−1,m, fγ(Cj,i)
α
)

in time O(log i) instead of O(i)
in the proof of Theorem 1 for p-center problem and variants, the complexity results are
updated for these sub-problems.

Theorem 2. Let E = {x1, . . . , xN} be a subset of N points of R2, such that for all i 6= j, xiIxj.
Whe napplied to the 2D PF E for K > 2, the K-M-max-(α, γ)-BC2DPF problems are solvable
to optimality in polynomial time using Algorithm 4, with a complexity in O(KN(1 + M) log N)
time and O(KN(1 + M)) space.

Proof. The validity of Algorithm 5 using Algorithm 6 inside is implied by the validity of
Algorithm 6, proven in Proposition 14. Updating the time complexity with Proposition 14,
the new time complexity for continuous K-center problems is seen in O(KN(1 + M) log N)
time instead of O(K(1 + M)N2), as previously. For the discrete versions, using Proposition
14 with computations of discrete cluster costs with Proposition 5 induces a time complexity
in O(KN(1 + M) log2 N). The complexity is decreased to O(KN(1 + M) log N), where the
cluster costs are already computed and stored in Algorithm 5, and thus the computations of
Algorithm 6 are seen in O(1). tThisinduces the same complexity for discrete and continuous
K-center variants.

Remark 2. For the standard discrete p-center, Theorem 2 improves the time complexity given in
the preliminary paper [10], from O(pN log2 N) to O(pN log N). Another improvement was given
by Algorithm 1; the former computation of cluster costs has the same asymptotic complexity but
requires two times more computations. tTis proportional factor is non negligible in practice.

7.2. Improving Space Complexity for Standard P-Center Problems

For standard p-center problems, Algorithm 5 has a complexity in memory space in
O(KN), the size of the DP matrix. This section proves it is possible to reduce the space
complexity into an O(N) memory space.

One can compute the DP matrix for k-centers “line-by-line”, with k increasing. This
does not change the validity of the algorithm, with each computation using values that
were previously computed to the optimal values. Two main differences occur compared to
Algorithm 5. On one hand, the k + 1-center values use only k-center computations, and the
computations with k′ < k can be deleted once all the required k-center values are computed
when having to compute only the K-center values, especially the optimal cost. On the other

Mathematics 2021, 9, 453 22 of 30

hand, the computations of cluster costs are not factorized, as in Algorithm 5; this does not
make any difference in the continuous version, where Lemma 3 can to recompute cluster
costs in O(1) time when needed, whereas recomputing each cost induces the computations
running in O(log N) for the discrete version with Algorithm 1.

The search order of operations slightly degrades the time complexity for the discrete
variant, without inducing a change in the continuous variant. This allows only for computa-
tions of the optimal value; another difficulty is that the backtracking operations, as written
in Algorithm 5, require storage of the whole stored values of the whole matrix. The issue is
obtaining alternative backtracking algorithms that allow the computation of an optimal
solution of the standard p-center problems using only the optimal value provided by the
DP iterations, and with a complexity of, at most, O(KN logγ N) time and O(N) memory
space. Algorithms 7 and 8 have such properties.

Algorithm 7: Backtracking algorithm using O(N) memory space

input: - γ ∈ {0, 1} to specify the clustering measure;
- N points of a 2D PF, E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj ;
- K ∈ N the number of clusters;
- OPT, the optimal cost of K-γ-CP2DPF;

output: P an optimal partition of K-γ-CP2DPF.

initialize maxId := N, minId := N, P = ∅, a set of sub-intervals of [[1; N]].
for k := K to 2 with increment k← k− 1

set minId := maxId
while fγ(CminId−1,maxId)) 6 OPT do minId := minId− 1 end while
add [[minId, maxId]] in P
maxId := minId− 1

end for
add [[1, maxId]] in P

return P

Algorithm 8: Backtracking algorithm using O(N) memory space

input: - γ ∈ {0, 1} to specify the clustering measure;
- N points of a 2D PF, E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj ;
- K ∈ N the number of clusters;
- OPT, the optimal cost of K-γ-CP2DPF;

output: P an optimal partition of K-γ-CP2DPF.

initialize minId := 1, maxId := 1, P := ∅, a set of sub-intervals of [[1; N]].
for k := 2 to K with increment k← k + 1

set maxId := minId
while fγ(CminId,maxId+1)) 6 OPT do maxId := maxId + 1 end while
add [[minId, maxId]] in P
set minId := maxId + 1

end for
add [[minId, N]] in P

return P

Lemma 16. Let K ∈ N, K > 2. Let E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj.
For the discrete and continuous K-center problems, the indexes given by Algorithm 7 are lower
bounds of the indexes of any optimal solution. Denoting [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 + 1, N]],
the indexes given by Algorithm 7, and [[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i′K−1 + 1, N]], the indexes of an

optimal solution, we have, for all k ∈ [[1, K− 1]], ik 6 i′k

Mathematics 2021, 9, 453 23 of 30

Proof. This lemma is proven a decreasing induction on k, starting from k = K − 1. The
case k = K − 1 is furnished by the first step of Algorithm 4, and j ∈ [[1, N]] 7−→ fγ(Cj,N)
decreaswa with Lemma 7. WIth a given k, i′k 6 ik, ik−1 6 i′k−1 is implied by Lemma 2 and
d(zik , zik−1−1) > OPT.

Algorithm 8 is similar to Algorithm 7, with iterations increasing the indexes of the
points of E. The validity is similarly proven, and this provides the upper bounds for the
indexes of any optimal solution of K-center problems.

Lemma 17. Let K ∈ N, K > 2. Let E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj.
For K-center problems, the indexes given by Algorithm 8 are upper bounds of the indexes of
any optimal solution. Denoting [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 + 1, N]], the indexes given by
Algorithm 8, and [[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i′K−1 + 1, N]], the indexes of an optimal solution, we

have, for all k ∈ [[1, K− 1]], ik > i′k.

Proposition 15. Once the optimal cost of p-center problems are computed, Algorithms 7 and 8
compute an optimal partition in O(N log N) time using O(1) additional memory space.

Proof. We consider the proof for Algorithm 7, which is symmetrical for Algorithm 8. Let
OPT be the optimal cost of K-center clustering with f . Let [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 +
1, N]] be the indexes given by Algorithm 7. Through this construction, all the clus-
ters C defined by the indexes [[ik + 1, ik+1]] for all k > 1 verify fγ(C) 6 OPT. Let
C1 be the cluster defined by [[1, i1]]; we have to prove that fγ(C1) 6 OPT to conclude
the optimality of the clustering defined by Algorithm 4. For an optimal solution, let
[[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i′K−1 + 1, N]] be the indexes defining this solution. Lemma 16 en-

sures that i1 6 i′1, and thus Lemma 7 assures fγ(C1,i1) 6 fγ(C1,i′1
) 6 OPT. Analyzing the

complexity, Algorithm 7 calls for a maximum of (K + N) 6 2N times the clustering cost
function, without requiring stored elements; the complexity is in O(N logγ N) time.

Remark 3. Finding the biggest cluster with an extremity given and a bounded cost can be acheived
by a dichotomic search. Rhis would induce a complexity in O(K log1+γ N). To avoid the separate
case K = O(N) and γ = 1, Algorithms 7 and 8 provide a common algorithm running in
O(N log N) time, which is enough for the following complexity results.

The previous improvements, written in Algorithm 9, allow for new complexity results
with a O(N) memory space for K-centrer problems.

Algorithm 9: p-center clustering in a 2DPF with a O(N) memory space

Input:
- N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- γ ∈ {0, 1} to specify the clustering measure;
- K ∈ N the number of clusters.

initialize matrix O with Oi,k := 0 for all i ∈ [[1; N]], k ∈ [[1; K− 1]]
sort E following the order of Proposition 1
compute and store Oi,1 := fγ(C1,i) for all i ∈ [[1; N]] (with Algorithm 2 if γ = 1)
for k = 2 to K− 1

for i = k + 1 to N − K + k
compute and store Oi,k := minj∈[[2,i]] max(Oj−1,k−1, fγ(Cj,i)) (Algorithm 6)

end for
delete the stored Oi,k−1 for all i

end for
OPT := minj∈[[2,N]] max(Oj−1,K−1, fγ(Cj,N)) with Algorithm 6

return OPT the optimal cost and a partition P given by backtracking Algorithm 7 or 8

Mathematics 2021, 9, 453 24 of 30

Theorem 3. Let E = {x1, . . . , xN} a subset of N points ofR2, such that for all i 6= j, xiIxj. When
applied to the 2D PF E for K > 2, the standard continuous and discrete K-center problems, i.e., K-
0-max-(α, γ)-BC2DPF, are solvable with a complexity in O(KN log1+γ N) time and O(N) space.

Remark 4. The continuous case improves the complexity obtained after Theorem 2, with the same
time complexity and an improvement in the space complexity. For the discrete variant, improving the
space complexity in O(N) instead of O(N) induces a very slight degradation of the time complexity,
from O(KN log N) to O(KN log2 N). Depending on the value of K, it may be preferable, with
stronger constraints in memory space, to have this second version.

7.3. Improving Space Complexity for Partial P-Center Problems?

This section tries to generalize the previous results for the partial K-center problems,
i.e., K-M-max-(α, γ)-BC2DPF with M > 0. The key element is to obtain a backtracking
algorithm that does not use the DP matrix. Algorithm 10 extends Algorithm 7 by consider-
ing all the possible cardinals of outliers between clusters k and k + 1 for k ∈ [[0, K− 1]] and
the outliers after the last cluster. A feasible solution of the optimal cost should be feasible
by iterating Algorithm 7 for at least one of these sub-cases.

Algorithm 10: Backtracking algorithm for K-M-max-(α, γ)-BC2DPF with M > 0

input: - a K-M-max-(α, γ)-BC2DPF problem
- N points of a 2D PF, E = {z1, . . . , zN}, sorted such that for all i < j, zi ≺ zj ;
- OPT, the optimal cost of K-M-max-(α, γ)-BC2DPF problem;

output: P an optimal partition of K-M-max-(α, γ)-BC2DPF problem.

for each vector x of K + 1 elements such that ∑K
k=0 x[k] = M

initialize maxId− x[K] := N, minId := N − x[K], P := ∅, a set of sub-intervals
of [[1; N]].

for k = K to 2 with increment k← k− 1
set minId := maxId
while fγ(CminId−1,maxId))

α 6 OPT do minId := minId− 1 end while
add [[minId, maxId]] in P
set maxId := minId− 1− x[K− 1]

end for
if fγ(C1+x[0],maxId))

α 6 OPT then add [[1 + x[0], maxId]] in P and return P
end for

return error “OPT is not a feasible cost for K-M-max-(α, γ)-BC2DPF ”

It is crucial to analyze the time complexity induced by this enumeration. If the number
of vectors x of K + 1 elements is such such that ∑K

k=0 x[k] = M is in Θ(KM), then this
complexity is not polynomial anymore. For M = 1, a time complexity in O(KN log N)
would be induced, which is acceptable within the complexity of the computation of the
DP matrix. Having M > 2 would dramatically degrade the time complexity. Hence, we
extend the improvement results of space complexity only for M = 1, with Algorithm 11.

Theorem 4. Let E = {x1, . . . , xN} a subset of N points of R2, such that for all i 6= j, xiIxj.
When applied to the 2D PF E for K > 2, partial K-center problems K-1-max-(α, γ)-BC2DPF, are
solvable with a complexity in O(KN log1+γ N) time and O(N) space.

7.4. Speeding-Up DP for Sum-Radii Problems

Similarly to Algorithm 6, this section tries to speed up the computations
minj∈[[k+m,i]]

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

, which are the bottleneck for the time complexity
in Algorithm 5. This section presents the stopping criterion to avoid useless computa-
tions in the O(N) naive enumeration, but without providing proofs of time complexity
improvements.

Mathematics 2021, 9, 453 25 of 30

Algorithm 11: Partial p-center K-1-max-(1, γ)-BC2DPF with a O(N) memory space

Input:
- N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- γ ∈ {0, 1} to specify the clustering measure;
- K ∈ N, K > 2 the number of clusters.

initialize matrix O with Oi,k,m := 0 for all i ∈ [[1; N]], k ∈ [[1; K− 1]], m ∈ [[0; 1]]
sort E following the order of Proposition 1
compute and store Oi,1,0 := fγ(C1,i) for all i ∈ [[1; N]] (with Algorithm 2 if γ = 1)
compute and store fγ(C2,i) for all i ∈ [[2; N]] (with Algorithm 2 if γ = 1)
compute and store Oi,1,1 := min(fγ(C2,i), Oi−1,1,0) for all i ∈ [[2; N]]
for k = 2 to K

for i := k + 1 to N − K + k
compute and store Oi,k,0 := minj∈[[2,i]] max(Oj−1,k−1,0, fγ(Cj,i)) (Algorithm 6)

compute and store Oi,k,1 := minj∈[[k+1,i]] max
(

Oj−1,k−1,1, fγ(Cj,i)
)

Oi,k,1 := min(Oi−1,k,0, Oi,k,1)
end for
delete the stored Oi,k−1,m for all i, m

end for
return ON,K,1 the optimal cost and a partition P given by backtracking Algorithm 10

Proposition 16. Let m ∈ [[0, M]], i ∈ [[1, N]] and k ∈ [[2, K]]. Let β an upper bound for Oi,k,m.
We suppose there exist j0 ∈ [[1, i]], such that fγ(Cj0,i)

α > β. Then, each optimal index j∗, such
that Oi,k,m = Oj∗−1,k−1,m + fα(Cj∗ ,i) necessarily fulfills j∗ > j0. In other words, Oi,k,m =

minj∈[[max(k+m,j0+1),i]]

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

.

Proof. With fγ(Cj0,i)
α > β, Lemma 7 implies that for all j < j0, fγ(Cj,i)

α > fγ(Cj0,i)
α >

β. Using Oi′ ,k′ ,m > 0 for all i′, k′ implies that for all j < j0, fγ(Cj0,i)
α + Oj0−1,k−1,m >

β, and the optimal index gives Oi,k,m = minj∈[[k+m,i]]

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

, which is
superior to j0.

Proposition 16 can be applied to compute each value of the DP matrix using fewer
computations than the naive enumeration. In the enumeration, β is updated to the best
current value of

(
Oj−1,k−1,m + fγ(Cj,i)

α
)

. The index would be enumerated in a decreasing
way, starting from j = i until an index is found, such that fγ(Cj0,i)

α > β, and no more
enumeration is required with Proposition 16, ensuring that the partial enumeration is
sufficient to find the wished-for minimal value. This is a practical improvement, but we do
not furnish proof of complexity improvements, as it is likely that this would not change
the worst case complexity.

8. Discussion
8.1. Importance of the 2D PF Hypothesis, Summarizing Complexity Results

Planar p-center problems were not studied previously in the PF case. The 2D PF
hypothesis is crucial for the complexity results and the efficiency of the solving algo-
rithms. Table 1 compares the available complexity results for 1D and 2D cases of some
k-center variants.

The complexity for 2D PF cases is very similar to the 1D cases; the 2D PF extension
does not induce major difficulties in terms of complexity results. 2D PF cases may in-
duce significant differences compared to the general 2D cases. The p-center problems are
NP-hard in a planar Euclidean space [17], since adding the PF hypothesis leads to the
polynomial complexity of Theorem 1, which allows for an efficient, straightforward imple-
mentation of the algorithm. Two properties of 2D PF were crucial for these results: The 1D
structure implied by Proposition 1, which allows an extension of DP algorithms [58,59],

Mathematics 2021, 9, 453 26 of 30

and Lemmas 3 and 6, which allow quick computations of cluster costs. Note that rectan-
gular p-center problems have a better complexity using general planar results than using
our Theorems 2 and 3. Our algorithms only use common properties for Chebyshev and
Minkowski distances, whereas significant improvements are provided using specificities of
Chebyshev distance.

Table 1. Comparison of the time complexity for 2D PF cases to the 1D and 2D cases.

Problem 1D Complexity Our 2D PF Complexity 2D Complexity

Cont.
min-sum-K-radii O(N log N) Proposition 12 O(KN2) Theorem 1 NP-hard [40]

Cont. p-center O(N log3 N) [7] O(pN log N) Theorems 2 and 3 NP-hard [17]
Discr. p-center O(N) [33] O(pN log N) Theorem 2 NP-hard [17]
Cont. 1-center O(N) [20] O(N) Proposition 8 O(N) [20]
Discr. 1-center - - O(N) Proposition 8 O(N log N) [29]
Cont. 2-center - - O(N log N) Proposition 10 O(N log2 N) [28]
Discr. 2-center - - O(N log N) Proposition 10 O(N4/3 log5 N) [32]
partial 1-center - - O(N min(M, log N)) Proposition 9 O(N2 log N) [38]
Rect. 1-center O(N) [36] O(N) Proposition 2 O(N) [36]
Rect. 2-center O(N) [36] O(N log N) Proposition 10 O(N) [36]
Cont. rect. p-center O(N) [36] O(pN log N) Theorem 3 O(N) [36]
Discr. rect. p-center O(N log N) [36] O(pN log N) Theorem 2 O(N log N) [36]

Note that our complexity results are given considering the complexity of the initial
re-indexation with Proposition 1. This O(N log N) phase may be the bottleneck for the final
complexity. Some papers mention results which consider that the data are already in the
memory (avoiding an O(N) traversal for input data) and already sorted. In our applications,
MOO methods such as epsilon-constraint provide already sorted points [3]. Using this
means of calculating the complexity, our algorithms for continuous and discrete 2-center
problems in a 2D PF would have, respectively, a complexity in O(log N) and O(log2 N)
time. A notable advantage of the specialized algorithm in a 2D PF instead of the general
cases in 2D is the simple and easy to implement algorithms.

8.2. Equivalent Optimal Solutions for P-Center Problems

Lemmas 16 and 17 emphasize that many optimal solutions may exist; the lower and
upper bounds may define a very large funnel. We also note that many optimal solutions
can be nested, i.e., non-verifying the Proposition 2. For real-world applicationa, having
well-balanced clusters is more natural, and often wished for. Algorithms 7 and 8 provide
the most unbalanced solutions. One may balance the sizes of covering balls, or the number
of points in the clusters. Both types of solutions may be given using simple and fast
post-processing. For example, one may proceed with a steepest descent local search using
two-center problem types for consecutive clusters in the current solution. For balancing
the size of clusters, iterating two-center computations induces marginal computations in
O(log1+γ N) time for each iteration with Algorithm 6. Such complexity occurs once the
points are re-indexed using Proposition 1; one such computation in O(N log N) allows for
many neighborhood computations running in O(log1+γ N) time, and the sorting time is
amortized.

8.3. Towards a Parallel Implementation

Complexity issues are raised to speed-up the convergence of the algorithms in practice.
An additional way to speed up the algorithms in practice is to consider implementation
issues, especially parallel implementation properties in multi- or many-core environments.
In Algorithm 5, the values of the DP matrix Oi,k,m for a given i ∈ [[1; N]] requires only to
compute the values Oj,k,m for all j < i . Independent computations can thus be operated
at the iteration i of Algorithm 5, once the cluster costs fγ(Ci′ ,i)

α for all i′ ∈ [[1; i]] have
been computed, which is not the most time-consuming part when using Algorithms 2
and 3. This is a very useful property for a parallel implementation, requiring only N − 1

Mathematics 2021, 9, 453 27 of 30

synchronizations to process O(KN2(1 + M)) operations. Hence, a parallel implementation
of Algorithm 5 is straightforward in a shared memory parallelization, using OpenMP
for instance in C/C++, or higher-level programming languages such as Python, Julia or
Chapel [60]. One may also consider an intensive parallelization in a many-core environ-
ment, such as General Purpose Graphical Processing Units (GPGPU). A difficulty when
using this may be the large memory size that is required in Algorithm 5.

Section 7 variants, which construct the DP matrix faster, both for k-center and min-sum
k-radii problems, are not compatible with an efficient GPGPU parallelization, and one
would prefer the naive and fixed-size enumeration of Algorithm 5, even with its worse
time complexity for the sequential algorithm. Comparing the sequential algorithm to the
GPGPU parallelization, having many independent parallelized computations allows a
huge proportional factor with GPGPU, which can compensate the worst asymptotic com-
plexity for reasonable sized instances. Shared memory parallelization, such as OpenMP,
is compatible with the improvements provided in Section 7. Contrary to Algorithm 5,
Algorithms 9 and 11 compute the DP matrix with index k increasing, with O(N) indepen-
dent computation induced at each iteration. With such algorithms, there are only K− 2
synchronizations required, instead of N − 1 for Algorithm 5, which is a better property
for parallelization. The O(N) memory versions are also useful for GPGPU parallelization,
where memory space is more constrained than when storing a DP matrix on the RAM.

Previously, the parallelization of the DP matrix construction was discussed, as this
is the bottleneck in time complexity. The initial sorting algorithm can also be parallelized
on GPGPU if needed; the sorting time is negligible in most cases. The backtracking
algorithm is sequential to obtain clusters, but with a low complexity in general, so that a
parallelization of this phase is not crucial. We note that there is only one case where the
backtracking Algorithm has the same complexity as the construction of the DP matrix:
the DP variant in O(N) memory space proposed in Algorithm 11 with Algorithm 10 as a
specific backtrack. In this specific case, the O(K) tests with different positions of the chosen
outlier are independent, which allows a specific parallelization for Algorithm 10.

8.4. Applications to Bi-Objective Meta-Heuristics

The initial motivation of this work was to support decision makers when an MOO
approach without preference furnishes a large set of non-dominated solutions. In this
application, the value of K is small, allowing for human analyses to offer some preferences.
In this paper, the optimality is not required in the further developments. Our work can
also be applied to a partial PF furnished by population meta-heuristics [5]. A posteriori,
the complexity allows for the use of Algorithms 5, 9 and 11 inside MOO meta-heuristics.
Archiving PF is a common issue of population meta-heuristics, facing multi-objective
optimization problems [4,5]. A key issue is obtaining diversified points of the PF in the
archive, to compute diversified solutions along the current PF.

Algorithms 5, 9 and 11 can be used to address this issue, embedded in MOO ap-
proaches, similarly to [49]. Archiving diversified solutions of Pareto sets has application for
the diversification of genetic algorithms, to select diversified solutions for cross-over and
mutation phases [61,62], but also for swarm particle optimization heuristics [63]. In these
applications, clustering has to run quickly. The complexity results and the parallelization
properties are useful in such applicationas.

For application to MOO meta-heuristics like evolutionary algorithms, the partial
versions are particularly useful. Indeed, partial versions may detect outliers that are
isolated from the other points. For such points, it is natural to process intensification
operators to look for efficient solutions in the neighborhood, which will make the former
outlier less isolated. Such a process is interesting for obtaining a better balanced distribution
of the points along the PF, which is a crucial point when dealing with MOO meta-heuristics.

Mathematics 2021, 9, 453 28 of 30

8.5. How to Choose K, M?

A crucial point in clustering applications the selection of an appropriate value of
K. A too-small value of K can miss that instances which are well-captured with K + 1
representative clusters. Real-world applications seek the best compromise between the
minimization of K, and the minimization of the dissimilarity among the clusters. Similarly,
with [11], the properties of DP can be used to achieve this goal. With the DP Algorithm 9,
many couples {(k, ON,k)}k are computed, using the optimal k-center values with k clusters.
Having defined a maximal value K′, the complexity for computing these points is seen
in O(NK′ log1+γ N). When searching for good values of k, the elbow technique, may be
applied. Backtracking operations may be used for many solutions without changing the
complexity. Rhe same ideas are applicable along the M index. In the previoulsy described
context of MOO meta-heuristics, the sensitivity with the M parameter is more important
than the sensitivity for the parameter K, where the number of archived points is known
and fixed regarding other considerations, such as the allowed size of the population.

9. Conclusions and Perspectives

This paper examined the properties of p-center problems and variants in the special
case of a discrete set of non-dominated points in a 2D space, using Euclidean, Minkowski
or Chebyshev distances. A common characterization of optimal clusters is proven for the
discrete and continuous variants of the p-center problems and variants. Thie can solve
these problems to optimality with a unified DP algorithm of a polynomial complexity.
Some complexity results for the 2D PF case improve the general ones in 2D. The presented
algorithms are useful for MOO approaches. The complexity results, in O(KN log N) time
for the standard K-center problems, and in O(KN2) time for the standard min-sum k-
radii problems, are useful for application with a large PF. When applied to N points
and able to ncover M < N points, partial K-center and min-sum-K-radii variants are,
respectively, solvable in O(K(M + 1)N log N) and O(K(M + 1)N2) time. Furthermore,
the DP algorithms have interesting properties for efficient parallel implementation in
a shared memory environment, such as OpenMP or using GPGPU. This allows their
application for a very large PF with short solving times. For an application for MOO
meta-heuristics such as evolutionary algorithms, the partial versions are useful for the
detection of outliers where intensification phases around these isolated solutions may be
processed in order to obtain a better distribution of the points along the PF.

Future perspectives include the extension of these results to other clustering algo-
rithms. The weighted versions of p-center variants were not studied in this paper, which
was motivated by MOO perspectives, and future perspectives shall consider extending
our algorithms to weighted variants. Regarding MOO applications, extending the results
to dimension 3 is a subject of interest for MOO problems with three objectives. However,
clustering a 3D PF will be an NP-hard problem as soon as the general 2D cases are proven
to be NP-hard. The perspective in such cases is to design specific approximation algorithms
for a 3D PF.

Author Contributions: Conceptualization, N.D. and F.N.; Methodology, N.D. and F.N.; Validation,
E.-G.T. and F.N.; Writing–original draft preparation, N.D.; Writing—review and editing, N.D.;
Supervision, E.-G.T. and F.N. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 453 29 of 30

References
1. Peugeot, T.; Dupin, N.; Sembely, M.J.; Dubecq, C. MBSE, PLM, MIP and Robust Optimization for System of Systems Management,

Application to SCCOA French Air Defense Program. In Complex Systems Design & Management; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 29–40. [CrossRef]

2. Dupin, N.; Talbi, E. Matheuristics to optimize refueling and maintenance planning of nuclear power plants. J. Heuristics 2020,
1–43. [CrossRef]

3. Ehrgott, M.; Gandibleux, X. Multiobjective combinatorial optimization-theory, methodology, and applications. In Multiple Criteria
Optimization: State of the Art Annotated Bibliographic Surveys; Springer: Berlin/Heidelberg, Germany, 2003; pp. 369–444.

4. Schuetze, O.; Hernandez, C.; Talbi, E.; Sun, J.; Naranjani, Y.; Xiong, F. Archivers for the representation of the set of approximate
solutions for MOPs. J. Heuristics 2019, 25, 71–105. [CrossRef]

5. Talbi, E. Metaheuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009; Volume 74.
6. Hsu, W.; Nemhauser, G. Easy and hard bottleneck location problems. Discret. Appl. Math. 1979, 1, 209–215. [CrossRef]
7. Megiddo, N.; Tamir, A. New results on the complexity of p-centre problems. SIAM J. Comput. 1983, 12, 751–758. [CrossRef]
8. Ravi, S.; Rosenkrantz, D.; Tayi, G. Heuristic and special case algorithms for dispersion problems. Oper. Res. 1994, 42, 299–310.

[CrossRef]
9. Wang, D.; Kuo, Y. A study on two geometric location problems. Inf. Process. Lett. 1988, 28, 281–286. [CrossRef]
10. Dupin, N.; Nielsen, F.; Talbi, E. Clustering a 2d Pareto Front: P-center problems are solvable in polynomial time. In Proceedings

of the International Conference on Optimization and Learning, Cádiz, Spain, 17–19 February 2020; pp. 179–191. [CrossRef]
11. Dupin, N.; Nielsen, F.; Talbi, E. k-medoids clustering is solvable in polynomial time for a 2d Pareto front. In Proceedings of the

World Congress on Global Optimization, Metz, France, 8–10 July 2019; pp. 790–799. [CrossRef]
12. Borzsony, S.; Kossmann, D.; Stocker, K. The skyline operator. In Proceedings of the 17th International Conference on Data

Engineering, Heidelberg, Germany, 2–6 April 2001; pp. 421–430.
13. Nielsen, F. Output-sensitive peeling of convex and maximal layers. Inf. Process. Lett. 1996, 59, 255–259. [CrossRef]
14. Arana-Jiménez, M.; Sánchez-Gil, C. On generating the set of nondominated solutions of a linear programming problem with

parameterized fuzzy numbers. J. Glob. Optim. 2020, 77, 27–52. [CrossRef]
15. Daskin, M.; Owen, S. Two New Location Covering Problems: The Partial P-Center Problem and the Partial Set Covering Problem.

Geogr. Anal. 1999, 31, 217–235. [CrossRef]
16. Calik, H.; Labbé, M.; Yaman, H. p-Center problems. In Location Science; Springer: Berlin/Heidelberg, Germany, 2015; pp. 79–92.
17. Megiddo, N.; Supowit, K. On the complexity of some common geometric location problems. SIAM J. Comput. 1984, 13, 182–196.

[CrossRef]
18. Hochbaum, D. When are NP-hard location problems easy? Ann. Oper. Res. 1984, 1, 201–214. [CrossRef]
19. Hochbaum, D.; Shmoys, D. A best possible heuristic for the k-center problem. Math. Oper. Res. 1985, 10, 180–184. [CrossRef]
20. Gonzalez, T. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 1985, 38, 293–306. [CrossRef]
21. Daskin, M. Network and Discrete Location: Models, Algorithms and Applications; Wiley: Hoboken, NJ, USA, 1995.
22. Calik, H.; Tansel, B. Double bound method for solving the p-center location problem. Comput. Oper. Res. 2013, 40, 2991–2999.

[CrossRef]
23. Elloumi, S.; Labbé, M.; Pochet, Y. A new formulation and resolution method for the p-center problem. INFORMS J. Comput. 2004,

16, 84–94. [CrossRef]
24. Callaghan, B.; Salhi, S.; Nagy, G. Speeding up the optimal method of Drezner for the p-centre problem in the plane. Eur. J. Oper.

Res. 2017, 257, 722–734. [CrossRef]
25. Drezner, Z. The p-centre problem—heuristic and optimal algorithms. J. Oper. Res. Soc. 1984, 35, 741–748.
26. Hwang, R.; Lee, R.; Chang, R. The slab dividing approach to solve the Euclidean P-Center problem. Algorithmica 1993, 9, 1–22.

[CrossRef]
27. Agarwal, P.; Procopiuc, C. Exact and approximation algorithms for clustering. Algorithmica 2002, 33, 201–226. [CrossRef]
28. Megiddo, N. Linear-time algorithms for linear programming in R3 and related problems. SIAM J. Comput. 1983, 12, 759–776.

[CrossRef]
29. Brass, P.; Knauer, C.; Na, H.; Shin, C.; Vigneron, A. Computing k-centers on a line. arXiv 2009, arXiv:0902.3282.
30. Sharir, M. A near-linear algorithm for the planar 2-center problem. Discret. Comput. Geom. 1997, 18, 125–134. [CrossRef]
31. Eppstein, D. Faster construction of planar two-centers. SODA 1997, 97, 131–138.
32. Agarwal, P.; Sharir, M.; Welzl, E. The discrete 2-center problem. Discret. Comput. Geom. 1998, 20, 287–305. [CrossRef]
33. Frederickson, G. Parametric search and locating supply centers in trees. In Workshop on Algorithms and Data Structures; Springer:

Berlin/Heidelberg, Germany, 1991; pp. 299–319.
34. Karmakar, A.; Das, S.; Nandy, S.; Bhattacharya, B. Some variations on constrained minimum enclosing circle problem. J. Comb.

Optim. 2013, 25, 176–190. [CrossRef]
35. Chen, D.; Li, J.; Wang, H. Efficient algorithms for the one-dimensional k-center problem. Theor. Comput. Sci. 2015, 592, 135–142.

[CrossRef]
36. Drezner, Z. On the rectangular p-center problem. Nav. Res. Logist. (NRL) 1987, 34, 229–234. [CrossRef]
37. Katz, M.J.; Kedem, K.; Segal, M. Discrete rectilinear 2-center problems. Comput. Geom. 2000, 15, 203–214. [CrossRef]
38. Drezner, Z. On a modified one-center model. Manag. Sci. 1981, 27, 848–851. [CrossRef]

http://doi.org/10.1007/978-3-319-49103-5_3
http://dx.doi.org/10.1007/s10732-020-09450-0
http://dx.doi.org/10.1007/s10732-018-9383-z
http://dx.doi.org/10.1016/0166-218X(79)90044-1
http://dx.doi.org/10.1137/0212051
http://dx.doi.org/10.1287/opre.42.2.299
http://dx.doi.org/10.1016/0020-0190(88)90174-3
http://dx.doi.org/10.1007/978-3-030-41913-4_15
http://dx.doi.org/10.1007/978-3-030-21803-4_79
http://dx.doi.org/10.1016/0020-0190(96)00116-0
http://dx.doi.org/10.1007/s10898-019-00841-7
http://dx.doi.org/10.1111/gean.1999.31.1.217
http://dx.doi.org/10.1137/0213014
http://dx.doi.org/10.1007/BF01874389
http://dx.doi.org/10.1287/moor.10.2.180
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1016/j.cor.2013.07.011
http://dx.doi.org/10.1287/ijoc.1030.0028
http://dx.doi.org/10.1016/j.ejor.2016.08.038
http://dx.doi.org/10.1007/BF01185335
http://dx.doi.org/10.1007/s00453-001-0110-y
http://dx.doi.org/10.1137/0212052
http://dx.doi.org/10.1007/PL00009311
http://dx.doi.org/10.1007/PL00009387
http://dx.doi.org/10.1007/s10878-012-9452-4
http://dx.doi.org/10.1016/j.tcs.2015.05.028
http://dx.doi.org/10.1002/1520-6750(198704)34:2<229::AID-NAV3220340207>3.0.CO;2-1
http://dx.doi.org/10.1016/S0925-7721(99)00052-8
http://dx.doi.org/10.1287/mnsc.27.7.848

Mathematics 2021, 9, 453 30 of 30

39. Hansen, P.; Jaumard, B. Cluster analysis and mathematical programming. Math. Program. 1997, 79, 191–215. [CrossRef]
40. Doddi, S.; Marathe, M.; Ravi, S.; Taylor, D.; Widmayer, P. Approximation algorithms for clustering to minimize the sum of

diameters. Nord. J. Comput. 2000, 7, 185–203.
41. Gibson, M.; Kanade, G.; Krohn, E.; Pirwani, I.A.; Varadarajan, K. On metric clustering to minimize the sum of radii. Algorithmica

2010, 57, 484–498. [CrossRef]
42. Charikar, M.; Panigrahy, R. Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 2004, 68, 417–441. [CrossRef]
43. Behsaz, B.; Salavatipour, M. On minimum sum of radii and diameters clustering. Algorithmica 2015, 73, 143–165. [CrossRef]
44. Mahajan, M.; Nimbhorkar, P.; Varadarajan, K. The planar k-means problem is NP-hard. Theor. Comput. Sci. 2012, 442, 13–21.

[CrossRef]
45. Shang, Y. Generalized K-Core percolation in networks with community structure. SIAM J. Appl. Math. 2020, 80, 1272–1289.

[CrossRef]
46. Tao, Y.; Ding, L.; Lin, X.; Pei, J. Distance-based representative skyline. In Proceedings of the 2009 IEEE 25th International

Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 892–903.
47. Cabello, S. Faster Distance-Based Representative Skyline and k-Center Along Pareto Front in the Plane. arXiv 2020,

arXiv:2012.15381.
48. Sayın, S. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming.

Math. Program. 2000, 87, 543–560. [CrossRef]
49. Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Investigating and exploiting the bias of the weighted hypervolume to articulate user

preferences. In Proceedings of the GECCO 2009, Montreal, QC, Canada, 8–12 July 2009; pp. 563–570.
50. Bringmann, K.; Cabello, S.; Emmerich, M. Maximum Volume Subset Selection for Anchored Boxes. In Proceedings of the 33rd

International Symposium on Computational Geometry (SoCG 2017), Brisbane, Australia, 4–7 July 2017; Aronov, B., Katz, M.J.,
Eds.; Volume 77, pp. 22:1–22:15. [CrossRef]

51. Bringmann, K.; Friedrich, T.; Klitzke, P. Two-dimensional subset selection for hypervolume and epsilon-indicator. In Proceedings
of the Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 June 2014; pp. 589–596.

52. Kuhn, T.; Fonseca, C.; Paquete, L.; Ruzika, S.; Duarte, M.; Figueira, J. Hypervolume subset selection in two dimensions:
Formulations and algorithms. Evol. Comput. 2016, 24, 411–425. [CrossRef]

53. Erkut, E. The discrete p-dispersion problem. Eur. J. Oper. Res. 1990, 46, 48–60. [CrossRef]
54. Hansen, P.; Moon, I. Dispersing facilities on a network. Cahiers du GERAD 1995.
55. Dupin, N. Polynomial algorithms for p-dispersion problems in a 2d Pareto Front. arXiv 2020, arXiv:2002.11830.
56. Dupin, N.; Nielsen, F.; Talbi, E. k-medoids and p-median clustering are solvable in polynomial time for a 2d Pareto front. arXiv

2018, arXiv:1806.02098.
57. Dupin, N.; Nielsen, F.; Talbi, E. Dynamic Programming heuristic for k-means Clustering among a 2-dimensional Pareto Frontier.

In Proceedings of the 7th International Conference on Metaheuristics and Nature Inspired Computing, Marrakech, Morocco,
27–31 October 2018.

58. Grønlund, A.; Larsen, K.; Mathiasen, A.; Nielsen, J.; Schneider, S.; Song, M. Fast exact k-means, k-medians and Bregman
divergence clustering in 1d. arXiv 2017, arXiv:1701.07204.

59. Wang, H.; Song, M. Ckmeans. 1d. dp: Optimal k-means clustering in one dimension by dynamic programming. R J. 2011, 3, 29.
[CrossRef]

60. Gmys, J.; Carneiro, T.; Melab, N.; Talbi, E.; Tuyttens, D. A comparative study of high-productivity high-performance programming
languages for parallel metaheuristics. Swarm Evol. Comput. 2020, 57, 100720. [CrossRef]

61. Zio, E.; Bazzo, R. A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective
optimization problems. Eur. J. Oper. Res. 2011, 210, 624–634. [CrossRef]

62. Samorani, M.; Wang, Y.; Lv, Z.; Glover, F. Clustering-driven evolutionary algorithms: An application of path relinking to the
quadratic unconstrained binary optimization problem. J. Heuristics 2019, 25, 629–642. [CrossRef]

63. Pulido, G.; Coello, C. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer.
In Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 26–30 June 2004; pp. 225–237.

http://dx.doi.org/10.1007/BF02614317
http://dx.doi.org/10.1007/s00453-009-9282-7
http://dx.doi.org/10.1016/j.jcss.2003.07.014
http://dx.doi.org/10.1007/s00453-014-9907-3
http://dx.doi.org/10.1016/j.tcs.2010.05.034
http://dx.doi.org/10.1137/19M1290607
http://dx.doi.org/10.1007/s101070050128
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.22
http://dx.doi.org/10.1162/EVCO_a_00157
http://dx.doi.org/10.1016/0377-2217(90)90297-O
http://dx.doi.org/10.32614/RJ-2011-015
http://dx.doi.org/10.1016/j.swevo.2020.100720
http://dx.doi.org/10.1016/j.ejor.2010.10.021
http://dx.doi.org/10.1007/s10732-018-9403-z

	Introduction
	Problem Statement and Notation
	Related Works
	Solving P-Center Problems and Complexity Results
	Solving Variants of P-Center Problems and Complexity Results
	Clustering/Selecting Points in Pareto Frontiers

	Intermediate Results
	Indexation and Distances in a 2D PF
	Lemmas Related to Cluster Costs
	Optimality of Non-Nested Clustering
	Computation of Cluster Costs

	Particular Sub-Cases
	Sub-Cases with K=1
	Sub-Cases with K=2
	Continuous Min-Sum K-Radii on A Line

	Unified DP Algorithm and Complexity Results
	Specific Improvements
	Improving Time Complexity for Standard and Partial P-Center Problems
	Improving Space Complexity for Standard P-Center Problems
	Improving Space Complexity for Partial P-Center Problems?
	Speeding-Up DP for Sum-Radii Problems

	Discussion
	Importance of the 2D PF Hypothesis, Summarizing Complexity Results
	Equivalent Optimal Solutions for P-Center Problems
	Towards a Parallel Implementation
	Applications to Bi-Objective Meta-Heuristics
	How to Choose K,M?

	Conclusions and Perspectives
	References

