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Abstract: Rotary piezoelectric motors based on converse piezoelectric effect are very competitive
in the fields of precision driving and positioning. Miniaturization and larger output capability are
the crucial design objectives, and the efforts on structural modification, new materials application
and optimization of control systems are persistent but the effectiveness is limited. In this paper, the
resonance rotor excited by stator is investigated and the meshing drive mechanism of double traveling
waves is proposed. Based on the theoretical analysis of bending vibration, the finite element method
(FEM) is used to compare the modal shape and modal response in the peripheric, axial, and radial
directions for the stator and three rotors. By analyzing the phase offset and vibrational orientation of
contact particles at the interface, the principle of meshing traveling waves is discussed graphically
and the concise formula obtaining the output performance is summarized, which is analogous with
the principles of gear connection. Verified by the prototype experimental results, the speed of the
proposed motor is the sum of the velocity of the stator’s contact particle and the resonance rotor’s
contact particle, while the torque is less than twice the motor using the reference rotor.

Keywords: piezoelectric actuator; traveling wave; meshing drive; FEM

1. Introduction

Piezoelectric actuation is a key technology to achieve the function of precision drive
and microfabrication. The converse piezoelectric effect is utilized to transform electri-
cal energy into mechanical motion [1,2]. The linear piezoelectric actuator [3–5], rotary
piezoelectric motor [6–9], micro-perfusion pump [10,11], piezoelectric functionally graded
plates [12,13] and ultrasonic transducer [14–17] have been developed and applied in the
fields of aerospace products, nontraditional machining, cell delivery, health monitoring and
structural control. The piezoelectric actuators using novel materials and complex modes
are nowadays investigated to further enhance the torque-weight ratio and working stability.
Wu et al. designed the lightweight rotary piezoelectric motors using the polymer-based
vibrator and studied the high-order vibration mode yielding a relatively high electrome-
chanical coupling factor [18,19]. Cao et al. researched the dynamics of a polymer-based
bimodal piezoelectric motor by using the Kelvin–Voigt viscoelastic model [20]. Shi et al.
developed a self-adapting noncontact piezoelectric motor adopting a flexible structure to
generate acoustic radiation force [21]. Yin et al. developed a single-mode linear ultrasonic
motor with large output thrust and fast output velocity [22]. Nakamura et al. designed
a limit error feedback controller to improve the stability of rotary piezoelectric motors at
angular speed saturation [23]. Koc et al. proposed a frequency tracking method by using
a microcontroller and a dual op-amp pair to handle the operating frequency drift of the
multimode excitation type piezoelectric motor [24]. Mustafa et al. investigated the effect of
preload on the driving characteristics and proposed the dynamic preload control as the
supplementary controller to enhance performance [25,26]. Over the various piezoelectric
actuators, the rotary piezoelectric motor is the most competitive and prospective in space
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exploration, focusing systems and microrobots because of its unique merits including
nanometer positioning accuracy, fast response and self-latching and no electromagnetic
interference [27–30]. Hagood et al. have modelled and predicted the general performance
for traditional rotary piezoelectric motors utilizing the Rayleigh–Ritz assumed mode en-
ergy method [31]. The authors firstly took into account how the interface forces between
the stator and rotor affect the amplitude of traveling wave within the stator. The work
provided a general framework for modeling the rotary piezoelectric motors and a design
tool for optimizing the motor’s geometries and materials.

To acquire the superior output performance, the efforts on structure design and drive
control are not ceasing, aiming to increase the vibrational amplitude of contact particles and
track the drive frequency of the stator [32–35]. Because of the friction-driven mechanism of
rotary piezoelectric actuators [31,36–38], it is difficult to obtain a major improvement for the
power and efficiency utilizing the traditional methods such as structural modification or
algorithm optimization. The sandwich structure with two stators and one rotor is a simple
assumption for acquiring the twice drive capability [39], which is verified theoretically
and in a laboratory but the design is deviating from the advantage of miniaturization and
higher power density. Bai et al. first studied the piezoelectric actuation with two traveling
waves by electrifying the stator and rotor [40]. Dong et al. modified the structure of the
double vibrators and found that the output power was enhanced obviously [41]. To prevent
the power supply lines from knotting, an electric slip ring is essential for energizing the
rotor. The complicated mechanical structure would lead to the unstable operation and
limited application.

In this paper, energized by the vibration of stator, the traveling wave would be also
generated at the rotor. The compact structure of the piezoelectric motor is maintained
because of nonelectric excitation for the rotor. Assuming that two traveling waves could
drive each other like the mesh transmission of matching gears, the drive mode of the novel
rotary piezoelectric motor is named as the meshing drive of double traveling waves. The
meshing mechanism or principle will be investigated by employing the resonance rotor,
reference rotor and flexible rotor. As a highly efficient and reliable modern mathematical
tool for structural design and multiphysics coupling analysis [42,43], the finite element
method (FEM) is used to calculate the mode shapes and modal responses. According to
the amplitude comparison and analysis of phase offset and vibrational orientations, the
meshing principle of two traveling waves is discussed graphically and the formula of the
speed and torque is concluded, with the verification of the prototype experiment.

2. Materials and Methods
2.1. Input Parameters and Boundary Conditions for FEM

The rotary piezoelectric motor is traditionally assembled with a stator and a rotor.
To investigate the meshing principle at the contact interface of the piezoelectric motor,
three rotors including a resonance rotor, reference rotor and flexible rotor are employed.
All the stator and rotors can be called vibrators because of their syntonic characteristics.
The stator consists of the metal substrate and the piezoelectric wafer. The resonance rotor
has the same mechanical structure and material composition as the stator to ensure the
undifferentiated eigenfrequency. The reference rotor is designed with different structure
and same substrate material aimed to acquire the obvious frequency offset from the stator.
The flexible rotor is fabricated with aluminum and with different structures with the
stator, which is generally employed by the commercial ultrasonic motors. The material
composition and main structural parameters are presented in Table 1.
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Table 1. Material composition and structural parameters of stator and rotors.

Vibrators Materials Outer Diameter
(mm)

Inner Diameter
(mm)

Total Height
(mm)

Stator Phosphor bronze
& PZT-8H 60

18 4.5 + 0.5
Resonance rotor 18 4.5 + 0.5
Reference rotor Phosphor bronze 8 5
Flexible rotor Aluminum 8 5

Finite element analysis is performed to investigate and distinguish the mode shapes
and modal responses of the stator and different rotors, using the commercial finite ele-
ment software COMSOL Multiphysics. The mesh generation of finite element models is
controlled automatically by piezoelectricity multiphysics of the software, setting with the
“Fine” level of element size. Before the numerical calculation, the materials attribute and
the boundary conditions are determined, with the input parameters, as shown in Table 2.

Table 2. Materials attribute of vibrators.

Parameters Phosphor Bronze Aluminum PZT-8H

Mass density (kg/m3) 8780 2770 7600
Poisson’s ratio 0.341 0.3 —

Young’s modulus (N/m2) 1.1E11 7.17E10 —

For the eigenfrequency calculation of the stator, the inner circular surface and bottom
transverse plane of the inner ring are imposed by a fixed constraint, and the axial pre-
compression force equaling to 200 N is exerted on the contact interface, that is, the top
transverse plane of the contact teeth. The boundary constraints of three rotors are consistent
but different with the stator. The inner circular surface is also fixed. The bottom transverse
plane of the inner ring and the contact interface is pressured with 200 N.

In order to obtain the modal response of the vibrators, a zero-to-peak voltage of 150 V
is exerted upon the piezoelectric wafer of the stator. The alternating force generated by the
stator is applied on the contact interface of each rotor circumferentially.

2.2. Theoretical Derivation for Wave Generating

To generate a traveling wave in the stator, the piezoelectric wafer is divided into two
symmetrical zones denoting as A and B with the circumferential interval of λ/4 and 3λ/4,
where λ is wave length [38]. Each zone is constituted of eight polarized subareas that have
the opposite direction of polarization to the adjacent ones. Excited by the independent
alternating voltage signals, two out-of-plane bending modes are generated at the stator
and the mode shape functions are described as{

φA(r, θ) = R(r) sin nθ
φB(r, θ) = R(r) cos nθ

(1)

where R(r) is the radial distributed amplitude coefficient, n is the sinusoidal wave number
generated at the stator, sin nθ is the displacement distribution function of mode A, cos nθ is
the displacement distribution function of mode B. The modal responses are described as{

wA(r, θ, t) = WAR(r) sin nθ cos ωnt = φA(r, θ)qA(t)
wB(r, θ, t) = WBR(r) cos nθ cos(ωnt + ϕ) = φB(r, θ)qB(t)

(2)
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where WA is the response amplitude of mode A, WB is the response amplitude of mode B,
ϕ is the phase difference of two modal responses, qA represents the modal coordinate of
mode A, qB represents the modal coordinate of mode B.{

qA = WA cos ωnt
qB = WB cos(ωnt + ϕ)

(3)

On the basis of the superposition principle, when the piezoelectric wafer is excited by
two alternating voltage signals, the displacement response of the stator is constituted
of a forward traveling wave expressed as sin(nθ − ωnt), inverted traveling wave as
sin(nθ + ωnt) and standing wave as cos nθ cos ωnt, which is described as

w = wA + wB = 1
2 R(r){(WA −WB sin ϕ) sin(nθ + ωnt)

+(WA + WB sin ϕ) sin(nθ −ωnt) + 2WB cos ϕ cos nθ cos ωnt} (4)

If the phase difference is equaling to π/2 or −π/2 and the response amplitudes of
two standing waves are equivalent and expressed as WA = WB = W0, the component of
standing waves is not included and the displacement response can be described as{

w(r, θ, t) = W0R(r) sin(nθ −ωnt), ϕ = π
2

w(r, θ, t) = W0R(r) sin(nθ + ωnt), ϕ = −π
2

(5)

To obtain the accordant mode shape of resonance rotor, bending vibration analysis
is performed by supposing the rotor as an equivalent simply supported beam model [44].
On the base of equilibrium equations of force and moment, the differential equation of
bending vibration for uniform beam with homogeneous material is described as

∂2

∂x2

(
EI

∂2w
∂x2

)
+ ρS

∂2w
∂t2 = 0 (6)

EI
∂4w
∂x4 + ρS

∂2w
∂t2 = 0 (7)

where E represents the material elastic modulus, ρ represents the material density of
equivalent beam, S represents the cross-sectional area of equivalent beam, I represents
inertia moment of cross section to neutral axis. Based on separation of variables, the
displacement function of natural vibration is described as

w(x, t) = φ(x) · q(t) (8)

The oscillatory differential equation and the displacement response could be deduced as

EI
d4φ(x)

dx4 q(t) + ρSφ(x)
d2q(t)

dt2 = 0 (9)

w(x, t) =
∞

∑
i=1

φi(x)qi(t) =
∞

∑
i=1

φi(x)(Ai sin ωit + Bi cos ωit) (10)

φi(x) = Fi sin βix = Fi sin
iπ
l

x (11)

qi(t) = Ai sin ωit + Bi cos ωit (12)

where Ai and Bi are determined by initial displacement and velocity of vibrational particles,
ωi represents the resonance frequency, φi(x) represents the mode shape function, qi(t)
represents the modal coordinates.

Equation (10) presents that the displacement response of rotor particles is the linear
combination of various natural modes of vibration. When the drive frequency of the motor
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is deviating from the resonance frequency, the modal response is the superposition of
various natural modes of vibration.

3. Results and Discussion
3.1. Numerical Results of FEM

On the basis of the boundary condition settings and the input parameters introduced
in Section 2.1, the ninth modal frequency of the stator is computed as 39,535 Hz. The
syntonic deformation is emerging around the outer ring as shown in Figure 1a, of which
the mode shape contains nine nodal lines and zero nodal circles. Similarly, the ninth modal
frequency of the resonance rotor is 39,514 Hz and the mode shape nephogram is shown in
Figure 1b. The slight deviation of eigenfrequency between stator and resonance rotor is
owing to the difference of the boundary constraints.

Figure 1. Comparison of mode shapes for stator and rotors. (a) 9th modal shape of stator. (b) 9th
modal shape of resonance rotor. (c) Adjacent modal shape of reference rotor. (d) 9th modal shape
of reference rotor. (e) Adjacent modal shape of flexible rotor. (f) The other adjacent modal shape of
flexible rotor.
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For the reference rotor, the ninth eigenfrequency occurs at 38,419 Hz and the difference
in value to the stator is in excess of 1000 Hz. There is an interferential mode of vibration
and the modal frequency is 38,756 Hz, which is closer to the nine eigenfrequency of the
stator and the mode shape nephogram is shown in Figure 1c. For the flexible rotor, the
ninth mode of vibration is not found in the sweeping frequency domain. The adjacent
mode shapes to the stator 9th mode are occurring at 37,912 Hz and 41,136 Hz, respectively,
with the mode shape nephogram shown in Figure 1e,f.

The amplitude response versus sweeping frequency is shown in Figure 2. When the
drive frequency is equal to the ninth modal frequency, the ninth modal shape is energized
obviously. As the drive frequency is away from ninth eigenfrequency, the responding
amplitudes decline rapidly to lower values, and the ninth modal vibration becomes in-
conspicuous. The results are attributed to the spatial arrangement and polarization mode
of the piezoelectric wafer and the modal structural design of the vibrator. The peripheral
amplitude is slightly larger than the axial, both of which are much larger than the radial
value. It is deduced that the driving force is generated from the peripheral vibration and
restricted by the axial vibration, and the radial vibration wastes energy, reducing the output
efficiency of the rotary piezoelectric motor.

Figure 2. Amplitude response of the stator in the peripheral, axial and radial directions. (a)
Modal response nephogram of stator. (b) Displacement amplitude versus sweeping drive frequency.
(c) Velocity amplitude versus sweeping drive frequency. (d) Acceleration amplitude versus sweeping
drive frequency.

The modal response of the resonance rotor is shown in Figure 3. The peak response
occurs when the drive frequency is nearby the ninth eigenfrequency of the resonance rotor,
which is almost the same as the modal frequency of the stator. Similar as the stator, the
radial maximum values are much smaller than the peripheral and axial ones. Take the
displacement response, for instance; the peripheral peak value is larger than value of
the stator. Both the axial and radial peak value are smaller than the stator ones with the
difference of 1 µm. The results show that the responding amplitudes of the resonance rotor
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have the same order of magnitude as the stator, which is required by the traveling waves
engaging with each other.

Figure 3. Amplitude response of resonance rotor in the peripheral, axial and radial directions.
(a) Modal response nephogram of resonance rotor. (b) Displacement amplitude versus sweeping
drive frequency. (c) Velocity amplitude versus sweeping drive frequency. (d) Acceleration amplitude
versus sweeping drive frequency.

As the drive frequency equals the ninth eigenfrequency of the stator, the vibration
responses of stator particle within one oscillatory period are calculated and shown in
Figure 4a–c. The results present that the displacement field is lagging to the velocity field
with the phase difference of π/2, as well as the velocity field lagging to the acceleration
filed with the same phase difference. When the axial deformation is oriented to the top
transverse plane of stator teeth, the peripheral velocity of the contact particle is a tangent
to the virtual circle along anticlockwise direction.

When the resonance rotor is excited by the stator, the variation of the field responses
within one oscillatory period is calculated and shown in Figure 4d–f. The contact particle
is moving anticlockwise peripherally as the axial displacement is towards the contact
interface. The judgment of vibration direction is the foundation for deducing the wave
meshing condition at the contact interface.

The phase difference between the vibrational response and excitation is calculated
and shown in Figure 5a–c for the stator. The results illustrate that the displacement phase
difference is approximately equal to π/2 as the drive frequency approaches the ninth
eigenfrequency. When the drive frequency sweeps from 37,000 Hz to 43,000 Hz, the
velocity response is ahead of the displacement response with the phase difference of π/2,
and the acceleration response is ahead of the velocity response.
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Figure 4. Modal response of stator and resonance rotor within one oscillatory period. (a) Periodical
displacement response of stator. (b) Periodical velocity response of stator. (c) Periodical acceleration
response of stator. (d) Periodical displacement response of resonance rotor. (e) Periodical velocity
response of resonance rotor. (f) Periodical acceleration response of resonance rotor.

Given the results of resonance rotor shown in Figure 5d–f, the velocity and acceleration
responses keep ahead of the displacement response with the phase difference of π/2 and
π, respectively. From the phase difference between the response and the excitation, the
displacement phase difference is approximately equal to π/2 when the drive frequency is
approaching the ninth eigenfrequency. When the drive frequency is growing to 43,000 Hz,
the other mode shape would be excited with the corresponding modal frequency far away
from the ninth vibration modes.

The ninth mode shape is also generated at the reference rotor as the drive frequency
equals the ninth eigenfrequency of the stator, with the response nephogram shown in
Figure 6a. From Figure 6b–d, the peak values of vibration response are occurring at
38,419 Hz, which is the ninth eigenfrequency of the reference rotor rather than the stator.
The axial displacement amplitude is less than 0.5 µm when the drive frequency equals
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the ninth eigenfrequency of the stator, which is much smaller than the value of the stator,
leading to the weak meshing effect for the double traveling waves.

Figure 5. Variation of phase difference of stator and resonance rotor as sweeping frequency. (a) Pe-
ripheral phase difference of stator. (b) Axial phase difference of stator. (c) Radial phase difference
of stator. (a) Peripheral phase difference of resonance rotor. (b) Axial phase difference of resonance
rotor. (c) Radial phase difference of resonance rotor.

The vibration response of the flexible rotor is shown in Figure 7 and there is not
the evident peak response as the drive frequency sweeps from 37,000 to 43,000 Hz. It is
consistent with the eigenfrequency solution that the ninth model shape is not occurring.
When the drive frequency equals the ninth modal frequency of stator, the axial displacement
is less than 0.5 µm and the peripheral displacement is less than 0.1 µm as well as the velocity
and the acceleration are also much smaller than the values of stator. The wave meshing
effect could be neglected when the piezoelectric motor employs the flexible rotor.



Mathematics 2021, 9, 445 10 of 17

Figure 6. Amplitude response of reference rotor in the peripheral, axial and radial directions.
(a) Modal response nephogram of reference rotor. (b) Displacement amplitude versus sweeping
drive frequency. (c) Velocity amplitude versus sweeping drive frequency. (d) Acceleration amplitude
versus sweeping drive frequency.

Figure 7. Amplitude response of the flexible rotor in peripheral, axial and radial directions. (a) Modal
response nephogram of flexible rotor. (b) Displacement amplitude versus sweeping drive frequency.
(c) Velocity amplitude versus sweeping drive frequency. (d) Acceleration amplitude versus sweeping
drive frequency.
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The field responses of the reference rotor within one period of vibration is shown in
Figure 8a–c, and the values of the flexible rotor is shown in Figure 8d–f. The results present
the slight axial vibration and the drive force generated by the rotors could be neglected.

Figure 8. Modal response of reference rotor and flexible rotor within one oscillatory period. (a) Peri-
odical displacement response of reference rotor. (b) Periodical velocity response of reference rotor.
(c) Periodical acceleration response of reference rotor. (d) Periodical displacement response of flex-
ible rotor. (e) Periodical velocity response of flexible rotor. (f) Periodical acceleration response of
flexible rotor.

The phase difference between vibration response and excitation for the reference rotor
and flexible rotor is shown in Figures 9a–c and 9d–f, respectively. The results further
illustrate that the natural vibration is occurring at 38,419 Hz for the reference rotor and
the vibration response of the flexible rotor is throughout feeble from 37,000 to 43,000 Hz.
The saltation of the phase curves at the specific frequencies is consistent with the modal
frequency analysis for both the rotors.
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Figure 9. Variation of phase difference of reference rotor and flexible rotor as sweeping frequency.
(a) Peripheral phase difference of reference rotor. (b) Axial phase difference of reference rotor.
(c) Radial phase difference of reference rotor. (d) Peripheral phase difference of flexible rotor. (e) Axial
phase difference of flexible rotor. (f) Radial phase difference of flexible rotor.

3.2. Prototype Experimental Results

To verify the meshing effectiveness of double traveling waves, the prototype experi-
ment is executed by employing the resonance rotor and the reference rotor. According to
the numerical results of the vibrators, the piezoelectric motor with resonance rotor (PM_res)
is driven by the double traveling waves and the piezoelectric motor with reference rotor
(PM_ref) is driven by the single traveling wave of the stator. The experimental device is
set up as shown in Figure 10e. A magnetic powder brake (MPB) driven by a specialized
tension controller is used as the torque load and a laser velocimeter is used to measure the
rotational speed. The stator and three rotors are exhibited in Figure 10a–d.
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Figure 10. Prototype experiments and output performance curves. (a) Stator. (b) Resonance rotor. (c) Reference rotor.
(d) Flexible rotor. (e) Experimental device. (f) Speed-torque curve. (g) Power-torque curve.

Adjusting the drive frequency to the ninth modal frequency of the stator, output
characteristic curves of the motors are measured and exhibited in Figure 10f. The measured
results present that the rotational speed of PM_res is almost twice PM_ref, which is owing
to the superimposed drive of the contact particles. The maximal torque of PM_res is also
larger than PM_ref, which benefits from the opposite vibrational direction of the contact
particles. Calculated from the values of the rotational speed and corresponding torque, the
output power is calculated and shown in Figure 10g, illustrating that the meshing drive by
double traveling waves is conducive to boost the motors’ power.

3.3. Discussion

From the mode shape analysis, we find that the ninth eigenfrequency of the resonance
rotor is very close to the stator, while the value of reference rotor is far away from the
stator with the difference of 1116 Hz, especially the ninth mode shape does not exist for the
flexible rotor within the sweeping range. Because of the ring structure of all the vibrators
and the bending vibration, the peripheral amplitude is slightly larger than the axial value
and the radial amplitude is much smaller than the peripheral and axial value. It is deduced
that the driving force is generated from the peripheral vibration, restricted by the axial
vibration and the contact interface between the stator and the rotor. The radial vibration
wasting energy brings down the output efficiency of the rotary piezoelectric motor.

As listed in Table 3, the amplitude responses of the reference rotor and flexible rotor are
far less than the values of the stator. It indicates that the adjacent disturbing modes would
restrain the vibration response excited by the stator, leading to the weak meshing effect
of the traveling waves. Therefore, if the reference rotor or flexible rotor is employed by a
piezoelectric motor, the vibrational analysis of the rotor can be omitted and the traveling
wave generated by the stator is the principally concerned.

According to the analysis of Figures 5 and 9, the displacement phase of resonance
rotor has an approximate π/2 lag behind the stator at the ninth modal frequency, whereas
the phase difference is about π for the reference rotor and flexible rotor. The meshing
mechanism of two traveling waves generated by the stator and resonance rotor could be
illustrated as in Figure 11.



Mathematics 2021, 9, 445 14 of 17

Table 3. Numerical results of vibrators by finite element method (FEM).

Calculated Results Stator Resonance Rotor Reference Rotor Flexible Rotor

9th modal frequency (Hz) 39,535 39,514 38,419 —

Adjacent modal frequency (Hz) — — 38,756 37,912
41,136

Displacement amplitude (µm) 1
Peripheral 3.608 3.716 2.139 0.466

Axial 3.258 2.255 0.243 0.085
Radial 1.691 0.699 0.105 0.020

Velocity amplitude (mm/s) 1
Peripheral 896.5 923.1 531.3 115.9

Axial 809.6 560.3 60.49 21.27
Radial 420.3 173.8 26.10 5.035

Acceleration amplitude (mm/s2) 1
Peripheral 2.227 × 108 2.293 1.319 × 108 0.288 × 108

Axial 2.011 × 108 1.391 0.150 × 108 0.052 × 108

Radial 1.044 × 108 0.431 0.064 × 108 0.012 × 108

1 Driving frequency is equal to 9th modal frequency of stator.

Figure 11. Meshing drive mechanism of double traveling waves.

When the axial displacement of the stator and resonance rotor is uniformly oriented
to the contact interface, the peripheral velocity of the stator is positive and the peripheral
velocity of resonance rotor is negative, which is consistent with Figure 4. If ignoring the
sliding friction of the interface, the relative velocity between the contact particles of the
stator and resonance rotor is zero and could be described as

→
v rotor +

→
v rotor_p =

→
v stator +

→
v stator_p (13)

→
v rotor =

→
v stator_p −

→
v rotor_p (14)

where
→
v rotor is the linear velocity of the rotor,

→
v stator is the linear velocity of the stator and

the value is zero,vrotor_p is the tangential velocity of the rotor contact particle, vstator_p is
the tangential velocity of the stator contact particle. Because the peripheral velocity of the
resonance rotor is close to the value of the stator, the linear velocity of the rotor is almost
twice the value of the stator’s contact particle, which is verified by the experimental results.

Both the axial displacement of the stator and resonance rotor is oriented to the contact
interface and the orientation of the axial velocity is the opposite. The axial amplitude
response of the resonance rotor is smaller than the value of the stator, as shown in Table 3.
The output torque T of the proposed motor is qualitatively described as

T = µ · FAxial · r = µ · r · (FAxial_Sta + FAxial_Res) < 2µ · r · FAxial_Sta (15)
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where µ is the frictional coefficient of the contact interface, FAxial is the total axial force,
FAxial_Sta is the axial force generated by the vibration of stator, FAxial_Sta is the axial force
generated by the vibration of resonance rotor.

The meshing mechanism of traveling waves could be compared with the highly effi-
cient driving of matching gears. The contact particles at the interface is similar to the pitch
points of matching gears. The investigation is beneficial to enhancing the output capability
of the rotary piezoelectric motors and propelling the industrial application of piezoelectric
actuation in the fields of precision drive and ultrasonic machining. Nevertheless, the
general principle of structural design for a special eigenfrequency and the underlying
mechanical model are still required for the prospective development.

4. Conclusions

In this work, the meshing mechanism of a double traveling wave generated at the
stator and resonance rotor is investigated. Based on the theoretical analysis of traveling
wave generation and bending vibration of the equivalent simply supported beam, the finite
element method is used to calculate the frequency-domain characterization by employing
the resonance rotor, reference rotor and flexible rotor. As the modal frequency of the
reference rotor and flexible rotor is far away from the stator, the ninth mode shape could
be faintly energized by the vibration of the stator, of which the response amplitudes are
much smaller than the stator and resonance rotor. Because the ninth modal frequency
of the stator and resonance rotor are very close, the ninth mode shape and traveling
wave of the resonance rotor can be easily energized using the vibration of the stator as
the excitation source. From the computed results of the stator and resonance rotor, the
peripheral amplitude of the contact particle is larger than the axial value, explaining that
the drive force is generated by the peripheral vibration but subjected to the axial vibration.
When the drive frequency is equal to the ninth modal frequency, the resonance rotor’s phase
is lagging behind the stator of π/2 while the value for the other rotors is π. By analyzing
the vibrational orientation of contact particles in the peripheral and axial directions, the
meshing principle of double traveling waves is discussed graphically. The formulas of the
motor’s speed and torque are developed and verified by the experimental results. The
work is different from the traditional rotary piezoelectric motor utilizing single traveling
waves, which is conducive to the principle innovation and industrial application of the
piezoelectric actuators.
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