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Abstract: Triplestores or resource description framework (RDF) stores are purpose-built databases
used to organise, store and share data with context. Knowledge extraction from a large amount
of interconnected data requires effective tools and methods to address the complexity and the
underlying structure of semantic information. We propose a method that generates an interpretable
multilayered network from an RDF database. The method utilises frequent itemset mining (FIM)
of the subjects, predicates and the objects of the RDF data, and automatically extracts informative
subsets of the database for the analysis. The results are used to form layers in an analysable
multidimensional network. The methodology enables a consistent, transparent, multi-aspect-oriented
knowledge extraction from the linked dataset. To demonstrate the usability and effectiveness of
the methodology, we analyse how the science of sustainability and climate change are structured
using the Microsoft Academic Knowledge Graph. In the case study, the FIM forms networks of
disciplines to reveal the significant interdisciplinary science communities in sustainability and climate
change. The constructed multilayer network then enables an analysis of the significant disciplines
and interdisciplinary scientific areas. To demonstrate the proposed knowledge extraction process, we
search for interdisciplinary science communities and then measure and rank their multidisciplinary
effects. The analysis identifies discipline similarities, pinpointing the similarity between atmospheric
science and meteorology as well as between geomorphology and oceanography. The results confirm
that frequent itemset mining provides an informative sampled subsets of RDF databases which can
be simultaneously analysed as layers of a multilayer network.

Keywords: multi-layer network; RDF store; DataToKnowledgeToNetwork; linked data

1. Introduction

Linked data (LD) represent an essential tool used to organise, store and share data
with context [1]. Datasets that are published as LD form the Semantic Web. The part of
the Sematic Web which is freely accessible is called the linked open data cloud (LODC).
The driver of LD is the resource description framework (RDF) data model [2], which is
standardised by the World Wide Web Consortium (W3C). Databases following the RDF
standard are called triplestores or RDF stores, the naming is very intuitive; thus, the atomic
form of the RDF is an RDF triplet in the form “subject–predicate–object” (s,p,o), which states
that “an object o has a relationship p with subject s” [3]. There is little work on formalisation
of the RDF besides the official documents of the W3C, particularly RDF Concepts and
Abstract Syntax [4] and RDF Semantics [5], due its flexibility and extensibility [6]. There are
formalisations towards special representations and formalisation, like the bipartite graphs
as intermediate model for RDF [7]. The main concepts of the RDF are self-descriptive data,
data about data [4], machine readability [8] and extendibility [9]. LOD offers large quantities
of freely available, interconnected, statistical (linked open statistical data (LOSD)) [10],
governmental [11], scientific [12,13] and other annotated data [14]. The collection of such
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databases forms the Linked Open Data Cloud (LODC) [15], which consists of 2973 datasets
with 149.5 billion triplets.

In knowledge discovery and extraction, context is critical [16]. LD-based ontologies
provide a facilitating toolset for knowledge sharing [17]. Our goal is to extract potentially
useful knowledge, considering the flexible nature and multi-aspect potential of LD, in
an automated, easy-to-understand and validated way. We chose the toolset of network
theory because it has a compelling perspective on these interconnected, information-dense,
complex systems [18]. RDF supports the network-based perspective, as it can be interpreted
as a directed labelled network [19]. When network analysis was first incorporated into the
analysis of LD, classical measures such as degree distributions, small-world properties [20]
and centrality-based rankings of entities [21] were measured. Topic-oriented analysis and
LD-based social network analysis also arose [22]. With the introduction of special types of
graphs on LD, such as labelled networks [2], hypergraphs [23] and tagged networks [24],
deeper analysis was enabled. Most techniques focus on information discovery, such as
tag-based clustering [25], hierarchical tag analysis [26], semantic distance measures [27],
keyword clusters [28] and similarity-based rankings [29].

The main disadvantage of using multilayered, multidimensional networks for knowl-
edge extraction is that layer aggregation and cross-layer analysis are often difficult to keep
track of when dealing with many layers because of the different overlaps [30,31].

In the proposed methodology, aggregation and cross-layer analysis are performed
with a logical description originating from an ontology, increasing the understandability of
layer aggregation and analysis.

Figure 1 presents the most critical steps of network transformation in order. The first
step is the discovery of the knowledge base and transformation of an LD dataset into a
multidimensional network. In this step, the goal is to interpret the dataset by identifying
entities and distinguishing between attributes and dimensions, which is important to keep
the analysis transparent, without losing information. The second step enumerates the
reachable properties in the network. Algorithmic tools such as RDF chain search [32] and
querying property paths over distributed RDF datasets (QPPDs) [33] can be used in this
step. In the methodology section, we describe a more efficient, network-focused method,
developed specifically according to the nature of RDF datasets. Scanning and sampling an
RDF dataset and performing analysis are often difficult tasks [34]. In addition to its large
number of factors, such as different resources that may have different sets of properties,
the properties themselves can be multi-valued (i.e., there can be triples in which the subject
and predicate are the same but the objects are different); resources that may or may not
have types [35] complicate the process even more, not to mention that the task is highly
dependent on the platform, algorithm, dataset and underlying hardware. LD has its own
toolsets for scanning and sampling tasks such as partitioning [36] and multi-indexing [37].
The more context-driven approaches to sampling and scanning are pattern recognition
and statistics.

Frequent itemset mining (FIM) is also an option for statistical scanning, and it has been
successfully carried out for synonymous property exploration [38], text extraction [32] and
entity identification [39].

The frequent itemset mining can be performed based on the local database of the RDF
triplets, which is the standard preprocessing and analysis procedure of LD [40], or the FIM
can be performed in the cloud with the help of RDF Query Language (SPARQL)-based
automatically generated queries [41].

Optional but important steps, layer selection and data enrichment, will be discussed
in the next sections, as they are more subjective and situation dependent. They indicate the
selection of layers for the multidimensional network based on sampling and the enrichment
of the selected layers by other sources of information, respectively.

The final step represented in Figure 1—building the final, analysable, multidimen-
sional network according to the previous sampling and decisions—is also carried out in the
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cloud by multiple systematic SPARQL queries. This step can be seen as a series of bipartite
projections but is described in more detail in the next section.

Figure 1. Workflow of the proposed network transformation steps towards an analysable multidimensional network from a
linked data dataset.

The overall final step is ranking in the multilayer network, as ranking can be consid-
ered a translation of highly complex phenomena into short, simple messages that can be
easily digested [42]. Ranking, however, not only describes, but also prescribes [43]; there-
fore, a very careful criteria selection method must be used. Ranking interconnections in the
network has also been investigated for finding relevant relationships [44]. Network-based
techniques are very understandable; according to a ranking [45] and with the inclusion
of the statistically relevant layers, the relevant relationships are guaranteed. The aim of a
complex knowledge exploration method in the LODC that takes into account the known
hierarchies of the data (e.g., ontologies and taxonomies) as well as their interconnections
is thereby achievable. Ultimately, the knowledge extraction performed in this way is a
multicriteria, multi-objective ranking system, in contrast to single aspect rankings and
ranking only by analysing the structure.
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To test and demonstrate the applicability of our methodology, we use the Microsoft
Academic Knowledge Graph (MAKG) [46] to investigate the scientific realms of climate
change and sustainability. The discovery process also includes a ranking of authors and
institutes. The multi-aspect ranking also includes the layer similarities, determining the
similarities among research fields and their combinations, which act as the dimensions of
the network. The MAKG describes research fields hierarchically. The specialisation of a
layer can be determined by incrementing the number of elements in the itemset, intercon-
necting more disciplines or stepping downwards in the hierarchy tree. The incrementation
of the specification yields a lower entity count and increased density and modularity. We
inspect both layers and both types of community similarity to reveal and explore overlaps
and gain insight into the specifics of climate change and sustainability.

According to the main contributions, the paper is organised as follows.

• The RDF databases are represented as multidimensional networks in Section 2.
• We propose a frequent itemset mining-based method to extract information from the

multidimensional network in Section 3.
• The resultant frequent itemsets of multidimensional networks can be represented as a

multi-layer network that can be analysed by metrics presented in Section 4.
• We present the methodology through an example in which we uncover the scientific

realms of climate change and sustainability, including an alternative co-author, co-
organisational network ranking used to measure the impact of authors in multiple
disciplines in Section 5.

2. Multidimensional Network-Based Representation of RDF Databases

Linked Data can be seen as multiple interconnected datasets in RDF format. The
atomic form of an LD dataset or an RDF dataset is the RDF triplet; “an object o has a
relationship p with subject s”, can be seen as a single edge in a network that connects
entities, nodes s and o, with a labelled attribute p. A good example is that Isaac Asimov (s)
wrote (p) The Foundation (o).

The classic multi-dimensional networks are edge-labelled multi-graphs, which are
described as G = (V, E, D), where V represents the set of nodes, E the set of edges and D
the set of dimensions. The set of edges can be described as connections between nodes (u
and v) along a dimension (d). The set can be written as E = {(u, v, d), u, v ∈ V, d ∈ D}.

The nodes in LD are often enriched by properties and descriptions. In the example,
Isaac Asimov is both a person and a writer, and “The Foundation” is a fiction novel. These
properties, such as “The Foundation” is “fiction”, are also described by triplets. These
triplets can be merged into a simple node or skipped if they contain irrelevant pieces of
information. These ontological properties often act as dimensions. Therefore, to simplify
the ideas, the notation and ultimately the analysis, we extend the description of a dimension
with two sets, the dimension of the nodes (DV) and the dimension of the edges (DE). The
union of the sets results in the dimension set (DV ∪ DU = D). Then, the notation of the
edges is described as E = {(u, du, v, dv, de); de ∈ DE, du, dv ∈ DV}, where u and v are
the nodes as before and du and dv are their dimensions, respectively; de represents the
dimension of the edge.

A multidimensional edge is represented as E = {(u, v, Dα); Dα ⊆ D}, where Dα

refers to the simultaneously matching dimensions of both the node and edge dimensions
Dα = Dα,V ∪ Dα,E. This selection is a direct reference to a layer in a multiplex network
G = {Gα; α ∈ {1, . . . , M}} where Gα = (Vα, Eα, Dα). The network Gα is a network
with α dimension selection, where the nodes Vα and edges Eα take the dimension nodes
and edges of the selected dimensions Dα, respectively. M corresponds to the number of
created layers.

A multiplex network is a particular multidimensional network in which every layer
contains every node and the cross-layer edges are identifier edges, which refer to the same
cross-layer node. We use this notation, with the addition that not every layer will include
every node; therefore, an activity check in a multiplex network—checking whether a node
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is connected or disconnected in a layer—will effectively be an existence check. Extending
the multiplex notation with simultaneous dimension selection, we build the edges as
Eα = {(u, v) ∈ V × V; (u, v, Dα) ∈ E and Dα | du ∈ Dα,u, dv ∈ Dα,v, de ∈ Dα,e},
where Dα,u, Dα,v, and Dα,e refer to simultaneously matching node and edge dimensions,
respectively. Returning to the example of Asimov, dimension selection would work for
the network of books with the simultaneous matching attributes “fiction” and “robots”.
The expected result would be a network of books containing every book from the Elijah
series, “The Caves of Steel” and “Robots and Empire” with the levels and dimensions of the
important layer and non-layer constructing properties, such as the author “Isaac Asimov”
and the main protagonist “R. Daneel Olivaw”. This means that the created network is
explainable by the writer or the protagonist and of course the layer constructing properties
“fiction” and “robots”.

The number of layers of a fully defined multilayer network is large if we consider
ne = |DE| as the number of all edge dimensions and nv = |DV | as the number of node
dimensions. Then, the number of possible dimensions is ∑nk

k=1 (
ne
k )∑nv

j=1 (
nv
j ). However, the

selection of significant layers is the key to reducing the space of the analysis. The previously
introduced variable M as the number of layers refers to the number of selected layers.

The transactions can be extended with the environment and the reachable labels and
properties in the RDF. The right side of Figure 2, G(2)

α , takes the reachable tags into account.
The reachability states also enumerate all node attributes, and they take the neighbour

attributes into account. Beyond the simple mapping of the dataset, they can also be used to
extract information. In the example below, this means that Stefano inherits all attributes of
the paper and his institute.

To examine the significant layer selection, we have to understand the reachability
concept in the dataset.

To visualise reachability, Figure 2 represents the core idea. In Figure 2, Gα represents an
RDF dataset. It can be translated as stating that “The structure and dynamics of multilayer
networks” (v1), which is a review article (dv1) in network science (dv2), is written by (de1)
Stefano Boccaletti (v2), who is a physicist (dv3). Stefano is affiliated with (de2) the Institute
for Complex Systems in Florence (v3), which is a research institution (dv5).

Figure 2. Example of frequent slicing and an application of reachability. Gα is the starting network in a non-directed format.

G(2)
α is the set of attributes reachable from Gα.

The presented procedure creates multi-links as well as networks for a given set of
attributes. The procedure is similar to multidimensional network-based analysis methods,
where RDF databases were analysed in thematic dimensions [47]. The bipartite network-
based analysis of RDF datasets has also been proven useful [7]. Bipartite networks are
excellent to study the connections of two sets of objects. However, for multi-objective
analysis, a more complex model representation is needed, which motivates the devel-
opment of our method that forms sets of layers of networks where the layers represent
significant subsets of the dimensions of the RDF model. According to this, the next step
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of the proposed method is selecting these significant sets of dimensions, which will be
presented in the following section.

3. Frequent Itemset Mining in Multidimensional Networks

Frequent itemset mining (FIM) is a mining technique used to uncover frequent correla-
tions in transactional datasets [48]. We can consider the itemset I = {I1, . . . , Ine+nv} in the
case of the FIM representing the products; in the LD, the itemset represents the dimensions
D = {d1, d2, . . . , dne+nv}, or more specifically, the labels of the RDF. A transaction is defined
as τ = (tid, X), where tid is the transaction identifier and X is a set of items over I (X ⊆ I).
The database is the set of all transactions P = {τ1, τ2, . . . , τn}. The support of an itemset is
equal to the count of the constellation of dimensions.

As stated before, we are interested in significant layers. We measure significance with
the support of the itemsets. The set F = [α, . . . , M] holds the frequent itemsets. The support
of an itemset is supp(Fα) = |{τi | Fα ⊆ τi, τi ∈ P}|; the support of a layer (Gα) is equal
to its edge count supp(Gα) = |Eα|. Gα is frequent if supp(Gα) ≥ minsupp, where minsupp
is a chosen threshold. Summarising Gα is frequent if supp(Gα) ≥ minsupp. Fα is called
a closed or frequent closed itemset if there exists no proper superset of it that cannot be
extended by any dimensional data without losing support. Table 1 shows the technique
and its multidimensional counterpart.

Table 1. Summary of the frequent itemset mining (FIM) technique notation and its multidimensional counterpart.

Frequent Itemset Mining Multi-Dimensional Network

Items I = {I1, . . . , Ine+nv}
The products, in traditional FIM

D = {d1, d2, . . . , dne+nv}
The labels of the RDF

Transactions τi = {tid, X}
Set of items

A node with extended reachable tags

Database P = {τ1, τ2, . . . , τm}
all transactions

The enriched dataset

Support Number of itemset occurrences supp(Fα) = |{τi| Fα ⊆ τi, τi ∈ P}|

Frequent itemset Fα ⊆ τi if supp(Fα) ≥ minsupp supp(Fα) ≥ minsupp

An effective representation of the layer selection in a multidimensional network is the
multi-link. Multi-link −→m is an enumeration of the selected layers: −→m = [mα, mβ, . . . , mM]T .
We can now introduce the multi-adjacency matrix (A

−→m ), with elements a
−→m
ij that are equal

to 1 if there is a link between node i and node j, and zero otherwise [31].

a
−→m
ij =

M

∏
α=1

[aα
ijm

α + (1− aα
ij)(1−mα)] (1)

Thus, multi-adjacency matrices satisfy the condition ∑−→m a
−→m
ij = 1. The enumeration

of the layers where nodes are active can serve as the input to most of the frequent itemset
algorithms, as they effectively represent the itemsets. The methodology works with any
FIM algorithm, including CHARM [49], FPclose [50] and FP-Growth [51]; for an exhaustive
list, see the work of Chee, which also studies the scalability of FIM algorithms [52].

4. Analysis of the Resulted Multilayer Network

The union—the logical aggregation of layers—can be best expressed by the overlap-
ping edges [31] (Oα,β).

Gγ = Gα ∪ Gβ, Oα,β = supp(Gγ)

Oαβ = ∑
i<j

aα
ija

β
ij , (2)
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where Gγ is the layer formed by combining Gα and Gβ, and where aα
ij expresses a simple

edge in layer α connecting the nodes i and j. The count of the overlapping edges corre-
sponds to the support of the combined layer. The aggregated layers are also frequent, as
every subset of a frequent itemset is frequent [48]. Logically aggregating the layers is also
an efficient technique in data discovery.

In the upcoming example of author networks, authors interact on the layer of climatol-
ogy, on the layers of climatology and meteorology, and in every other layer. In this case, it
is difficult to keep track of all the different types of multi-links. Therefore, we can calculate
the multiplicity of the overlap vij between nodes i and j, which indicates the total number
of layers in which the two nodes are connected.

vij =
M

∑
α=1

aα
ij =

M

∑
α=1

mα
ij , (3)

where the nodes i and j are linked by the multi-link−→m = −→mij. In weighted multidimensional
networks, the weights might be correlated with the structure in a nontrivial way. To study
the weights, there are two new measures: the multi-strength (s

−→m
i,α) and the inverse multi-

participation ratio (Y
−→m
i,α ) [53],

s
−→m
i,α =

N

∑
j=1

aα
ija
−→m
ij , (4)

Y
−→m
i,α =

N

∑
j=1

 aα
ija
−→m
ij

∑r aα
ira
−→m
ir

2

. (5)

The multi-strength (s
−→m
i,α) measures the total weight of the links incident to node i in

layer α that form a multi-link. The inverse multi-participation ratio (Y
−→m
i,α ) is a measure of

the inhomogeneity of the weights of the nodes that are incident to node i in layer α and are
also part of the corresponding multi-link. Thus far, we have covered some indicators for
multidimensional activities, which are very useful for dealing with many layers. The final
step of knowledge extraction is ranking. Before turning to the ranking, we recall that the
density, modularity and other structural measures are very different from layer to layer.

Therefore, for each node, we can write an NxM activity matrix (B) of elements bi,α,
indicating whether node ni is present in layer α:

bi,α = ni ∈ Gα . (6)

In this way, we can measure the number of layers where i is present and active [30] as

bi =
M

∑
α=1

bi,α . (7)

Additionally, the number of nodes present and active in a layer can be given by Nα:

Nα =
N

∑
i=1

bi,α . (8)

The correlation between layers can be given by Qα,β, quantifying the fraction of nodes
that are present in layer α as well as in layer β.

Qα,β =
1
N

N

∑
i=1

bi,αbi,β . (9)
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A straightforward ranking in a network is obtained by calculating the centralities
of the nodes, reflecting their importance from different viewpoints. In multidimensional
networks, the most common centrality measure is to calculate the centralities of each
layer and finally aggregate them according to certain weights [31]. Both the aggregation
(maximum selection, minimum selection, summation, etc.) and the centrality measure used
depend on the interpretation

θi =
M

∑
α

wαθα
i , (10)

where θα
i is the calculated centrality measure of node i in layer α and wα indicates the

importance of layer α.
Now that the methodology has been described, the next section demonstrates the

applicability of the methodology.

5. Results

The programs of the following case study are available at the github (https://github.
com/abonyilab/aprioriSPARQL (accessed on 15 January 2021)) and the raw dataset is
available on the Microsoft Academic Knowledge Graph homepage (http://ma-graph.
org/rdf-dumps/ (accessed on 15 January 2021)) as well as the SPARQL endpoint (http:
//ma-graph.org/sparql (accessed on 15 January 2021)). The goal of this demonstration
is to showcase knowledge extraction from vast linked data. Therefore, we selected the
LOD catalogue for scientific publications from Microsoft, the MAKG [46]. The MAKG itself
contains definitions for 209,792,741 papers and 253,641,783 authors, in RDF terms, more
than eight billion triplets. The papers are categorised into 229,716 fields of studies. For the
relevant results, we selected the date range 2010 to 2017; the catalogue was last updated
in late 2018 [46]. Our aim was to study the realms of sustainability and climate change
based on the MAKG dataset, and on the other hand to showcase the importance of the
proper focus to not get lost at scale, the applied frequent itemset mining pinpoints and
keeps understandable the important areas of the data.

The first test on the dataset is reachability, to discover how to treat the dataset, which
is better formulated as, what are the dimensions that we can analyse? For example, in
the catalogue, the authors can be connected to universities, research organisations and
industrial laboratories. Therefore, the dataset describes the connections from rdf:type
Article to rdf:type FieldOfStudy through the connection of fabio:hasDiscipline. The previously
mentioned article connects to an rdf:type Author through the connection of dcterms:creator.
Reaching the rdf:type Affiliation, an org:memberOf connection is needed.

An rdf:type Affiliation can be connected to an external data source, the Global Research
Identifier Database (GRID), to extend the affiliations with the geo-coordinates, regions,
establishment dates, etc. Therefore, regional and institutional categorisation could be one
aspect of the data. Another, more straightforward analysis is the analysis of the author
network. The articles are sorted into multiple categories (rdf:type FieldOfStudy) according to
the hierarchical ontology created by the MAKG. The ontology contains five levels of depth:
the top level—level zero—is the major category (e.g., mathematics, medicine, engineering,
chemistry, etc.), and the next levels are their descendants, the more specialised categories
(e.g., nuclear medicine, applied mathematics, etc.). We take the ontology elements and the
constellation of the ontology elements as the layers or dimensions of the network. Going
downwards in the ontology, increasing the specification of a layer also increases the density
of the layer. Not every paper is categorised into as many matching ontology elements as
possible. Therefore, the lower levels—three, four and five—are ignored, and the density
does not increase. However, it is true that the more specialised a layer is, the denser it
becomes, even for horizontal extensions of layers, meaning the extension of an element to
another element that is on the same ontological level.

In this paper, we focus on sustainability science and climate change. Therefore,
we choose the ontological element “Climatology” as the starting point for our analysis

https://github.com/abonyilab/aprioriSPARQL
https://github.com/abonyilab/aprioriSPARQL
http://ma-graph.org/rdf-dumps/
http://ma-graph.org/rdf-dumps/
http://ma-graph.org/sparql
http://ma-graph.org/sparql
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to observe the advancements and analyse the social background of humanity’s major
problem, climate change. We also restrict ourselves to analysing only the author and
organisation networks within the second ontological level, which is easy to understand
and sophisticated enough to investigate. Now that we have a rough idea about what
we want to do, we execute FIM on the dataset to sample it from multiple angles. With
this technique, we want to uncover significant dimensions for the analysis and common
constellations of disciplines that go hand-in-hand with the previously selected ontology
element, “Climatology”. For discovery, we propose to load and execute FIM on the whole
data space, as the linked data are large on average.

In this study, the a priori FIM algorithm was used on the offline dump of the RDF
database and SPARQL-based queries were utilised for the validation of the results.

FIM was executed on a low setting, with a minimum support of five, to probe the
dataset, which means the selected timescale (2010–2018), in order to have slightly less than
one article per year in the given frequent constellation of the field of studies. Figure 3
shows the FIM results. The results also show the optimal minimum support of 10, which
is also selected for the next steps, where is a significant drop in small itemsets, but not as
significant as in the longer itemsets. The lack of longer itemsets is due to the categorisation
of the field of study in the dataset, as an article is categorised into 1.52 fields of study, on
average, in the second ontological level. The other ontological levels have much the same
statistics: 1.01 on the first (top) level, 3.18 on the third, 1.75 on the fourth, 1.32 on the fifth
and 1.31 on the sixth.

Figure 3. Counts of frequent itemsets by length and minimum support.

A length of one for the itemset indicates that climatology can be connected with
another ontology element; two indicates that it can be connected with two other elements,
and three with three, while still reaching the minimum support. No more extensions than
three reach the minimum support. The choice could be made here to set the minimum
support to a lower position, less than five, or we could be satisfied with the choice and the
count of networks, in this case, 665. This is quite a manageable size of networks, and it is
also worth mentioning that the edge count of the networks is approximately 5000.
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The next step is the network creation of authors and organisations on the layers. If the
layers do not have enough nodes, then they significantly influence the ranking; therefore,
our selection requirement for a layer is at least 40 different contributors, and that for edge
formation is at least two contributions between organisations and one for authors where
prescribed, based on the correlation measures between the layers (Equation (9)). Figure 4
shows the similarities between the layers using the edge overlap metric.

Figure 4. Organisational cluster map in the realm of climatology, showing how similar the disciplines are according to their
networks of organisations.

In Figure 4, the darker a region is, the more similar the layers are. The dendrograms on
the edge of the figure show the distances between the networks. We see that the extensions
of the layers are clustered together as well as similar studies. The top left segment of the
figure, including meteorology, atmospheric sciences, hydrology, oceanography, ecology
and geomorphology, shows the starting points for the extensions. Those are the closest
fields to climatology, which also have the most substantial support from FIM. We can also
observe different views; for example, the cluster in the middle, containing agroforestry,
environmental planning, economics, soil science and environmental engineering, is formed
around the economic side of climatology. The cluster in the bottom right, including remote
sensing combined with meteorology, artificial intelligence and mathematical optimisation,
is formed around computer-based observations and modelling. A natural question about
these clusters is, why are there not more extensions? Remote sensing and artificial intel-
ligence would be a perfect match. There are such extensions, but their support is below
the minimum support. The support of artificial intelligence itself is small, 482. Artificial
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intelligence and remote sensing together have the support of 44 papers from 2010 to 2018;
however, their node count is below the selected minimum node count (10 for country
networks; 40 for organisation and author networks). The other combinations show the
same phenomena.

Table 2 shows the important metrics of the significant institutional layers: the number
of nodes, number of edges, density, modularity and average clustering coefficient. The
average clustering coefficient represents the likelihood that two neighbours of a node are
connected, while modularity informs us about the community structure of the network.
The higher the modularity is, the more community-centred the graph. We see here that the
more specific a layer is, the more community-centred, and the higher its modularity. This
can be seen in atmospheric sciences by extending it with geophysics. The modularity of
atmospheric sciences is 0.2989, while the extended layer modularity is 0.9436. The same
phenomena can be found in all other layers and their extensions, which means that more
specific layers and disciplines are owned by more interconnected communities.

Table 2. Layer metrics of the institutional network.

Network_Layer_Resolver No.Nodes No.Edges Density No.Clusters Modularity Avg.Clustering_Coefficient

Agroforestry 208 251 0.0117 174 0.9592 0.0011
Agronomy 89 120 0.0306 70 0.9278 0.0029
Algorithm 50 118 0.0963 33 0.7231 0.0582

Artificial intelligence 55 58 0.0391 53 0.9738 0.0063
Atmospheric sciences 1285 14,217 0.0172 360 0.2958 0.0011

Atmospheric sciences|Geophysics 168 213 0.0152 130 0.9431 0.0016
Atmospheric sciences|Meteorology 638 2332 0.0115 248 0.6023 0.0034

Atmospheric sciences|Oceanography 45 48 0.0485 42 0.9679 0.0000
Atmospheric sciences|Remote sensing 44 56 0.0592 35 0.8616 0.0056

Botany 67 72 0.0326 63 0.9780 0.0029
Cartography 47 52 0.0481 42 0.9608 0.0000

Ecology 999 4370 0.0088 436 0.5001 0.0020
Ecology|Fishery 58 61 0.0369 55 0.9766 0.0000

Ecology|Geomorphology 66 72 0.0336 60 0.9776 0.0000
Ecology|Oceanography 239 401 0.0141 140 0.8644 0.0064

Econometrics 126 141 0.0179 112 0.9850 0.0032
Environmental chemistry 78 92 0.0306 66 0.9698 0.0077

Environmental engineering 208 231 0.0107 186 0.9884 0.0005
Environmental planning 184 200 0.0119 169 0.9893 0.0011

Environmental protection 86 123 0.0337 77 0.8606 0.0308
Environmental resource management 201 260 0.0129 167 0.9291 0.0047

Fishery 248 385 0.0126 171 0.9085 0.0061
Fishery|Oceanography 71 96 0.0386 56 0.9015 0.0132

Forestry 99 107 0.0221 91 0.9823 0.0000
Genetics 97 117 0.0251 82 0.9654 0.0110
Geodesy 71 80 0.0322 62 0.9753 0.0000

Geomorphology 1148 5850 0.0089 368 0.4877 0.0010
Geomorphology|Geophysics 55 63 0.0424 47 0.9499 0.0000
Geomorphology|Hydrology 254 363 0.0113 186 0.9375 0.0020

Geomorphology|Oceanography 291 511 0.0121 160 0.8614 0.0080
Geomorphology|Paleontology 78 101 0.0336 60 0.9556 0.0256

Geophysics 503 1013 0.0080 286 0.7733 0.0030
Geophysics|Oceanography 42 46 0.0534 38 0.9631 0.0000

Hydrology 1128 2893 0.0046 537 0.7027 0.0008
Hydrology|Meteorology 309 411 0.0086 232 0.9548 0.0023

Mathematical optimisation 60 62 0.0350 58 0.9807 0.0000
Meteorology 1904 9299 0.0051 788 0.5096 0.0005

Meteorology|Oceanography 221 320 0.0132 168 0.8769 0.0017
Meteorology|Remote sensing 75 84 0.0303 66 0.9691 0.0000

Oceanography 1164 7617 0.0113 370 0.3972 0.0022
Palaeontology 145 179 0.0171 119 0.9627 0.0075

Remote sensing 448 739 0.0074 304 0.8733 0.0015
Seismology 89 101 0.0258 78 0.9756 0.0023
Soil science 128 217 0.0267 100 0.8141 0.0074

Statistics 275 314 0.0083 246 0.9813 0.0013
Water resource management 66 99 0.0462 56 0.8316 0.0210
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Figure 5 shows the multilayer visualisation of (1) atmospheric sciences, (2) meteo-
rology and (3) their interconnection, giving insight into the data. For this visualisation,
enrichment of the data was needed to locate the research institutions on the map. The
enrichment was performed with the GRID. Not every research institution could be mapped
into the GRID, and therefore the unmapped research institutions are not counted in the
country-level aggregation; however, this does not influence the overall ranking. With
enrichment, we can easily observe the clusters both inside a country and across countries.
For example, the USA, Canada, China and Austria are strong clusters. In layer (1), at-
mospheric sciences, the USA contributes 84,201 papers, with 3400 co-contributions with
Canada, 2444 with Australia and 1952 with China. Layer (2), meteorology, shows the
same trend of the USA dominating the discipline with 43,981 papers; however, for the
co-contributions, Canada is third with 582 papers, there are 688 China–USA contributions
and in first place, there are 1086 Australian–USA contributions. The greatest contribution
to the interconnected layer is (3), atmospheric sciences and meteorology: the USA has
10,183 contributions, and China is second with a total of 809 contributions. The USA mostly
contributes to the discipline with Canada, with 200 individual papers. The rest of the
contributions are with Australia, 118, and China, 86, and there are very small amounts
with Chile, Japan, Taiwan and Norway.

The following rankings are based on these insights into the data. The multilayer
representation clearly shows that the more specialised a topic is, the fewer contributors
there are, but the more connected they are. The aggregated networks are denser with a
higher modularity, as observed previously. The next artefact of knowledge extraction is the
ranking. For the ranking, we calculate the importance of a country, institution and author
with the multilayer eigenvector centrality (Equation (10)).

The ranking mostly depends on the layers in which an entity (country, organisation or
author) takes part. This is why a strong minimum support and minimum node count are
needed for the analysis; otherwise, the very specialised layers will dominate, with very
few nodes, which have a very high rank. Therefore, we can use weightings according
to the correlations of the layers and the nodes, as described in the methodology section,
or other subjective criteria to balance the sparseness of the very specific layers. The top
list is represented in Table 3. Next to the ordering in the table, the most important layer
column shows where the organisation or author obtained the highest rank, and the “Agg.
eigen. centr.” column shows the aggregated eigenvalue centrality of the entity. With the
aid of this toolset, we can observe specific connections between research areas and pinpoint
research constellations describing sectors. The multi-aspect ranking provides the flexibility
to take significant topics into account and refine the ranking. The different metrics are the
searchlights of importance and focus.

Table 4 compares the publication count-based ranks in sustainability science and
climate change with the multidimensional network-based ranking. The selected topics
are the subset of the FIM-selected topics presented in Table 2. The Chinese Academy of
Sciences has the most publications in sustainability science and climate change, has the
most publications in most of the layers and it is also highly cooperative, and therefore
it occupies the first place for the Academy. In the comparison, we see that interestingly
the National Oceanic and Atmospheric Administration is very highly ranked; however,
the publication count in the shown layers predicts it otherwise. The Administration is
highly embedded into the any Oceanic (e.g., Fishery) and Atmospheric sciences (e.g.,
Remote Sensing and Geophysics), as the name would predict. Thanks to the substantial
co-operations of the institute, this organisation plays a central role in sustainability science
and climate change, which would not be highlighted in classical analysis techniques.
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Figure 5. Multilayer institutional network aggregated at the country level from the atmospheric
sciences and meteorology layers and the extension of them, atmospheric sciences—meteorology.

Table 3. Leaderboards of the top 5 institutes and authors contributing to climatology.

Organisation Leaderboard

Rank Name Most Important in Layer Agg. Eigen. Centr.

1 The United States of America (USA) Artificial intelligence|Pattern recognition 56.0279

2 China (CHN) Agroforestry|Hydrology 35.6429

3 Australia (AUS) Economy 33.0746

4 Canada (CAN) Thermodynamics 24.4631

5 United Kingdom of Great Britain (GBR) Environmental protection 23.2615
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Table 3. Cont.

Organisation Leaderboard

Rank Name Most Important in Layer Agg. Eigen. Centr.

1 Chinese Academy of Sciences Geodesy 24.1449

2 National Oceanic and Atmospheric
Administration Meteorology|Remote sensing 5.0147

3 National Center for Atmospheric Research Econometrics 3.3779

4 French National Centre for Scientific Research Ecology|Oceanography 2.9609

5 Alfred Wegener Institute for Polar and Marine
Research Geomorphology|Oceanography 2.0770

Individual Leaderboard

Rank Name Most Important in Layer Agg. Eigen. Centr.

1 Vijay P. Singh Hydrology 1.4517

2 Hai Cheng Geomorphology 1.2189

3 R. Lawrence Edwards Geomorphology 1.0049

4 Colin Schultz Meteorology|Oceanography 1.0005

5 Qiang Zhang Geomorphology|Hydrology 0.8854

Table 4. Comparison between the ranks based on the publication count in sustainability science and climate change and the
multi-objective rank created by the multidimensional network.

Publication Count Based Ranks

Organization Multi-Objective
Rank Global Rank Hydrology Ecology Paleontology Geophysics

Chinese Academy of Sciences 1 1 1 1 3 10

National Oceanic and
Atmospheric Administration 2 76 75 51 573 39

National Center for Atmospheric
Research 3 177 133 840 2558 28

French National Centre for
Scientific Research 4 2 4 3 2 2

Alfred Wegener Institute for Polar
and Marine Research 5 197 291 87 166 135

Russian Academy of Sciences 6 9 42 6 4 4

Potsdam Institute for Climate
Impact Research 7 1323 407 1061 3521 921

California Institute of Technology 8 37 71 571 307 3

Goddard Space Flight Center 9 71 1478 2765 2637 551

Wageningen University and
Research Centre 10 44 16 24 560 835

Beijing Normal University 11 227 18 241 1083 684

Lamont-Doherty Earth
Observatory 12 409 396 667 310 35

Ocean University of China 13 380 345 399 617 326

United States Forest Service 14 111 33 10 718 1084

International Institute for Applied
Systems Analysis 15 939 537 847 3240 3085
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6. Discussion and Conclusions

Our work contributes to the knowledge extraction of linked data. It also contributes
to the notation of multidimensional networks by extending the nodes with dimensions,
in contrast to the formal labelled network notation. This extension is useful in high-
dimensional data analysis, such as for linked open data, as the nodes are often extended
with hierarchical properties and ontologies. The extraction of useful data is validated
with on-demand, online, iterative SPARQL-based sampling of the dataset with frequent
itemset mining.

We demonstrated the applicability of the methodology through an interesting scien-
tometric example, co-author and co-organisation rankings in sustainability and climate
change. The source of the analysis was the linked open database of the Microsoft Academic
Knowledge Graph. We discovered multidisciplinary science boards using the proposed
multidimensional network-based approach. We showed similarities between disciplines
and the layers of the network. We also discovered that the aggregation of the layers in a
multidimensional network does not always result in the loss of information, and in contrast,
the aggregation of the layers results in denser, more modular information. Finally, we
ranked authors and organisations with multidimensional centrality rankings and showed
where sustainability and climate change are major research topics and who and which
organisations are the main contributors.

The proposed methodology generates a compact and interpretable multilayered net-
work from a linked dataset or another multidimensional network. The methodology is
applicable when there are a large number of edge and node labels, with the current ref-
erence to eight billion triplets, the dataset of the Microsoft Academic Knowledge Graph.
The scalability of the methodology is not limited, however, it is more an engineering
challenge, than a research objective. The most time- and memory-consuming operation
is the Frequent Itemset Mining, where serious advancement were already made by GPU
acceleration [54], Hadoop-based partitioning [55] and Spark-based parallelism [56]. The
endpoint capabilities limit the scalability of the FIM against the SPARQL endpoint; as it
can be seen, for an Application Programming Interface communication its parallelism and
effective scalability have already been proven by all modern web browsers.

With the aid of the proposed methodology and toolset, we can observe, select and
analyse particular connections between entities in linked data, taking ontological dimen-
sions and specific properties into account. The multi-aspect ranking provides the flexibility
to refine the ranking, while the other proposed tools act as searchlights of focus to interpret
a whole set of linked data, with all its extensions and possible enrichments.
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