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Abstract: Electroencephalogram (EEG) signals are known to contain signatures of stimuli that induce
brain activities. However, detecting these signatures to classify captured EEG waveforms is one of the
most challenging tasks of EEG analysis. This paper proposes a novel time–frequency-based method
for EEG analysis and characterization implemented in a computer-aided decision-support system
that can be used to assist medical experts in interpreting EEG patterns. The computerized method
utilizes EEG spectral non-stationarity, which is clearly revealed in the time–frequency distributions
(TFDs) of multicomponent signals. The proposed algorithm, which is based on the modification
of the Rényi entropy, called local or short-term Rényi entropy (STRE), was upgraded with a blind
component separation procedure and instantaneous frequency (IF) estimation. The method was
applied to EEGs of both forward and backward movements of the left and right hands, as well as to
EEGs of imagined hand movements, which were captured by a 19-channel EEG recording system.
The obtained results show that in a given virtual instrument, the proposed methods efficiently
distinguish between real and imagined limb movements by considering their signatures in terms
of the dominant EEG component’s IFs at the specified subset of EEG channels (namely, F3, F4, F7,
F8, T3, and T4). Furthermore, computing the number of EEG signal components, their extraction,
and IF estimation provide important information that shows potential to enhance existing clinical
diagnostic techniques for detecting the intensity, location, and type of brain function abnormalities in
patients with neurological motor control disorders.

Keywords: Rényi entropy; short-term Rényi entropy; instantaneous frequency (IF) estimation; EEG
signals; time–frequency signal analysis

1. Introduction

Activities of neurons in the cerebral cortex cause differences in electrical potentials,
which may be mapped in time, frequency, and space when captured by electrodes placed
on standard positions on a patient’s head. The recorded signals, referred to as an electroen-
cephalogram (EEG), vary from a few microvolts to several hundred microvolts, providing
important information on various neurological brain disorders [1–4]. Due to the high
temporal resolution and low recording cost, as well as its noninvasiveness, EEG has at-
tracted vast scientific research, which has provided plenty of physical, psychological, and
pathological information on the neurological activity of the brain [5–8]. This has resulted
in better understanding of both clinical diagnoses and treatment of some illnesses, as well
as in progress in cognitive science [5].

Neurophysiologists often correlate functions of the central nervous system to various
EEG patterns based on empirical visual EEG inspections [9,10]. However, visual pattern
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recognition may become tedious and time-consuming, especially in the case of the long
EEG datasets that are inspected by medical experts searching for abnormalities in EEG
waveforms [11]. Moreover, it is subject to misinterpretations, such as in cases of cerebral
metabolic disturbances and convulsive disorders [9,12]. For example, an isoelectric EEG
may be the result of selective pCO2 increases when the brain is sufficiently supplied with
O2 [9]. On the other hand, normal pCO2 levels may occur in the case of cerebral oxygen
deficiency [9]. However, the two cases have significantly different outcome prognoses [9].
In addition, traditional visual inspections do not allow adequate EEG systematization [13].
To overcome these limitations, quantitative EEG analysis has introduced computer-aided
EEG processing techniques for measuring brain dynamics objectively, such as with the
methods proposed in [13–17].

It is well known that EEG signals are highly non-stationary stochastic processes,
especially when they are induced by external stimuli [18]. Cognitive tasks are reflected
in both EEG spectral changes and activities located across different brain regions [18].
Localizing transient brain activities, both in space and time or frequency, in order to detect
signatures of stimuli in EEGs has been the subject of extensive research attention in the last
few decades, and is still one of the most challenging tasks in EEG analysis [18].

For example, the analysis of event-related potentials, which measure the brain’s
response to external stimuli, is often done using time-domain processing techniques, since
non-stationary EEG signals and intensive background noise make the Fourier analysis
inadequate for this purpose [18,19]. Furthermore, the Fourier transform ensures only
the information on the signal’s frequency content, without any time resolution [19,20].
In order to overcome this shortcoming, a windowed Fourier transform with a time-localized
window function was introduced [19]. However, its performance was limited by the
fixed window size, which affected the time and frequency resolution of the signal’s time–
frequency representation [20–27]. The trade-off between time and frequency resolution
motivated the development of other time–frequency signal representations, which allowed
their applications in various technical and biomedical fields [20].

Some of the recent time–frequency-based methods for EEG data analysis addressed
the problem of epileptic seizure detection from EEG signals [3,28–34], newborn EEG burst
suppression for the prognosis of neonatal outcomes [35], newborn EEG modeling (where
seizures were modeled as signals with a piecewise linear instantaneous frequency (IF),
and the background waveform was represented as a random signal with a time-varying
spectrum) [36], automatic detection of newborn EEG seizures [36–38], analyzing cortical
interconnections in the neonatal brain [39,40], EEG spike detection [41], etc.

One way to quantify the degree of signal complexity is to consider spectral entropy
from the Fourier power spectrum, which is not defined as a function of time, and is
thus suitable for stationary signals only [13]. In order to overcome this limitation, Pow-
ell and Percival defined a time-evolving entropy from the short-time Fourier transform
(STFT) using the Hanning window [42]. An alternative entropy-based approach aiming
to analyze the dynamics of time series using a discrete probability distribution based
on pointwise wavelet leaders for evaluating the Shannon entropy was introduced by
Rosenblatt et al. [43,44]. A comparison of global and pointwise information-theory-based
quantifiers applied to EEG signal characterization was given in [13], where the normalized
Shannon wavelet entropy and the wavelet statistical complexity were chosen as global,
and the wavelet leader Shannon entropy and the wavelet leader statistical complexity
were chosen as the pointwise quantifiers [13]. The first was shown to compute changes in
the signal’s frequencies, while the latter described the signal’s morphological changes by
considering its regularity [13]. Bhattacharyya et al. proposed measuring the complexity of
epilepsy EEG signals with a multi-scale entropy [45]. More specifically, EEG signals were
decomposed into the number of sub-bands using the tunable-Q wavelet transform (TQWT),
and then the K-nearest neighbor entropies were cumulatively estimated from various
sub-bands [45]. The proposed entropy measure was used to classify seizure, seizure-free,
and normal EEG signals [45]. The TQWT-based method upgraded with multivariate fuzzy
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entropy was further applied to analysis and classification of multivariate sub-band focal
and non-focal EEG signals [46]. Acharya et al. proposed classification of epilepsy EEG
signals into normal, interictal, and ictal classes using a continuous wavelet transform,
higher-order spectra, and textures [47]. Sharma et al. proposed an automatic approach to
detecting epileptic seizures utilizing the analytic time–frequency flexible wavelet transform
and the fractal dimension. The method also divides EEG signals into sub-bands with the
fractal dimension calculated for each sub-band [30].

In the last decade, through the development of assistive technology, analysis of EEG
features has shown potential to enhance techniques for detecting types of brain functions
in patients with neurological motor control disorders, together with the possibility of using
brain activity independently of muscles and peripheral nerves to develop brain–computer
interfaces (BCIs). In [48,49], real (executed) left–right limb movement classification from
EEG data was presented. The wavelet coefficients and power spectral density (PSD) of the
alpha and central beta band and the average power of the respective bands were employed
as features for classification after pre-processing of the captured signals. In [50], again, the
mean power of the signal evaluated in the frequency domain (PSD) in eight EEG frequency
bands and a linear-discriminant-analysis-based classifier were used to distinguish between
real (executed) upper limb movements. Recently, several studies [51–55] have achieved
classification of the same limb movements with appreciable performance using EEG data,
although many of these studies classified only two movements. In [56], several classifiers
(LS-SVM, QP-SVM, SMO, k-NN, SVM, etc.) were employed to detect single limb movement
intentions.

The comprehensive method proposed in this paper introduces an EEG information
complexity quantifier called local or short-term Rényi entropy (STRE), which is applied
to limb movement EEG signal analysis in the time–frequency domain. Next, the STRE
was upgraded with a blind component separation for EEG component localization and
extraction, followed by the IF estimation of the dominant component. Thus, the method
detects, localizes, and extracts spectral changes in EEG rhythms with the purpose of de-
tecting and distinguishing signatures of various limb movements (both imagined and real
movements used as stimuli) found in EEG time–frequency equivalents. The high values
of the dominant EEG component IFs at specific electrodes were found to be signatures
of both imagined and real limb movements. The ability to detect limb movement signa-
tures in the time–frequency domain of the analyzed EEGs with high precision is the main
contribution of this paper. Furthermore, the proposed novel algorithm for EEG signal
characterization opens the door for building an extensive computer-aided decision-support
system for numerous clinical applications with the purpose of supplying neurophysiolo-
gists with additional information on limb-movement-related brain activities and associated
motor control abnormalities. We hope this could lead to the improvement of their medical
treatment and diagnostics from noninvasive EEG records.

The paper is structured as follows. The proposed method is described in Section 2.
In particular, Section 2.1 gives a brief overview of the time–frequency representations
used. Section 2.2 introduces the method for measuring signal information content with
the modification of the Rényi entropy in the time–frequency domain. The IF estimation
and the component extraction algorithm are described in Sections 2.3 and 2.4, while the
experimental setup and data are described in 2.5. The experimental results are thoroughly
presented in Section 3, and are discussed in detail in Section 4. Conclusions are found in
Section 5.

2. Materials and Methods
2.1. Signal Analysis In the Time–Frequency Domain

In order to obtain an exhaustive representation of multicomponent non-stationary sig-
nals, time–frequency distributions (TFDs) were introduced. TFDs include time dependency
in the signal frequency spectrum, which is thus a two-variable function, Cz(t, f ), defined
over the two-dimensional (t, f ) domain (where t and f denote time and frequency, and z(t)
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is the EEG time series) [20,57,58]. Over the past few decades, numerous TFDs have been
formulated in order to optimize the representation quality of different classes of signals.
Most applications were focused on the following [20]:

• Identification of signal characteristics (such as time and frequency variations and the
number of signal components);

• Extracting components from their mixtures and background noise;
• Ability to synthesize extracted components in the time domain;
• Analysis of features (such as instantaneous amplitude, frequency, and bandwidth of

each component).

Until now, none of the existing TFDs have guaranteed ideal time–frequency represen-
tation (cross-term suppression and maximal time and frequency resolution for all classes
of signals). In light of the above, in this paper, three TFDs are considered (namely, the
spectrogram (SP), Wigner–Ville distribution (WVD), and Rihaczek distribution (RD), which
are defined in the following), and the results obtained with the proposed method are
compared in Section 3.

2.1.1. Spectrogram

The spectrogram, Sz(t, f ), is a computationally simple TFD obtained by squaring the
magnitude of the STFT [20,57–59]:

Sz(t, f ) = |STFTz(t, f )|2 = (1)

=

∣∣∣∣ ∫ ∞

−∞
z(τ)w(t− τ)e−j2π f τdτ

∣∣∣∣2.

The STFT is a linear time–frequency transformation that introduces the frequency
dimension in the signal representation by performing the Fourier transform only on the
portion of the signal included inside the analyzing window w(t). Since the signal and
the analyzing window cannot have arbitrarily small supports in time and in frequency
simultaneously, the STFT and, hence, the spectrogram suffer from a limited time–frequency
resolution [57,60].

It can be concluded that the spectrogram has difficulty in concentrating components’
energy around the respective IFs. On the other hand, it does not produce cross-terms unless
components overlap in the (t, f ) plane [59].

2.1.2. Wigner–Ville Distribution (WVD)

One of the most popular TFDs was introduced by Wigner [61] and was afterward ex-
tended to analytic signals by Ville [20,62–66]. The WVD of an analytic signal z(t) = a(t)ejφ(t)

(where a(t) is the instantaneous amplitude and φ(t) is the instantaneous phase), denoted as
WVDz(t, f ), represents a mono-component signal with a(t) = 1 and quadratic phase as a
knife-edge ridge in the (t, f ) plane (an elongated region of concentrated energy, the crest of
which corresponds to the signal IF [20,67])

WVDz(t, f ) = δ( f − fi(t)), (2)

where the IF is defined as

fi(t) =
1

2π

d arg z(t)
dt

. (3)

This leads to the signal kernel defined as

Kz(t, τ) = F−1
τ← f {δ( f − fi( f ))} = ej2π fi(t)τ = ejφ′(t)τ . (4)
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Since φ′(t) is not directly available, it can be replaced by the central finite-difference ap-
proximation φ′(t) ≈ 1

τ [φ(t+
τ
2 )−φ(t− τ

2 )], leading to the WVD given in the form [20,68,69]

WVDz(t, f ) = Fτ→ f {z(t +
τ

2
)z∗(t− τ

2
)} = (5)

=
∫ ∞

−∞
z(t +

τ

2
)z∗(t− τ

2
)e−j2π f τ dτ. (6)

From Equation (6), it can be noticed that using the instantaneous autocorrelation
function (IAF) as the kernel function brings nonlinearity in the WVD. The effects of this non-
linearity are most evident in the case of components with nonlinear IFs or multicomponent
signals, producing undesirable interferences (often referred to as cross-terms) [20,59,68].

2.1.3. The Quadratic Class of Time–Frequency Distributions

To maintain the high concentration exhibited by the WVD, but to avoid or reduce
unwanted interferences caused by its quadratic nature at the same time, a smoothed version
of the IAF was introduced:

Rz(t, τ) = G(t, τ) ∗t Kz(t, τ), (7)

where G(t, τ) is the time-lag kernel and ∗t denotes convolution in the time domain.
Thus, the class of quadratic TFDs, defined as Cz(t, f ) = Fτ→ f {Rz(t, τ)}, can be

calculated as [20]:

Cz(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
G(t− u, τ)

· z(t + τ/2)z∗(t− τ/2)e−j2π f τdu dτ. (8)

The time-lag kernel determines the performance of the TFD, allowing a trade-off
between the time–frequency supports of the signal components and suppression of inter-
ferences.

In this paper, as an exponent of the quadratic class of TFDs, the RD was used. It is
defined as [20]

RDz(t, f ) = z(t) · Z∗( f ) · e−j2π f t, (9)

where Z( f ) is the Fourier transform of the signal z(t). The RD can also be expressed in the
form:

RDz(t, f ) =
∫ ∞

−∞
z(t)z∗(t− τ)e−j2π f τdτ. (10)

Once the signal time–frequency representation is calculated, its information content in
terms of the number of signal components should be obtained. One of the ways of finding
the number of frequency-modulated components based on the spectrogram is the method
described in [70]. It exploits Kolmogorov complexity to model the information in the
spectrogram, which is then converted into a binary map through automatic thresholding
based on the minimum description length, and mode counting is performed through
two-dimensional run-length encoding. However, the proposed approach is not limited
to spectrograms only (as the algorithm in [70] is), and it also works for other quadratic
time–frequency representations. Hence, another approach to counting the number of signal
components was developed and utilized in this paper (based on the modification of the
Rényi entropy, as described in the following).
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2.2. Measuring TFDs’ Information Content Using the Global Rényi Entropy

The entropy measure originates from physics as a measure of the disorder of ther-
modynamic systems. It has been widely applied in information theory as an information
uncertainty estimator of probability density functions [71].

In signal processing, the time–frequency Rényi entropy has been adopted as an
estimator of signal complexity. The idea of measuring signal complexity using the Rényi
entropy is based on structural similarities of probability density functions and TFDs.
Namely, the energy preservation property of the TFD can be expressed as [20]∫ ∞

−∞

∫ ∞

−∞
Cz(t, f ) dtd f = Ez, (11)

while the marginal conditions, similarly to the probability density functions, are calculated
as [20]: ∫ ∞

−∞
Cz(t, f ) d f =

∣∣z(t)∣∣2, (12)

∫ ∞

−∞
Cz(t, f ) dt =

∣∣Z( f )
∣∣2. (13)

Thus, the TFD properties in Equations (11)–(13) justify treating TFDs as probability
density functions when quantifying their information content. Thus, the global Rényi
entropy (estimated over the entire TFD plane) of the normalized TFD takes the form [71]:

Hα,zM :=
1

1− α
log2

∫ ∞

−∞

∫ ∞

−∞
Cα

zM
(t, f ) dt d f , (14)

where α is the order of the Rényi entropy [71,72].
A multicomponent signal zM(t), embedded in additive white Gaussian noise ν(t),

may be modeled as

zM(t) =
M

∑
m=1

zm(t) + ν(t), (15)

where zm(t) is the m-th signal component. When applied to TFDs, the Rényi entropy
allows detection of the total number of signal components M using its counting property.
The counting property of the Rényi entropy can be illustrated as follows:

Consider a compactly supported signal z0(t) and its copy zc(t) (obtained by shifting
z0(t) in the (t, f ) plane). The Rényi entropy of the TFD of the two-component signal
z0(t) + zc(t) (Hα,z0+zc ) carries exactly one bit of information more than the Rényi entropy
of the one-component signal TFD (Hα,z0 ) [71].

Thus, the number of components of the multicomponent signal zM(t) can be deter-
mined as [71]:

M = 2Hα,zM−Hα,z1 , (16)

where z1(t) is the one-component reference signal.
Although the Rényi entropy was introduced for estimating the complexity of TFDs

that satisfy marginal conditions and the energy preservation property, simulations have
shown that TFDs that do not meet these conditions (such as spectrograms or the absolute
value of a complex-valued RD) perform similarly to the probability density function in the
case of the estimation by means of the Rényi entropy [73,74].
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2.2.1. The Local or Short-Term Rényi Entropy (STRE)

The main shortcoming of the counting property of the global Rényi entropy estimation
method is its applicability to only multicomponent signals constructed from shifted copies
of one basic component. In fact, the global Rényi entropy estimation method fails in the case
of multicomponent signals with components that have different time/frequency supports
and frequency modulations.

In order to solve this issue, Saulig et al. proposed limiting the TFD of the analyzed
signal with a short-time moving window (with duration ∆t) before evaluating the Rényi
entropy [73,74]. Due to the use of a short time interval ∆t, the proposed complexity measure
was named local or short-term Rényi entropy (STRE). The application of the local Rényi
entropy to the signal TFD enables one to obtain the continuous time function of the number
of components inside the moving time interval as

Mp(t) = 2Hα(∆CzM (t, f ))−Hα(∆Cz1 (t, f )), (17)

where

∆CzM (t, f ) =

=

{
CzM (t, f ), t ∈ [p− ∆t

2 , p + ∆t
2 ]

0, otherwise.
(18)

Even though, over short-term estimation intervals, time and frequency marginals are
not preserved, a simplified model of a time slice of an idealized TFD was introduced in [73]
to show that the counting property of the RE holds under the assumption of a positive TFD
and cross-term suppression.

Based on Equation (18), an iterative algorithm for estimating the number of compo-
nents in signals whose components have different amplitudes was proposed [73].

An example of estimation of the local number of signal components using the proposed
iterative STRE-based method in comparison to the non-iterative algorithm presented in [74]
is given in Figure 1. The signal’s time series and TFD are shown in Figure 1a,b, followed by
the instantaneous number of signal components obtained using the non-iterative (Figure 1c)
and iterative STRE0-based methods (Figure 1d,e for different α values). As can be seen, the
iterative method unambiguously detects the number of signal components for each time
instant, as well as their time supports. Furthermore, it can be observed that the proposed
method also performs well in the case of components with different amplitudes, which are
typical for the EEG time–frequency structures [74].

Information on the number of signal components, Mp(t), obtained using the Rényi
entropy allows localization and extraction of components from multicomponent signal
TFDs, and then the estimation of their IFs, as described in the next subsection.

2.3. Instantaneous Frequency Estimation

Signal IF, defined as the derivative of the signal phase with respect to time, is one
of the key signal parameters for providing important information concerning the time-
varying spectral changes in non-stationary signals. The concept of IF found its usage in
various technical fields and applications, such as seismology, machine condition monitor-
ing, radar, sonar, communication (where it is referred to as the frequency modulation law),
biomedicine, etc. [20]. Here, we apply IF estimation to biomedical signal characterization,
i.e., to multichannel EEG signal analysis from their TFDs.

For a real-valued mono-component signal s1(t), its analytic equivalent z1(t) is defined
as [21–23,27]:

z1(t) = s1(t) + jH{s1(t)} = a1(t)ejφ1(t), (19)

where H{s1(t)} is the Hilbert transformation of s1(t), φ1(t) is the signal’s instantaneous
phase, and a1(t) is its instantaneous amplitude.
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In the case of signal being mono-component, its IF is calculated as f1(t) = φ
′
1(t)/2π [20].

Furthermore, the IF corresponds to an elongated energy region in the time–frequency rep-
resentation of the signal and may be estimated by tracking the crest of the time–frequency
“ridge”, i.e. [20],

f1(t) = arg
[

max
f

Cz1(t, f )
]

. (20)

A multicomponent signal zM(t) (as most of multichannel EEG signals are) can be
modeled as a sum of M mono-component signals (the IF of each being fm(t)):

zM(t) =
M

∑
m=1

zm(t) =
M

∑
m=1

am(t)ejφm(t), (21)

where φm(t) is the m-th signal component’s instantaneous phase, and am(t) is its instanta-
neous amplitude. The IFs can be calculated as fm(t) = φ

′
m(t)/2π, where f1(t) denotes the

dominant component’s IF (the dominant component is chosen as the one with the highest
amplitude in the time–frequency plane) and f̄1 is its mean value over time.
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Figure 1. Example of a number of signal components estimation using the short-term Rényi entropy
(STRE). (a) Signal time series. (b) Signal time–frequency representation (spectrogram). (c) Local
number of signal components Mp(t) obtained using the non-iterative method [74]. (d) Local number
of signal components Mp(t) obtained using the iterative method with α = 3 [73]. (e) Local number
of signal components Mp(t) obtained using the iterative method with α = 5 (dotted) and α = 7
(dashed) [73].
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In order to obtain the IFs from a multicomponent EEG signal, a component separation
procedure should precede the IF estimation [20]. The procedure for localization and
extraction of EEG signal components from its time–frequency representation is given in the
following subsection.

Extracting signal components from a mixture of two or more statistically indepen-
dent components is often referred to as blind source separation (BSS) [20,22]. The term
“blind” signifies that neither the mixture structure nor source signals are known a priori.
Instead, only their mixture is required (as is the case with recorded multichannel EEG sig-
nals) [20,22]. In addition, the proposed method is not limited to signals with simultaneously
existing components, as is the case with the method in [75].

The challenging task of detecting and separating EEG signal components was per-
formed in the time–frequency domain with the method described in the flowchart in
Figure 2. As can be seen, the first step is the localization of the TFD maxima coordinates
(t0, f0) in the time–frequency plane, followed by the adaptive frequency bandwidth size
calculation for the time slice Cz(t0, f ). Next, the component is extracted from the signal
TFD at time instant t0, and Mp(t0) is decreased by 1. The previous steps of the procedure
are repeated by double-direction tracking of the component until the component edges are
reached. The information on the component edges is obtained by calculating the derivative
of Mp(t), since M

′
p(t) 6= 0 indicates the locations of components’ edges (see Figure 1d).

Once the entire component is extracted, the previous steps of the algorithm are repeated
for the remaining components. The procedure ends when all components are extracted for
each time instant t0.

Figure 2. Simplified flowchart of the signal component extraction method.
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2.4. Component Extraction Procedure

After all components are extracted from the signal’s TFD, their IFs can be obtained
from the TFD maxima, as reported in Section 2.3.

The described procedure was applied to all analyzed EEG signals, and the experimen-
tal results are presented in the next section.

2.5. Real data

The proposed method, which was based on the STRE and upgraded with the EEG
component extraction and IF estimation, was implemented in Matlab (the Time Frequency
Toolbox was used) and tested on 27,360 EEG signals recorded using 19 electrodes (placed
at standard locations according to International 10-20). The method was applied to real-
life EEG signals from an open-access EEG database made available by the Institute for
Neural Computation, University of California San Diego (Swartz Center for Computational
Neuroscience) at https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.
html (accessed on 5 January 2021) [76,77]. The analyzed EEG motor movement/imagined
movement dataset consisted of EEG data captured for forward and backward movements
of the left and right hand, as well as imagined forward and backward movements of the left
and right hand, which were used as stimuli. Each movement was recorded independently
(not as part of a sequence of movements) with an equal number of trails (with eyes closed
and without controlling breathing or swallowing). The room was without electromagnetic
shielding. EEG time series were captured by a Neurofax EEG System with the sampling
frequency of 500 Hz and daisy-chain montage (records were exported using the Eemagine
EEG) [76,77].

The noise was suppressed by applying hard amplitude thresholding (all TFD coef-
ficients smaller than 5% of the TFD global maxima were set to zero in all TFDs). This is
standard preprocessing that is found in many other time–frequency-based methods (for ex-
ample [74,78]) based on the well-known fact that the white noise has a flat spectrum in the
time–frequency domain [79,80]. The purpose of this step in our method was to enhance
the algorithm’s precision by reducing its sensitivity to noise and low-energy peaks in the
time–frequency domain. In addition, the DC component and cross-terms caused by it were
removed from the time–frequency representation prior to calculation of the number of
EEG components and their IF estimations. Component localization, counting, extraction,
and IF estimation were limited to the bandwidth of interest. Namely, the sub-bandwidth of
0.01–0.2 was considered instead of the entire normalized frequency range of 0–0.5, since it
contains significant information on EEG spectral changes (knowing that most of the im-
portant EEG features are found in the range of 1–20 Hz [81]). EEG signals that were 5.12 s
long were down-sampled to 512 samples in order to reduce computation burden (down-
sampling reduced sampling frequency from 500 to 100 Hz). However, down-sampling
did not lead to loss of significant information, since the spectral bandwidth containing
important EEG content remained unaltered. The Rényi entropy of order α = 3 was evalu-
ated, since it was shown in [71,82] that odd entropy orders annul the effects of oscillatory
interferences between the components. Selecting larger α values increases computational
complexity without significant effects on the obtained results, as shown in Figure 1.

3. Results

Examples of the proposed method’s performance when applied to the EEG spectro-
grams, WVDs, and RDs are given in Figures 3, 4 and 5, respectively. Namely, Figures 3a,
4a, and 5a and Figures 3e, 4e, and 5e show examples of the EEG time series for left-hand
forward movement and imagined left-hand forward movement, respectively, captured at
FP1. Examples of the right-hand forward movement and imagined right-hand forward
movement EEG time series recorded at FP1 are shown in Figures 3i, 4i, and 5i and Figures
3m, 4m, and 5m, respectively. Figures 3q, 4q, and 5q and Figures 3u, 4u, and 5u show
the EEG time series for left-hand backward and imagined left-hand backward movement,
respectively, while right-hand backward and imagined right-hand backward movement

https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
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EEG time series are represented in Figures 3y, 4ac, and 5ac and Figures 3y, 4ac, and 5ac,
respectively. The corresponding signal spectrograms, WVDs, and RDs are given in Figures
3b,f,j,n,r,v,z,ad, 4b,f,j,n,r,v,z,ad, and 5b,f,j,n,r,v,z,ad, respectively. As can be seen, EEG signals
often have multiple components, resulting in multiple “ridges” in their time–frequency
representations. The number of their components, as well as their locations in the time–
frequency plane, may be used to detect limb movement signatures in recorded EEG signals,
as shown in the following. Prior to their extraction, the number of signal components
Mp(t) as a function of time was obtained using the STRE (as described in Section 2.2) and
is shown in Figure 3c,g,k,o,s,w,aa,ae for the spectrogram, in Figure 4c,g,k,o,s,w,aa,ae for the
WVD, and in Figure 5c,g,k,o,s,w,aa,ae for the RD. Finally, the IFs of each EEG signal and
each signal component were estimated from the extracted components using the approach
described in Section 2.3. The dominant component IF, f1(t), was singled out for the purpose
of the EEG signal characterization in the time–frequency domain (the dominant component
was defined as the one with the highest amplitude in the (t, f ) plane). The estimated IFs
are given in Figure 3d,h,l,p,t,x,ab,af for the spectrogram, in Figure 4c,g,k,o,s,w,aa,ae for the
WVD, and in Figure 5c,g,k,o,s,w,aa,ae for the RD, respectively.

Tables 1, 2, and 3 show the results for the mean value of the dominant component IF
f̄1 for all analyzed EEG signals (captured by all electrodes) for the spectrogram, WVD, and
RD, respectively. The first column in Tables 1–3 gives the electrode scalp locations, followed
by two columns that provide the average of the dominant component IF f̄1 estimated from
the spectrogram, the WVD, and the RD for the left-hand forward and imagined left-hand
forward movements, respectively. The following two columns in Tables 1–3 provide f̄1
results for the right-hand forward movement and imagined right-hand forward movement
calculated from the spectrogram, the WVD, and the RD, respectively. The next two columns
in Tables 1–3 give the results estimated from the spectrogram, the WVD, and the RD for the
left-hand backward movement and imagined left-hand backward movement (the mean
value of the dominant component IF), respectively. The last two columns in Tables 1–3
give the mean of the dominant IF for the right-hand backward and imagined right-hand
backward movement, respectively, for the spectrogram, the WVD, and the RD.
Simple statistical analyses, in terms of the mean, median, and standard deviation of the
average of the dominant IF for all electrodes, as well as for all tested EEG signals and
calculated TFDs, are given in the last three rows of Tables 1–3, respectively. In addition, a
comparison of the number of components M and f̄1 for the analyzed real (executed) limb
movements’ and imagined movements’ spectrograms, WVDs, and RDs is presented in
Figures 6 and 7, respectively.

The number of EEG components obtained using the STRE-based method was com-
pared to the number of separate energy clusters in the EEG time–frequency representations
given in Table 4. The energy clusters were extracted by combining the K-means and the
Hoshen–Kopelman algorithms, resulting in a qualitative measure of the useful information
content found in the EEG TFDs [83,84]. However, since the method does not provide infor-
mation on the instantaneous number of signal components (i.e., energy clusters) required
to detect and extract EEG components, the STRE was used in the proposed method.
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Figure 3. Electroencephalogram (EEG) signal captured at FP1 (single trail).(a–d) Left-hand forward
movement EEG time series, spectrogram, Mp(t), and instantaneous frequencies (IFs) (dominant IF in
red), respectively. (e–h) Imagined left-hand forward movement EEG time series, spectrogram, Mp(t),
and IFs (dominant IF in red), respectively. (i–l) Right-hand forward movement EEG time series,
spectrogram, Mp(t), and IFs (dominant IF in red), respectively. (m–p) Imagined right backward hand
movement EEG time series, spectrogram, Mp(t), and IFs (dominant IF in red), respectively. (q–t)
Left-hand backward movement EEG time series, spectrogram, Mp(t), and IFs (dominant IF in red),
respectively. (u–x) Imagined left-hand backward movement EEG time series, spectrogram, Mp(t),
and IFs (dominant IF in red), respectively. (y–ab) Right-hand backward movement EEG time series,
spectrogram, Mp(t), and IFs (dominant IF in red), respectively. (ac–af) Imagined right backward
hand movement EEG time series, spectrogram, Mp(t), and IFs (dominant IF in red), respectively.
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Figure 4. EEG signal captured at FP (single trail). (a–d) Left-hand forward movement EEG time
series, Wigner–Ville distribution (WVD), Mp(t), and IFs (dominant IF in red), respectively. (e–h)
Imagined left-hand forward movement EEG time series, WVD, Mp(t), and IFs (dominant IF in red),
respectively. (i–l) Right-hand forward movement EEG time series, WVD, Mp(t), and IFs (dominant
IF in red), respectively. (m–p) Imagined right backward hand movement EEG time series, WVD,
Mp(t), and IFs (dominant IF in red), respectively. (q–t) Left-hand backward movement EEG time
series, WVD, Mp(t), and IFs (dominant IF in red), respectively. (u–x) Imagined left-hand backward
movement EEG time series, WVD, Mp(t), and IFs (dominant IF in red), respectively. (y–ab) Right-
hand backward movement EEG time series, WVD, Mp(t), and IFs (dominant IF in red), respectively.
(ac–af) Imagined right backward hand movement EEG time series, WVD, Mp(t), and IFs (dominant
IF in red), respectively.
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Figure 5. EEG signal captured at FP1 (single trail). (a–d) Left-hand forward movement EEG time
series, Rihaczek distribution (RD), Mp(t), and IFs (dominant IF in red), respectively. (e–h) Imagined
left-hand forward movement EEG time series, RD, Mp(t), and IFs (dominant IF in red), respectively.
(i–l) Right-hand forward movement EEG time series, RD, Mp(t), and IFs (dominant IF in red),
respectively. (m–p) Imagined right backward hand movement EEG time series, RD, Mp(t), and IFs
(dominant IF in red), respectively. (q–t) Left-hand backward movement EEG time series, RD, Mp(t),
and IFs (dominant IF in red), respectively. (u–x) Imagined left-hand backward movement EEG time
series, RD, Mp(t), and IFs (dominant IF in red), respectively. (y–ab) Right-hand backward movement
EEG time series, RD, Mp(t), and IFs (dominant IF in red), respectively. (ac–af) Imagined right
backward hand movement EEG time series, RD, Mp(t), and IFs (dominant IF in red), respectively.
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Figure 6. Number of EEG signal components M (moved—blue, imagined—yellow) captured by all
electrodes estimated from their spectrogram, WVD, and RD, respectively. (a) Left-hand forward
movement and imagined movement M estimated from the spectrogram. (b) Right-hand forward
movement and imagined movement M estimated from the spectrogram. (c) Left-hand backward
movement and imagined movement M estimated from the spectrogram. (d) Right-hand backward
movement and imagined movement M estimated from the spectrogram. (e) Left-hand forward
movement and imagined movement M estimated from the WVD. (f) Right-hand forward movement
and imagined movement M estimated from the WVD. (g) Left-hand backward movement and
imagined movement M estimated from the WVD. (h) Right-hand backward movement and imagined
movement M estimated from the WVD. (i) Left-hand forward movement and imagined movement
M estimated from the RD. (j) Right-hand forward movement and imagined movement M estimated
from the RD. (k) Left-hand backward movement and imagined movement M estimated from the RD.
(l) Right-hand backward movement and imagined movement M estimated from the RD.
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Figure 7. Average of EEG signals dominant component IF f̄1 (moved - blue, imagined - yellow)
captured by all electrodes estimated from their spectrogram, WVD, and RD, respectively. (a) Left-
hand forward movement and imagined movement f̄1 estimated from the spectrogram. (b) Right-
hand forward movement and imagined movement f̄1 estimated from the spectrogram. (c) Left-hand
backward movement and imagined movement f̄1 estimated from the spectrogram. (d) Right-hand
backward movement and imagined movement f̄1 estimated from the spectrogram. (e) Left-hand
forward movement and imagined movement f̄1 estimated from the WVD. (f) Right-hand forward
movement and imagined movement f̄1 estimated from the WVD. (g) Left-hand backward movement
and imagined movement f̄1 estimated from the WVD. (h) Right-hand backward movement and
imagined movement f̄1 estimated from the WVD. (i) Left-hand forward movement and imagined
movement f̄1 estimated from the RD. (j) Right-hand forward movement and imagined movement f̄1

estimated from the RD. (k) Left-hand backward movement and imagined movement f̄1 estimated
from the RD. (l) Right-hand backward movement and imagined movement f̄1 estimated from the
RD.



Mathematics 2021, 9, 451 17 of 27

Table 1. Average of the dominant IF f̄1 for the EEG signals estimated from its spectrogram.

Left Hand Forward Right Hand Forward Left Hand Backward Right Hand Backward

Moved Imagined Moved Imagined Moved Imagined Moved Imagined

FP1 0.051 0.050 0.050 0.052 0.052 0.051 0.050 0.050
FP2 0.051 0.051 0.053 0.052 0.052 0.056 0.052 0.050
F3 0.050 0.154 0.053 0.051 0.052 0.050 0.050 0.054
F4 0.051 0.050 0.053 0.051 0.052 0.050 0.052 0.050
C3 0.050 0.050 0.054 0.051 0.051 0.051 0.050 0.050
C4 0.050 0.051 0.055 0.053 0.050 0.050 0.050 0.053
P3 0.051 0.050 0.052 0.050 0.050 0.050 0.056 0.053
P4 0.052 0.051 0.050 0.052 0.052 0.050 0.050 0.051
O1 0.053 0.050 0.050 0.052 0.050 0.053 0.050 0.051
O2 0.052 0.052 0.050 0.051 0.052 0.050 0.050 0.050
F7 0.050 0.161 0.054 0.099 0.096 0.054 0.052 0.181
F8 0.053 0.053 0.088 0.051 0.057 0.056 0.079 0.050
T3 0.051 0.050 0.054 0.051 0.050 0.054 0.052 0.051
T4 0.052 0.051 0.082 0.050 0.080 0.055 0.192 0.050
T5 0.051 0.051 0.050 0.052 0.050 0.052 0.052 0.050
T6 0.050 0.052 0.051 0.054 0.050 0.053 0.053 0.050
FZ 0.050 0.050 0.050 0.050 0.052 0.050 0.050 0.050
CZ 0.050 0.052 0.053 0.050 0.050 0.051 0.050 0.053
PZ 0.050 0.053 0.051 0.051 0.053 0.050 0.050 0.051

Table 2. Average of the dominant IF f̄1 for the EEG signals estimated from its WVD.

Left Hand Forward Right Hand Forward Left Hand Backward Right Hand Backward

Moved Imagined Moved Imagined Moved Imagined Moved Imagined

FP1 0.051 0.050 0.052 0.060 0.051 0.052 0.051 0.051
FP2 0.050 0.053 0.052 0.055 0.050 0.051 0.053 0.050
F3 0.052 0.050 0.052 0.053 0.053 0.050 0.051 0.058
F4 0.050 0.050 0.053 0.055 0.051 0.050 0.079 0.050
C3 0.052 0.054 0.054 0.052 0.051 0.050 0.051 0.052
C4 0.052 0.053 0.054 0.051 0.051 0.050 0.051 0.052
P3 0.052 0.058 0.050 0.053 0.051 0.053 0.051 0.052
P4 0.051 0.051 0.053 0.052 0.050 0.051 0.050 0.052
O1 0.052 0.054 0.051 0.052 0.053 0.055 0.052 0.051
O2 0.052 0.053 0.052 0.052 0.052 0.057 0.052 0.052
F7 0.052 0.124 0.054 0.158 0.051 0.054 0.053 0.104
F8 0.051 0.059 0.087 0.058 0.052 0.054 0.073 0.052
T3 0.051 0.051 0.054 0.052 0.051 0.051 0.050 0.051
T4 0.052 0.052 0.051 0.051 0.082 0.055 0.107 0.051
T5 0.052 0.052 0.054 0.053 0.051 0.059 0.053 0.050
T6 0.052 0.052 0.051 0.052 0.050 0.056 0.053 0.052
FZ 0.050 0.057 0.051 0.051 0.051 0.050 0.056 0.050
CZ 0.053 0.053 0.055 0.053 0.052 0.051 0.053 0.050
PZ 0.052 0.053 0.052 0.053 0.051 0.051 0.050 0.051
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Table 3. Average of the dominant IF f̄1 for the EEG signals estimated from its RD.

Left Hand Forward Right Hand Forward Left Hand Backward Right Hand Backward

Moved Imagined Moved Imagined Moved Imagined Moved Imagined

FP1 0.050 0.050 0.052 0.058 0.051 0.053 0.053 0.050
FP2 0.050 0.050 0.052 0.058 0.051 0.053 0.053 0.050
F3 0.050 0.054 0.052 0.054 0.051 0.053 0.050 0.055
F4 0.050 0.085 0.055 0.051 0.051 0.051 0.053 0.050
C3 0.052 0.054 0.055 0.054 0.051 0.050 0.051 0.053
C4 0.052 0.054 0.055 0.054 0.051 0.050 0.051 0.053
P3 0.051 0.054 0.050 0.054 0.051 0.050 0.051 0.051
P4 0.051 0.054 0.052 0.052 0.050 0.051 0.050 0.050
O1 0.051 0.054 0.050 0.052 0.055 0.054 0.051 0.054
O2 0.051 0.054 0.052 0.052 0.050 0.054 0.051 0.050
F7 0.051 0.174 0.054 0.156 0.051 0.056 0.053 0.099
F8 0.172 0.106 0.089 0.058 0.051 0.053 0.073 0.106
T3 0.051 0.106 0.055 0.054 0.051 0.050 0.051 0.053
T4 0.054 0.087 0.146 0.052 0.076 0.052 0.107 0.106
T5 0.051 0.054 0.054 0.054 0.051 0.056 0.053 0.053
T6 0.051 0.052 0.051 0.052 0.050 0.056 0.053 0.053
FZ 0.050 0.050 0.052 0.058 0.052 0.050 0.050 0.050
CZ 0.052 0.052 0.055 0.055 0.051 0.050 0.053 0.050
PZ 0.051 0.054 0.052 0.052 0.051 0.050 0.053 0.053

Table 4. The number of separate energy clusters in the EEG time–frequency distributions (TFDs) calculated using the
K-means method upgraded by the Hoshen–Kopelman algorithm.

Left Hand Forward Right Hand Forward

Moved Imagined Moved Imagined

SNR SP WVD RD SP WVD RD SP WVD RD SP WVD RD
FP1 3 3118 1035 7 3078 1376 4 3045 1138 20 2854 1710
FP2 35 2458 48 478 3034 772 22 2137 63 59 2627 309
F3 9 2776 1260 115 2659 1879 5 2356 390 212 2993 413
F4 19 2691 1501 21 2894 2060 3 3102 1472 181 2700 1591
C3 7 2819 829 25 2832 977 3 2877 167 3 2732 200
C4 3 2796 1008 4 2902 527 3 2806 238 3 2706 224
P3 8 2838 2850 11 2694 1535 13 2888 2690 1 2673 2319
P4 1 3255 310 1 3202 137 1 243 149 2 72 106
O1 25 2828 431 82 2699 558 1 2461 2163 50 2604 1139
O2 13 3203 2243 4 2581 2060 1 2982 3181 1 2846 95
F7 55 2552 281 96 2540 290 5 2811 2290 86 2820 1403
F8 283 3034 70 391 3309 121 287 2819 38 727 3088 202
T3 58 2603 1311 61 2482 90 7 2663 663 18 2797 946
T4 279 3090 26 279 3154 278 126 2816 432 563 3147 163
T5 7 3056 586 5 2906 639 8 2909 1932 17 3035 146
T6 3 2777 1384 1 2809 2604 3 2906 2064 4 2951 1570
FZ 4 3097 967 54 3302 197 7 3010 171 59 3197 629
CZ 20 2748 66 12 2434 1781 68 2355 942 14 2331 1256
PZ 4 2909 766 4 3132 1383 2 3088 268 2 3231 58
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Table 4. Cont.

Left Hand Backward Right Hand Backward

Moved Imagined Moved Imagined

SN SP WVD RD SP WVD RD SP WVD RD SP WVD RD
FP1 10 3196 518 4 3081 360 5 2902 2633 3 2445 3030
FP2 57 2517 174 18 2864 37 861 2096 129 26 2773 3
F3 14 3155 1158 87 3217 51 2 3028 3075 73 3456 3135
F4 79 2739 1284 5 2843 1803 125 2638 1561 1 2691 2287
C3 12 3033 1239 4 2956 188 2 2790 3612 10 3070 492
C4 15 2993 124 4 2891 163 2 2816 3610 8 3182 316
P3 1 3109 2833 4 2778 2359 8 2446 347 3 2751 1319
P4 2 175 375 1 2937 3093 2 3148 3815 1 35 226
O1 3 2890 277 139 2934 342 19 2499 517 112 2516 426
O2 4 3319 3060 3 3081 3699 3 2672 2144 8 2803 2932
F7 97 2688 179 59 2572 2781 17 2660 1756 64 2633 1430
F8 343 3085 182 46 3140 192 195 3009 79 15 3023 48
T3 4 2719 332 87 2797 1498 8 2482 1189 2 2650 1257
T4 221 2774 153 6 2881 487 229 2931 126 606 2916 26
T5 9 2904 1495 16 3270 1814 11 3158 2748 8 3309 2095
T6 1 2628 1272 5 2783 2610 9 2434 1751 72 2663 1702
FZ 98 3143 411 6 3311 35 5 3050 686 4 3108 1
CZ 16 2218 1654 8 2004 312 12 2339 2934 8 2956 57
PZ 3 171 193 2 3038 2740 2 2782 296 2 47 800

Table 5. Accuracy, precision, recall, and F1-score in distinguishing the real from imagined limb movements with the
proposed method in low-noise environments.

Left Hand Forward Right Hand Forward Left Hand Backward Right Hand Backward

Spectrogram

Accuracy 0.90 0.94 0.86 0.99
Precision 0.90 0.95 0.86 0.99

Recall 0.90 0.94 0.86 0.99
F1 0.90 0.94 0.86 0.99

WVD

Accuracy 0.86 0.78 0.99 0.90
Precision 0.80 0.81 1.00 0.90

Recall 0.98 0.74 0.99 0.90
F1 0.88 0.77 0.99 0.90

RD

Accuracy 0.73 0.95 1.00 0.82
Precision 0.73 0.95 1.00 0.82

Recall 0.73 0.95 1.00 0.82
F1 0.73 0.95 1.00 0.82

Furthermore, the method’s performance was evaluated using additional metrics (ac-
curacy, precision, recall, and F1-score [85]) that were applied to the proposed rule-based
model/classifier. The model utilizes a set of identified rules that represent expert knowl-
edge calculated for distinguishing real from imagined limb movements from captured EEG
records in a low-noise environment. Namely, the imagined left-hand forward movement
was distinguished from the corresponding executed movement by a high value of the
dominant component IF at F7, which was larger than the dominant component IF at F7
for the executed movement. Next, the right-hand forward movement was distinguished
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from the corresponding imagined movement by the high dominant component IF at F8
(larger than the dominant component IF at F8 for the imagined movement) and the high
dominant component IF at F7, which was smaller than the dominant component IF at
F7 for the imagined movement. The left-hand backward movement was distinguished
from the corresponding imagined movement by a high value of the dominant component
IF at T4 (larger than the dominant component IF at T4 for the corresponding imagined
movement). Finally, the right-hand backward movement was distinguished from the imag-
ined right-hand backward movement by the high dominant component IF at T4 (larger
than the dominant component IF at T4 for the imagined movement), the high dominant
component IF at F8, and the dominant component IF at F7, which were smaller than the
dominant component IF at F7 for the corresponding imagined movement. As demon-
strated, by applying smart IF estimators to EEG signals in the time–frequency domain, the
proposed classifier was able to automatically discriminate between movements in a binary
fashion: one if the movement is detected (true case), and zero if it was not detected (false
case). This binary-class model was built and tested for each movement independently
from one another (no inherent multi-class problems). The obtained accuracy, precision,
recall, and F1-score of the proposed rule-based classifier are given in Table 5 for the three
analyzed TFDs (for up to 80 measurements of EEGs for each limb movement). All the
metrics were calculated on the entire sample of the total of 27,360 EEG records. Due to
the inherent nature of the proposed model (the fact that it is based on manually crafted
signal-processing estimators in the time–frequency domain), its assessment from a holdout
dataset was avoided. As can be seen in Table 5, for the spectrogram, the average accuracy
was 0.924, the average precision was 0.925, the average recall was 0.922, and the average
F1-score was 0.924. Comparable results were also obtained for the WVD and RD. Thus,
the method was shown to be highly reliable in correlating EEG patterns analyzed in the
time–frequency domain for both imagined and real limb movements.

3.1. EEG Analyzer Implemented in a Virtual Computer Instrument

The proposed method based on the STRE and IF estimation for limb movement EEG
analysis was implemented in a virtual computer instrument (shown in Figure 8) as a
groundwork for an extensive computer-aided decision-support clinical system. The instru-
ment emulates the decision-making that is often performed by medical experts based on a
visual inspection and interpretation of patterns found in EEG waveforms.

Figure 8. Limb movement EEG analysis implemented in a virtual computer instrument.
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This user-friendly virtual instrument for multi-channel EEG analysis implements a
spectrogram (the time/frequency resolution of which is controlled by a corresponding
window width), WVD, and RD as time–frequency representations. The functionalities of
the proposed instrument are listed in the following.

• Load multi-channel EEG signals: The user imports multi-channel EEG records as a
MAT file (for real and imagined limb movements), which are then shown in the first
row of the proposed instrument.

• Run EEG analysis: By clicking on this button, the EEG analysis is started by employing
STRE- and IF-based algorithms.

• Displaying results: The results are shown in twelve figures as follows. The first row of
figures (from top to bottom) show EEG time series at F7, F8, and T4. The second row
of figures show the TFDs of the EEGs of real limb movements, followed by the TFDs
of the EEG signals of imagined movements, which are given in the third row. The
fourth row of figures present the instantaneous number of EEG components obtained
using the STRE for both real and imagined movements.

• Numerical results: The application provides numerical results in terms of the average
of the dominant EEG component IFs at F7, F8, and T4 for the real and imagined limb
movements. Based on these dominant components’ IFs, the analyzed limb movements
are estimated. In addition, the instrument shows elapsed time for both the STRE and
IF estimations, as well as the total elapsed time for overall EEG analysis.

• Selecting TFD and windows’ sizes and types: The user is allowed to choose a TFD from
the provided list of TFDs, and depending on the chosen TFD, they are allowed to set
the analyzing window width and type (Hamming, Hanning, rectangular, triangular,
Gauss, and Kaiser).

• STRE and TFD parameters: In addition, prior to running EEG analysis, the user is
allowed to select values of the STRE sensitivity parameter, the TFD threshold for
reducing noise and low-energy cross-terms, and the component extraction threshold.

• TFD display options: The proposed instrument allows display of the TFDs as imagesc
(TFD is displayed as an image), contour (TFD values are treated as heights above
a plan), mesh (TFD is treated as colored parametric mesh), and surf (plots colored
parametric surface).

• References: By clicking on this button, related papers and previous works of the
authors that led to the development of the proposed instrument are given.

The next section presents a detailed elaboration of the obtained results, specifying the
proposed method’s contributions and advantages in EEG signal characterization.

4. Discussion

The reported results show that EEG signals often have multiple components, with
comparable complexity in terms of the number of signal components. Furthermore, the
obtained results show that limb movements (both imagined and real movements) leave
their signatures in EEG records in the time–frequency domain. The number of EEG
components and the dominant component IF were used to capture these signatures.

More specifically, for the spectrogram, the number of EEG components in the (t, f )
plane varied from 2 to 21 for hand movements and from 1 to 20 for imagined hand
movements. Extreme values were obtained for the left-hand forward and the right-hand
backward movements at C3 when the maximal number of components was reached, and
for the imagined right-hand backward movement at CZ when the minimal number of
components was reached. Furthermore, important information was obtained from the
mean of the normalized IF of the dominant EEG component f̄1, varying from 0.05 to 0.19
(shown in Table 1). Namely, for hand movements, f̄1 varied from 0.05 to 0.19, and for
imagined hand movements, it varied from 0.05 to 0.18. This variation of f̄1 at specific
electrodes was used to detect signatures of the analyzed limb movements in EEG records,
as discussed in the following.
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In terms of computational cost, the STRE was significantly more expensive than both
component extraction and IF estimation. Namely, component extraction and IF estimation
required an average time of only 0.41 s (in Matlab 2016b run on a computer with Intel i7-
6700HQ CPU at 2.60 GHz with four cores and 16 GB RAM). On the other hand, calculating
both the local and total number of components with the STRE required an average time of
86.99 s. In addition, calculating EEG time–frequency representations required an average
time of 0.017 s. Hence, the overall computational cost of the proposed method is a limiting
factor for its real-time application.

Comparable results in terms of the number of EEG components, and especially in
terms of the dominant component IF, were also obtained from the WVD and RD. This
proves that the proposed method is not limited only to the spectrogram, but it can also
be used with other TFDs. The number of EEG components found in the (t, f ) domain for
the tested limb movements varied from 6 to 39 in the case of the WVD and from 1 to 107
in the case of the RD. The reason for the increased number of components in the WVD
and RD when compared to the spectrogram may be found in the quadratic nature of these
time–frequency representations.

The proposed STRE-based approach was compared to a method used to extract useful
information content (in terms of the number of energy clusters) from signals in the time–
frequency domain [83]. This method applied the K-means algorithm for amplitude-based
clustering of the TFD, with the optimal number of classes for the segmentation procedure
being computed using the Davies–Bouldin criterion [84]. Following the TFD segmentation,
the class containing the TFD elements with the largest amplitudes (i.e., useful information
content) was used as the input data for the Hoshen–Kopelman algorithm [86]. The Hoshen–
Kopelman algorithm has been widely used to estimate the number of separate energy
clusters in the time–frequency domain, which, in this case, provides a quantitative measure
of EEG complexity (shown in Table 4). However, since this method does not provide
information on the local EEG complexity, at each time instant, as required for component
extraction and IF estimation procedures, the STRE-based approach was favored in the
proposed method.

The results (in terms of the number of EEG components) obtained using the STRE-
based method describe the variable complexity of EEG signals with respect to particular
channels. Namely, distinguishing signatures of the analyzed limb movements using only
the number of EEG components was shown to be insufficiently effective, as can be seen in
Figure 6. Hence, we proposed an upgrade of the method with the IF estimation. In order to
estimate EEG components’ IFs, component extraction is required beforehand. As shown in
Section 2.4, the described component extraction approach requires the information on the
number of EEG components locally, at each time instant, which was previously ensured by
the STRE-based method (also used to detect the total number of EEG components).

The IFs of the dominant EEG components estimated from the spectrogram, WVD,
and RD provide crucial information that is necessary in order to detect limb movement
signatures in EEG signals (as shown in Tables 2 and 3). Namely, f̄1 varied from 0.05
to 0.16 for the WVD and from 0.05 to 0.17 for the RD. These results are similar to the
results obtained using the spectrogram (when f̄1 varied from 0.05 to 0.19), proving that the
dominant EEG component IF is highly robust to the chosen TFD.

Next, the dominant EEG component IF was used to detect and distinguish between
various limb movement signatures found in EEG time–frequency distributions. Moreover,
understanding and distinguishing the signatures of real and imagined limb movements
in EEG signals has great usability in computer-assisted decision-support systems for
analyzing neurological motor control disorders. As can be seen in Figure 7, high frequencies
in the dominant EEG component IF were detected at F3, F4, F7, F8, T3, and T4. Furthermore,
considering the dominant EEG component IF at F7, F8, and T4, we were able to distinguish
the analyzed hand movement signatures from imagined movements.

In fact, the signature of the imagined left-hand forward movement was detected in
its EEG record as a high frequency of the IF of the dominant EEG component at F7 for all
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three analyzed TFDs. Furthermore, the imagined left-hand forward movement resulted in
a larger f̄1 value at F7 when compared to the corresponding executed hand movement for
all three time–frequency representations calculated.

Furthermore, the signatures of the right-hand forward and imagined right-hand
forward movements were found in their EEG signals as high values of f̄1 at F8 and F7,
respectively. The dominant EEG component IF for the imagined right-hand forward
movement was larger than f̄1 for the respective executed hand movement at F7, while the
executed right-hand forward movement increased f̄1 when compared to the respective
imagined movement at F8 (for all three TFDs).

Next, the signature of the left-hand backward movement was detected as a high
frequency f̄1 at T4 (with an increased dominant EEG component IF when compared to the
imagined left-hand backward movement for the spectrogram, WVD, and RD).

Finally, the signatures of the right-hand backward and imagined right-hand backward
movements (for all three TFDs) were detected in the EEG as high frequencies of the
dominant EEG component IF at F8 and T4 (with dominant EEG component IFs for the
moved hand being larger at T4 than for the respective imagined hand movements), as
well as at F7 (with larger f̄1 for the moved hand than for the respective imagined hand
movement), respectively.

Note that the obtained results were stable for all three analyzed TFDs. Moreover, the
proposed method was shown to efficiently distinguish between real movements from the
corresponding imaginary movements, as well as between backward and forward hand
movements for both the left and right hand. More specifically, the provided study suggests
that limb movement signals leave their signatures in EEG records, which may be detected
by analyzing the dominant EEG component IF in the TFD at specific channels (namely, F3,
F4, and T3, but especially F7, F8, and T4) in the time–frequency domain.

Moreover, the presented results suggest that the proposed time–frequency-based
approach using the STRE and IF estimation has potential to detect signatures of various
neurological phenomena, and possibly signatures of some neurological abnormalities.
However, a specific neurological disorder would require extensive study, which should
include experts from both the engineering and medical fields (the clinical applications
exceed the scope of this paper and are planned for our future research).

Lastly, unlike the methods of [48–56], the proposed method showed the potential to
classify both real (executed) and imagined movements by applying estimation classifiers
not only to one-dimensional functions (e.g., PSD), but relying on features extracted from
structures of the TFDs, providing additional insights into the signal’s characteristics. Con-
trary to the known methods for limb movement EEG classification and analysis, which are
usually focused on responses of certain electrode channels (in [48,49], C3 and C4; in [50],
F3, F4, C3, C4, P3, P4, O1, and O2; in [56] Fz, FC5, FC1, FCz, FC2, FC6, C3, Cz, C4, CP5,
CP1, CP2, CP6, P3, Pz, and P4), in the proposed approach, valuable information is also
obtained from electrodes that are usually neglected for this kind of estimation (F7, F8, and
T4). In light of this, the classification performance of the above-cited methods [48–56] could
be upgraded and integrated into multi-criteria computer-based clinical decision-support
systems.

Hence, the results of this study in terms of detecting signatures of various motor
control EEGs in the time–frequency domain encourage hopes that the proposed method
may be used in the future to also detect signatures of numerous neurological disorders in
EEG time–frequency representations.

5. Conclusions

Detecting the signatures of various stimuli that induce brain activities in recorded EEG
signals is one of the most challenging tasks of EEG analysis. For that purpose, this paper
proposes a novel time–frequency-based method for multichannel EEG signal analysis as
groundwork for building an extensive computer-aided decision-support system to correlate
various EEG patterns with functions and dysfunctions of the central nervous system. The
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method introduces the modification of the Rényi entropy estimation method, upgraded
with a blind component separation procedure (used for EEG component extraction) and
component IF estimation (used for EEG characterization). As shown in the paper, the
numbers of EEG components and, especially, their dominant IFs provide useful information
that may help to detect signatures of various limb movements in EEG time–frequency
representations. By considering the EEG channels F3, F4, F7, F8, T3, and T4 (with an
emphasis on F7, F8, and T4), the method was able to detect signatures and distinguish
between forward and backward movements of the left and right hand, as well as imagined
hand movements. Specifically, the imagined left-hand forward movement was detected
with the high frequency of the dominant EEG component IF at F7. High values of the
dominant EEG components’ IFs were found to be signatures of the imagined right-hand
forward and right-hand forward movements at F7 and F8, respectively. The left-hand
backward movement was detected with the high dominant EEG component IF at T4. The
signatures of the right-hand backward and imagined right-hand backward movements
were detected with the high frequencies of the dominant EEG components’ IFs at F8 and
T4 and at F7, respectively.

Furthermore, the method’s performance in terms of accuracy, precision, recall, and F1-
score in distinguishing real from imagined hand movements was reported for all analyzed
TFDs in the case of low-noise measurements. The achieved results show potential for
further enhancement of clinical diagnostic methods and medical treatment of numerous
neurological disorders if the signatures of these abnormalities, as expected, are detected by
the proposed method in recorded EEG data, which is planned to be investigated in future
work.
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