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Abstract: Representations are crucial to mathematical activity, both for learners and skilled math-
ematicians. Digital technologies (DT) to support mathematical activity offer a plethora of new
possibilities, not least in the context of mathematics education. This paper presents a literature review
on representations and activation of students’ representation competency when using DT in mathe-
matics teaching and learning situations. It does so with a starting point in task designs involving
digital tools aiming to activate representation competency, drawing on the notion of Mathematical
Digital Boundary Object (MDBO). The 30 studies included in the literature review are analyzed using
Duval’s registers of semiotic representations and the representation competency from the Danish
KOM framework. The results reveal a clear connection between the mathematical topics addressed
and the types of representation utilized, and further indicate that certain aspects of the representation
competency are outsourced when DT are used. To activate the representation competency in relation
to the use of DT, we offer five suggestions for consideration when designing mathematical tasks.
Finally, we raise the question of whether DT create new representations or merely new activities.

Keywords: representation competency; dynamic geometry; computer algebra systems; task design

1. Introduction and Motivation

One of the most obvious affordances of digital technologies (DT) in the teaching and
learning of mathematics is their capability to visualize representations of mathematical
objects. A quick search on “mathematical representations” and “digital technology” in most
relevant databases will reveal this through the mere number of hits. From mathematics
education research, we know that mathematical understanding of a given concept—and
its associated processes and objects [1,2]—is closely connected to being able to handle
different representations of that concept (object). For Sfard [3], for instance, being able to
shift between different representations of the same object is part of the condensation of a
concept—a step on the way towards reification. For Duval [4] (see later), being able to access
and shift between different mathematical representations is the key to all mathematical
understanding and activity. Furthermore, mathematical representation is an essential part
of mathematical thinking, reasoning and communication [5].

If, however, one adds “task design” to the search mentioned above, the number of
hits decreases dramatically (down to perhaps only a handful). Hence, if we are interested
in how to design mathematical tasks so that specific features of a given technology can be
capitalized upon in relation to students’ conceptual mathematical knowledge, it seems we
are left with our own ingenuity. Nevertheless, much of the available literature, if scanned
more closely, does provide bits and pieces of information on task design in relation to the
work with mathematical representations.

In this paper, we make a first attempt at this, using as our focus for identifying
work with mathematical representations the components of the so-called mathematical
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representation competency [5,6], limiting “DT” to Dynamic Geometry Systems (DGS) and
Computer Algebra Systems (CAS). More precisely, we address the questions:

o  What does the mathematics education literature have to offer in relation to mathematical
representations and representation competency in teaching and learning situations involving
DGS or CAS?

e  How can tasks relying on DGS or CAS be designed in a manner that supports students’
activation of mathematical representation competency (according to the literature identified as
part of answering question 1)?

In the following, we first provide the theoretical background of the study. Next,
we account for our review methodology. We then present our review results, categorizing
and analyzing these according to the representational registers [4] and the different aspects
of the representation competency involved [5]. We end the paper with a discussion of these
findings using the lens of task design, thus attempting to answer the questions posed above.

2. Theoretical Background

The theoretical background of the present study is a combination of the notion of
mathematical competency, drawing on the work of Niss and Hejgaard [5,6], in particular
the representation competency; Duval’s [4,7] work with mathematical representations
through the use of semiotic registers; and finally the recent attention brought to task design
in digital environments in mathematics education research (e.g., [8])

2.1. The KOM Framework and Its Mathematical Representation Competency

In the Danish mathematical competencies framework [5,6], the so-called KOM-
framework, mathematical mastery is characterized as comprising eight mathematical
competencies. The framework is integrated in Danish mathematics education curricula
and has influenced mathematics education in other parts of the world (e.g., [9,10]).

The KOM-framework defines mathematical competency as an individual’s “insight-
ful readiness to act appropriately in response” to a “specific sort of challenge that actually
or potentially calls for ‘specific kinds of activation” of mathematics in order to answer
questions, solve problems, understand phenomena, relationships or mechanisms, or to take
a stance or make a decision” [5] (p. 14). Although each competency has its own unique
identity, the eight competencies are interwoven, as illustrated in the KOM flower (Figure 1),
which also lists the eight competencies.

Figure 1. The so-called KOM flower.

Each of the eight competencies has an “investigative” and a “productive” side.
The ““productive’ side of a competency consists of being able to, by oneself, carry out
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the processes covered by the competency”, while the ““investigative’ side comprises an
understanding, analysis and critical assessment of the processes already carried out and
the products thereof” [6] (pp. 70-71). Since the focus of this study is mathematical rep-
resentations, we concentrate our further description on the mathematical representation
competency and its more closely related competencies.

The representation competency comprises the ability to decode, “interpret as well
as translate and move between a wide range of representations (e.g., verbal, material,
symbolic, tabular, graphic, diagrammatic or visual) of mathematical objects, phenomena,
relationships and processes” [5] (p. 17). The competency further comprises the ability to
reflect and decide which representations to utilize when handling mathematical tasks or
situations. Moreover, it calls for the ability to reveal the limitations and strengths of these
representations, as well as the loss or gain of information when switching between represen-
tations (e.g., what is the information loss when shifting between a mathematical expression
for a function, a table of values, and a graph). The symbols and formalism competency is about
decoding symbolic and formal language, translating between mathematical symbolism
and natural language, handling and utilizing mathematical symbolism, and transforming
symbolic expressions. It also focuses on the nature, role and meaning of symbols (and for-
mal systems) and on the rules for their usage. Both the competency of representation and
of symbols and formalism are closely related to the communication competency. In short,
this consists of the ability to study and interpret others’ written, oral or visual mathematical
statements, explanations or texts as well as the ability to express oneself mathematically in
such ways.

On the use of DT, Niss [11] finds that:

[It can] help generate student experiences of mathematics-laden processes and
phenomena that might be difficult to obtain by other means; create platforms
and spaces for exploration in which mathematical entities can be investigated
through manipulation and variation; produce static and dynamic images of
objects, phenomena, and processes that are otherwise difficult to capture and
grasp; create connections between different representations of a given mathemat-
ical entity; help solve hard or otherwise inaccessible computational problems;
perform rule-based symbolic transformations and manipulations; support the
production of mathematical texts... [11] (p. 248).

Adhering to Niss” view on DT, it becomes apparent that representations are key in
many of the affordances of DT.

2.2. Mathematical Representations and Semiotic Registers

According to Duval [4], in mathematics we cannot directly access the mathematical
objects in the same way as, for instance, in the natural sciences through various measuring
instruments etc. We can only access mathematical objects through semiotic representations.
For Duval, itis a crucial point that different mathematical representations belong to different
semiotic registers, and that mathematical activity—and understanding—essentially is about
being able to make shifts between such semiotic registers.

Duval [4] points out that the role played by signs in this regard is not to be place-
holders for the mathematical objects but for other signs. In this perspective, signs and
transformations between different semiotic representations are the core of mathematical
activity—as opposed to the activities of other scientific disciplines. The possibilities of
substituting one semiotic representation with another depend on the semiotic system.
Every system offers specific possibilities. Hence, the capacity of a given representation does
not depend on the individual symbol (or sign), but on the semiotic system of which it is a
part. One distinction is for example language (natural and symbolic) versus images (figures,
graphs, etc.). However, according to Duval [4], such distinction is too general, and causes
us to overlook an important point, namely that while some semiotic systems may only be
used to perform mathematical processes, others possess a larger variety of functions.
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Duval [4] lays down four types of semiotic registers that emerge by combining two
distinctions. The first distinguishes discursive and non-discursive registers. The discursive
registers are languages (both oral and written) that express meaning units of thoughts and
thought operations. Hence, these are process-oriented, while the non-discursive registers
simply display one or more static, visual objects. The other distinction is between mono-
functional and multifunctional semiotic registers: “Some semiotic systems can be used
for only one cognitive function: mathematical processing ... within a monofunctional
semiotic system most processes take the form of algorithms” [4] (p. 109). A multifunctional
semiotic system “can fulfill a large range of cognitive functions: communication, infor-
mation processing, awareness, imagination, etc.”, and “within a multifunctional semiotic
system the processes can never be converted into algorithms” [4] (p. 109).

Duval’s [4,7] distinctions are usually illustrated in a two by two diagram, of which
Figure 2 is a somewhat reduced version. For the remainder of the text we will refer to each
register by its main characteristic type of representation. We do this so the reader can easily
recall the registers, however bearing in mind that a register is defined by the two distinc-
tions as described above. From here on, the multifunctional discursive register is referred to
as the linguistic, the multifunctional non-discursive register as the figurative, the monofunc-
tional discursive register as the symbolic, and the monofunctional non-discursive register as
the graphic. These have been added to the diagram in parentheses for clarity. So-called tran-
sitional auxiliary representations may serve the purpose of easing the transition between
multifunctional and monofunctional discursive registers. As we shall see later, DT may
also play the role of such “auxiliaries” between semiotic registers.

Discursive registers Non-discursive registers

gorithms)

Multifunctional registers | Natural language, spoken | Iconic imaging such as
(do not take the form of al- | or written that creates | drawings, sketches and

meaning units (linguistic) non-iconic geometric fig-
ures (figurative)

Transitional auxiliary
representations

rithms)

Monofunctional registers | Symbols, including num- | Cartesian diagrams and
(take the form of algo- | ber systems and formal | graphs, including strokes

writing (symbolic) and arrow joining marks or
nodes (graphic)

Figure 2. Duval’s four registers of semiotic representations.

It is, for Duval [4,7], a main point that mathematical activity can take place within one
of these four registers or between them (vertically or horizontally). Mathematical work
within one register is referred to as a treatment, while work between registers—that requires
a shift of register—is referred to as a conversion. An example of a conversion might
be the mathematization of the equation story, “Aya is 3 years older than her brother
Ali. Together they are 23 years old. How old are they?” into the algebraic equation
x 4+ (x +3) = 23, which takes place between a multifunctional (the linguistic) register
and a monofunctional (the symbolic) register. Solving the resulting equation step by step,
however, to reveal that x = 10, is a treatment, since this takes place within the same
register, namely the symbolic system [12]. Therefore, for conversions, source register
and target register are different, whereas for treatments they are the same. Duval [4]
has found that work within one register, i.e., treatments, typically gives rise to much
less (although in no way negligible) difficulty on students’ behalf than work requiring a
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shift of register, i.e., conversions. Duval also notes that there are two different types of
conversion. A congruent conversion is a straightforward translation—or coding— like the
mathematization of the equation story into a symbolic expression above. A non-congruent
conversion is, however, much more complicated. For example, the opposite translation in
our example, i.e., going from the symbolic expression, 2x + 3 = 23, to an equation story,
since there are infinitely many stories to be told based on this equation [12].

When it comes to use of DT in relation to mathematical activities involving represen-
tations and shifts between these, Duval [7] is somewhat skeptical:

[...] the use of a computer for everything that concerns mathematical visualization,
both in geometry and in analysis, and geometrical or graphical software opens
considerable possibilities of creation and visual exploration. But does software
suffice to develop in the students the ability to anticipate the different possible
transformations of a given figure into others completely different? Does it make
students aware of the one-to-one mapping between graphic visual values and
the terms of the equations they represent? [7] (p. xii)

Here, Duval points out that the technology takes over the actual transformation of
representation, and consequently takes the knowledge of doing translations away from the
students, both in the general overview of possibilities and in the specificities of how the
translation is actually obtained.

2.3. Task Design in Relation to Use of Digital Technologies

Nearly two decades ago, Sierpinska [13] called attention to the fact that research
reports in mathematics education research seldom include detailed descriptions concerning
the design of the tasks being used in the studies. Since then, however, there has been a
growing interest in task design as a research area [14], including interest in the specific
context of task design in relation to digital tools [15].

According to Leung [16], a generic mathematics task involves asking students to do
something of a mathematical nature, which will lead the students to experience math-
ematics. A tool-based task, then, comprises a design that aims to activate a tool-based
environment in which experiences can be produced that may be linked to mathemat-
ics [8,16].

Leung and Bolite-Frant [8] describe how a digital tool, such as a DGS or CAS, can be
viewed as a Mathematics Digital Boundary Object (MDBO) (The objects of MDBO are
not to be confused with usual mathematical objects as referred to by e.g., Duval [4].) that
can mediate experiences between mathematical worlds. In this context, mathematical
worlds can be viewed as a social community (e.g., a mathematics classroom) or a body of
institutionalized /experiential mathematical knowledge (e.g., a mathematics curriculum
or mathematical knowledge based on the use of a digital tool). The potentialities of the
MDBO can operate as a “bridge” by creating a discourse that allows for communication
between mathematical worlds. Considering task design in light of these notions, Leung [16]
proposes that

task design using digital tool to teach and learn mathematics can be thought
of as the designing of pedagogical paths (trajectories) to create MDBO-based
situated discourses that can reconcile meanings and maintain coherence between
mathematical worlds [16] (p. 8).

This understanding of discourse in relation to task design is different from the one rep-
resented by Duval [4,7]. With reference to Sfard [17], digital tools act as mediators of
discourse. When using discourse in relation to MDBO, two different orientations exist:
(1) regarding student’s discourse, educators “may find what is missing from the mathe-
matical discourse legitimated by the mathematics community”, and (2), “mathematics is
a discourse, so learning is participating in discourse” [8] (p. 192). Thus, the first focuses
on language and the use of it, while the second looks at participation and changes of
participation in relation to learning.
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The characteristics and pedagogical features of an MDBO are paramount to its useful-
ness in mediating and translating between mathematical worlds. Leung and Bolite-Frant [8]
suggest five design heuristics that are relevant aspects in tool-based mediation processes of
teaching and learning mathematics, which they argue that MDBO should support. One of
these heuristics is multiplicity, which can be related to mathematical representations,
and hence the representation competency:

As a boundary object that translates mathematical meaning, if a MDBO supports
multi-representations, then meaning can be deepened in a multi-facet way. In a
Dynamic and Interactive Mathematics Learning Environments like GeoGebra,
multi-windows (e.g., 2-D DGE, 3-D DGE, Spreadsheet) can be presented together
on the same screen. The same mathematical idea is represented in each window
and elements in these windows can be constructed to co-vary together while a
variable is taking different values in certain window. This kind of multiplicity of-
fers mathematical idea/concept diverse communicable expressions/translations
that are amiable to different mathematical worlds. [16] (p. 9).(Leung [16] refers
to Dynamic Geometry Environments (DGE), which in mathematics education lit-
erature is used synonymously with Dynamic Geometry Systems (DGS). Through-
out this paper, we use DGS to refer to such dynamic software.)

Integrating this heuristic of multiplicity of DGS and CAS in a task design gives students ac-
cess to different representations of the same mathematical entity and opens an opportunity
for them to deal with different representations and explore their strengths and weaknesses.
We will return to this in our discussion (see Section 6.2), with a further elaboration of
the idea of using DGS and CAS as MDBOs, specifically for supporting the representation
competency, based on the analyses of the literature review.

3. Review Method

We now describe our review strategy, including the criteria for including and exclud-
ing publications in our review. We searched for literature in databases. Results were all
collected in Covidence, a tool to handle literature reviews. The acquired literature was
assessed using inclusion and exclusion criteria based on the research questions. The criteria
are summarized and presented in Table 1 below.

First, we searched within MathEduc (https:/ /www.zentralblatt-math.org/matheduc/,
accessed on 29 January 2021). We developed two search strings: one on the use of DGS and
one on the use of CAS. The string on DGS resulted in 131 hits, whereas the string on CAS
resulted in 126 hits:

e any:represent® & cc:U7* & any:(“dynamic geometry system” | ICT | “digital technolog*”
I DGS | geogebra | dynamic*) & la:english.: la:en & ti:represent* (5 February 2019).

e (any:"CAS” | dynamic* | digital* | cc:U7*) (08 February 2019). The cc:U7* is MathE-
duc’s classification for Technological tool.

Both searches were compiled in Covidence, from which we removed 23 duplicates
(cf., stage 1, Figure 3). Two of the authors then independently screened publications
by abstract and title, clearing out cases on which they did not agree (stage 2, Figure 3).
Next, the included publications were analyzed using the following categories: findings;
type of article (empirical or theoretical); kind of tool, if the article addresses the interplay
between representation and technology; how it is related to the mathematical representation
competency; and finally, its relation to task design (stage 3, Figure 3).
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Table 1. Summary of inclusion and exclusion criteria for our review.

Representation competency (1)

Inclusion Criteria Exclusion Criteria
Studies focusing on representations and students’ Studies either not focusing on
work with representations and students’ representations; students” ability to
representation competency as described in KOM: interpret/understand and
interpreting and understanding reciprocal relations translate/move between/choose

between representations; knowing the strengths and ~ representations; or connecting the
weaknesses of representations; translating and moving  focus on representing/representation

between representations; and reflectively choosing competency to the use of digital tools
representations when dealing with tasks [5,6]. (DGS or CAS).
Use of DT (2) CAS and DGS. Anything that is not CAS or DGS.

Age group of participants (3)

Kindergarten, adult students,
preschool teachers, teachers,
university students, college students,
engineering students.

Primary and secondary (lower + upper secondary).

Types of students (4)

Students with dyscalculia,
deaf students, students with special
needs, and talented students.

Types of studies (5) Empirical or theoretical. Studies without any documentation.
Geometry, algebra (including functions), Programming, physics, chemistry,
Content (6) s .. . . .
and probability and statistics. biology, engineering.
Stage 1: 257 references imported for screening as 257 studies

23 duplicates removed

Stage 2: 234 studies screened by title and abstract

112 studies excluded

Stage 3: 122 studies assessed for full-text eligibility

92 studies excluded
46 excluded studies related to criterion 1
15 excluded studies related to criterion 2
19 excluded studies related to criterion 3
3 excluded studies related to criterion 6
9 Not found

Stage 4: 30 studies included

Figure 3. Overview of the identified literature, using Covidence. We also excluded studies by criteria
4 and 5, but we did that in stage 2.

As part of the final stage, we conducted a coding of the remaining 30 studies (stage 4,
Figure 3). The first coding consisted of categories concerning type of study (theoretical or
empirical); type of tool (DGS or CAS and name); age of students involved; mathematical
content in play; and theoretical contributions of the study. Then followed two codings
of the literature in relation to the first research question. First, a coding was made based
on Duval’s [4] description of representational transformations (cf., Figure 2) in relation to
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the use of representations in the literature. This is presented in the following Section 4.
Then a final coding was made with more specific categories related to the representation
competency. This included considerations about the relationship between mathematical
representations in play and the use of DT, explicitly stating how the tool use contributed
to or acted together with the students’ representation competency. Based on this, four as-
pects defining representation competency were formulated, drawing closely on Niss and
Hojgaard’s [5,6] description of the competency. These four aspects served as means of
structuring the presentation of our review results in Section 5. Any relation to task design
was noted along the way. Together with the coding and analyses, these serve as a means of
answering our second research question, which is done in Section 6.

4. Results and Analyses Regarding Representational Transformations

To identify patterns in relation to the type of representations addressed in the included
studies, we examined the acquired literature from the perspective of Duval’s [4] registers of
semiotic representations. More specifically, we classified the literature according to which
type of register the representations in the studies belong to (see Table 2). Some studies deal
with different types of representations and were therefore classified in several registers.
For example, three studies [18-20] involve representations that belong to all four semiotic
registers. Ofri and Tabach [20] is the only study that includes not only all four semiotic
registers, but also transitional auxiliary representations in the form of tables. On the
other hand, three other studies [21-23] appertain to one semiotic register only: Ozgiin-
Koca and Edwards [23], whose study revolves around the topic of statistics, includes
representations only related to the graphic register, while Laborde and Laborde [22] and
Laborde [21], whose topic of focus is geometry, only concern representations related to
the figurative register. Yet, both papers (i.e., [21,22]) focus on treatments of iconic and
non-iconic visualizations within the figurative register.

Table 2. Overview of the relations between topics and registers in play for the included studies.

. Register . . . . . . Transitional

Topic N Linguistic Figurative Symbolic Graphic Auxiliary

Functions 1 4 1 1 1 6
(only)

Functions on

geometric 9 4 9 8 9 2

properties

Geometry 6 1 6 3 0 ’
(only)

Statistics 1 0 0 0 1 0

Other 3 2 1 3 2 1
Total 30 10 17 24 23 11

Activating only one register might come across as a missed opportunity to draw on
the multiplicity of representations in the tools. However, Laborde [21] argues that 3D DGS
has potential to assist students in constructing non-iconic visualizations of a 3D object by
deconstructing it into units of the same or lower dimension. This idea of deconstructing is
in line with Duval [7], who states that

the first main activity for learning geometry is not to construct figures instru-
mentally or with a software, but to deconstruct dimensionally all the recognized
shapes 2D. This requires a specific operation, which has become reflex for mathe-
maticians and teachers, but it is not all for students at all [7] (p. 61).

The affordance of digital tools is not only to construct a set of examples of geometric figures
but, also, and especially, that they can be used to deconstruct and explore the figurative
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representations as if they were real objects. In this way, DT facilitate a new epistemological
function: exploration by simulation [7]. This discussion mainly concerns the figurative
representations used in the topic of geometry.

From the analyses of the literature, emerging relationships become evident between
the type of representations that are in focus in the studies and the researched topic. To in-
vestigate this pattern further, we decided to place the studies in categories that were
developed ad hoc. Five categories were established: functions (only); functions on geomet-
ric properties; geometry (only); statistics; and a final category named “other”. The category
“functions (only)” covers algebraic concepts, which relate to different constituent parts
of functions such as dependent and independent variables; equations of different order;
different kinds of functions; and different elements of differential and integral calculus.
The “(only)” refers to the fact that these studies concern functions only in the algebraic
setting. Lagrange [24] argues that not only a change of representation forms, but also
a change of “setting”, is an important aspect when considering the use of representa-
tions. “A setting is constituted of objects from a branch of mathematics, of relationship
between these objects, their various expressions and the mental images associated with
these objects” [24] (p. 246). With reference to Duval, Lagrange notes, “in a change of
setting, the whole problem is transferred to other objects, while in conversions of the
representations the objects do not change” [24] (p. 248). Such change of setting is present
for the second category, “functions on geometric properties”, where usually a geometric
problem is given in a geometric setting but then solved in an algebraic setting (e.g., [24,25].
Despite the geometric problem, the concept in focus is still mainly functions, and geometry
is used as a well-known setting to explore the concepts of variables, functions, and calculus.
In the category “geometry (only)”, the studies concern 2D and 3D geometry (e.g., [22])
and hyperbolic geometry (e.g., [26]). The “statistics” category focuses on data, statistical
concepts and diagrams [23]. Lastly, the category “other” contains studies that did not fit
into the previous four, such as one concerning convergence and iterations [27] and another
concerning complex numbers [28].

The 30 included studies were assigned to only one of the topic categories to distinguish
which semiotic registers were in play for which topics as illustrated in Table 2.

If we apply a broader view and look at patterns across the papers, we can see that
the type of representations most commonly used are representations from the symbolic
register (24 papers) and the graphic register (23 papers). The digital tools, in particular
DGS, create an environment that can combine all registers and thereby both geometric and
algebraic situations for the students [29]. Many of the studies exploit this potential when
focusing on the use of a digital tool. Particularly, studies assigned to “functions (only)”,
N =11, deal mainly with the symbolic and the graphic registers; only one study (i.e., [30])
also involves representations of the figurative register, although it does not use geometry.
The picture is almost the same for the category labeled “functions on geometric properties”,
which also deals with the symbolic and the graphic registers. Moreover, within this cate-
gory, all N = 9 studies also involve the figurative register, due to the inclusion of geometric
figures and concepts. Of the identified studies, Falcade and colleagues’ study [31] is the
only one that does not include symbolic representations. Instead, this study focuses on how
the students formulate their actions regarding figurative and graphic representations of
dependent and independent variables and functions as geometric transformations, such as
reflection, as well as how this can lead to definitions that are more formal. Hence, the lin-
guistic representations are better presented in this study than in many of the other studies.

In the category “geometry (only)”, N = 6 studies are included. Half of them,
N =3121,22,32], mainly involve figurative representations, whereas the other half,
N =31[26,33,34], connect the figurative register with the symbolic register in forms of
algebraic representations.

Considering the use of transitional auxiliary representations, the connections to the
given topics are not as evident. The most used type of transitional auxiliary representations
is overview tables to look for and translate patterns of geometric relations between length
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and area, for instance, as a step towards a formal proof [34]. In the studies of Ofri and
Tabach [20] and DePeau and Kalder [35], the tables work as a bridge between the geometric
problem given in the figurative register and the graphic illustrations of the geometric
correlation given in the graphic register. Gray and Thomas [36] discovered that the students
in their observations used tables in a similar way to bridge between the graphic and
symbolic registers. Whereas most of these studies illustrate how transitional auxiliary
representations in the form of tables is used to help conversions, Sack [32] illustrates how
students can use tables for a better understanding of 3D DGS representations within the
figurative register.

In summary, in Table 2 we see that papers focusing on functions use representations
from the symbolic and graphic registers. The same applies to the studies of algebraic
concepts in the category “other” whereas, in the studies involving geometry, the represen-
tations are primarily in the figurative register. Given that the included literature considers
the use of digital tools, this illustrates that representations play a significant role when
using DGS and CAS in learning situations. In particular, for functions and similar algebraic
concepts, shifts between the two mono-functional registers (symbolic and graphic) are
dominant, whereas, for geometry, the multifunctional register (the figurative) plays a bigger
role. Among the four registers, the linguistic register receives the least attention. Accord-
ing to Duval [7], interacting with a computer eliminates the use of language, which is
also the implication from the overview of relations between topic and registers in play.
The linguistic register is the only register being neglected in the included studies. We shall
return to this in our discussion in Section 6.

5. Results and Analyses Regarding Representation Competency

The four aspects defining representation competency are listed below. Aspects A and
B concern the investigative part of the competency, whereas aspects C and D concern the
productive part of the competency.

A.  Interpreting and being able to understand the reciprocal relations between different
representational forms of the same entity.

B.  Knowing about the strengths and weaknesses of representations, including the loss
or increase in information.

C.  Translating and moving between a wide range of representations.

D.  Reflectively choosing representations in dealing with mathematical situations
and tasks.

The 30 included studies were divided into four groups in accordance with these four
aspects; of course, some studies address more than just one of the aspects. Again, Table 1
served as a way of providing an overview of the involved studies. Findings for each
of the 30 studies were scrutinized, potentially to identify tendencies across the studies
according to the respective aspects of the representation competency. In the following four
subsections, we present the results and analyses.

5.1. Interpreting and Being Able to Understand Reciprocal Relations

In the first aspect, A, interpreting and being able to understand reciprocal relations
between different representational forms, N = 20 studies are included. N = 14 concern
functions, where six of these combine functions and geometry. Across all 20 studies
included in aspect A, DGS, CAS and a Graphical Calculator (GC) are applied, and some of
the studies use more than one type of tool (DGS, N = 14; CAS: N =7, GC, N = 2). Between all
20 studies, Duval’s four [4] registers as well as transitional auxiliary representations are
present. Using Duval’s terminology, this aspect of the representation competency is about
being able to understand and follow treatments and conversions, but not necessarily being
able to carry them out oneself.

It is well known that dynamic tools such as sliders, dragging and tracing can help
students understand and interpret treatments and conversions. With reference to Duval’s
semiotic registers and transformations, Heid, Thomas and Zbiek [37] argue that “CAS envi-
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ronments are capable assistants in both treatments and conversions. Important conceptual
aspects arise from relating, through conversions, corresponding elements of conceptual
representations” [37] (p. 606). Thus, studying and understanding connections between
different representations is a key element of conceptualization. Many of the included
studies stress this point, in particular for the concept of function [20,30,38-41]. Steketee and
Scher [30] describe and illustrate activities on functions in five different representations.
Composing and manipulating the same function in many different representations em-
phasizes the connections between the representations and refines the students’ concept
of function. Davis [38] gives an example of using a dynamic slider for the parameter a
in the quadratic function, while keeping the other parameters—b and c—invariant. This
makes the exploration of the parameter, 2, more comprehensive. Similar set-ups for study-
ing parameter effects on quadratic equations are described by Lin and Hsieh [40] using
Geometer’s Sketchpad and by Ozgun-Koca and Edwards [41] using the CAS TI-nspire.
The dynamic features can also be used to investigate invariant properties under variable
circumstances (e.g., [22,42]). For instance, investigating “the dynamic parallelogram ABCD,
constructed on variable points A, B, and C represents two relationships of parallelism be-
tween two opposite sides [...] the relationships of parallelism are invariant in the dragging,
while points and sides vary.” [22] (p. 188)

The above examples illustrate how different representation forms are useful for con-
ceptualization of a mathematical concept. In addition, change of setting is important for
students’ progress and conceptualization [24]. An example of this could be considering
the area of a rectangle as a function of the length of one of the sides. The mathemati-
cal object of a rectangle in the geometric setting changes to the mathematical object of a
quadratic function in the algebraic setting with help from DGS (e.g., [18,20,24,25,39,43]).
Modeling geometric dependencies algebraically, using the reciprocal relations between
the representations, helps students foster functional thinking [43] and explore and better
understand both concepts represented, i.e., the geometric concept being modeled and the
algebraic concept being the modeling tool [25]. The idea of linking geometric and alge-
braic representations also applies to other mathematical concepts than functions [28,42,44].
For instance, exploring the arithmetic of complex numbers by dragging geometric repre-
sentations combines the representations of complex numbers as ordered pairs, as points
in the complex plane, and as the algebraic form ai 4 b [28]. If students are only presented
with the symbolic representation of algebraic phenomena and objects, they do not learn
much about the nature of the object that the symbols represent [44]. Here, a given digital
tool with its inter-representational potentials, can act as an “epistemic mediator in order to
help students to abstract properties of objects” [44] (pp. 197-198).

Most of the studies included under this aspect point to the multi-representational
contribution of the digital tools as a aid in understanding conversions between figurative,
symbolic, and graphic registers. However, the studies addressing 3D geometry mainly
focus on treatments within the figurative register. Here, the reciprocal relations are between
geometric representations of 2D and 3D (e.g., [21,22,32]). For example, going from a
representation of two non-intersecting lines in 2D to 3D allows the students to obtain
immediate visual evidence that the two lines do not intersect, despite appearing to do so in
the 2D diagram [21]. Sack [32] introduces concrete models of 3D figures, which implies that
the students need to interpret and understand the relations between the representations
within the 2D and 3D environment and concrete representations outside the environment.
This is in contrast to the many other examples where the computer helps the students do
these interpretations, as the digital environment represents different forms of representation
at the same time.

One of the potentials of DT is their ability to show different representational windows
at the same time [23,24,39]. Furthermore, DT can provide fully linked representations.
Hence, they can carry out the heavy translations between the representations so that the
students can focus on how changes of one representation affects other representations [41].
With the cognitive load removed, the students can concentrate on the purpose of the task
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and the relevant concepts. However, it is important to be aware of the syntax level of CAS,
as the students do not always know the demands of the tool, nor how to decode the outcome.
In addition, the tool’s representations might not always be consistent with the conventional
mathematical representations, which is an important aspect to be aware of when including
digital tools in the classroom [45]. If the students do not know how to interpret the feedback
from the digital tool, the interaction with the representations does not necessarily develop
their representational fluency (Representational fluency “includes the ability to interact with
these representations, using them as conceptual tools and to demonstrate the flexibility of
being able to move from one representation to another, recognizing invariant properties,
etc.” [35] (p. 7)). In a study with grade 10 students, Gray and Thomas [36] found that the
use of GC did not support the students in connecting graphic and algebraic representations
of the quadratic function. In their conclusion, they stress the need for finding suitable
pedagogical formats that use GC to support representational fluency and conception.
Lagrange and Psycharis [43] also emphasize the central role of tool design for successful
work with graphic and algebraic representations.

For this aspect of the representation competency, the results indicate that DT have
the potential to play a central role. Mathematics educators and task designers can draw
on the multiplicity of the tools for concept formation and development, as the tools can
help carry out the actual representational transformations. In this way, the students
can focus on the interpretation and understanding of the inter-relational connections in
the transformations. With dynamic features such as sliders and dragging, the students
interact with the representations of the concept. With the possibility of accessing multiple
representational windows at the same time, students can interpret the direct changes
of one representation compared to the other and using the reciprocal relations between
the representations can support students’ functional thinking. Furthermore, the results
illustrate how this aspect of the competency is a key element for conception, in particular
of functions and algebraic structures and phenomena. To profit from these potentials of
using DT, well-produced task designs are needed, and mathematics educators should be
aware of supporting students’ interpretations of feedback from the tool. The interpretations
should be coherent with the mathematical concepts, and the students should learn to relate
the use of symbols within the tool to the use of symbols in conventional mathematics.

5.2. Knowing about the Strengths and Weaknesses of Representations

The second aspect, B, concerning knowing about the strengths and weaknesses of
different representations, including loss or increase in information, includes N = 4 studies.
N =2 concern geometry, N = 1 focuses on a combination of algebra and geometry,and N =1
on statistics. Both CAS and DGS are present (CAS, N = 1; DGS, N = 2; both CAS and DGS,
N =1). N = 2 studies do not present any empirical data. N = 2 present empirical data from
students in grade 6 and 10, respectively.

In relation to the strengths and weaknesses of different representations, being critical
is important. The four studies emphasize how DT can work as a tool to compare and search
for discrepancies between representations [19,21,23,34]. Hershkowitz and Kieran [19]
identify two methods in which students join tool-based representations: “the mechanistic-
algorithmic” and “the meaningful”. The former does not include a critical aspect, where-
as the latter includes consideration of which crucial properties of the functions are relevant.
Laborde [21] states that it is important to be aware of the differences from 2D to 3D
representations in geometry. For instance, as also mentioned in the above section, two non-
intersecting lines in 3D may appear to intersect in 2D. The differences between these
two types of representation can be accessed by breaking down the 3D constructions into
non-iconic figures, if a DGS provides 2D and 3D representations. As for representations
of geometric and algebraic entities, representations of statistical data sets also highlight
different characteristics while hiding others. With the potential to split screens in CAS,
different representations of the data set can be shown simultaneously. “Studying multiple
representations will help students not only see connections among representations but
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also understand why one representation might be more appropriate than another” [23]
(p. 511). This aspect seems so have received less attention in the literature; however, it is
crucial for students to develop this. The few studies indicate that it is possible to draw
attentions to information and information loss between and within registers by the use of
DT. However, both task designers and mathematics educators must be aware of the need
to include this aspect.

5.3. Translating and Moving between a Wide Range of Representations

For aspect C, i.e., translating and moving between representations, N = 12 studies are
included. Most of these studies concern mathematical functions (N = 7), and both DGS
and CAS are applied (CAS, N = 6; DGS, N =7). Across all studies included in aspect C,
all four of Duval’s [4] registers are present: using a digital tool, e.g., Casyopee, students are
to translate within and across all semiotic registers—both when solving tasks in algebra
and geometry [29].

Translations between symbolic and figurative should preferably take place in both
directions in order to obtain the best conditions for visualization. In particular, DGS sup-
ports visualization of iconic drawing, since algorithms control DGS and therefore students’
manipulations become rule-governed [33]. The use of DT makes it possible to move be-
tween different representations, thus supporting students’ linking and understanding of
the relations between representations (e.g., [27,29,35]).

Still, when students translate and move between representations using DT, they sys-
tematically outsource the transformations of different representations—both treatments of,
e.g., numbers and conversions between registers—to the tool [19,29,34,37,40,46]. This opens
a possibility to make connections between different representations of an object [46]. As an
example, when students work with vectors, their treatments cause direct changes of as-
sociated graphs and equations [40]. The use of DT is expected to provide security for
the students when calculating and moving between representations [29]. Some stud-
ies illustrate that students can easily create and represent graphs using DT, but it is the
interpretation of these that is difficult [27]. Hershkowitz and Kieran [19] describe two
different ways of using a given tool: a mechanical-algorithmic way and a more meaning-
oriented way. With a mechanical-algorithmic use of DT, students rely on the calculations
and transformations of representation done by the tool. According to the researchers,
with such outsourcing follows no critical thinking, and in some cases, students end up with
“false representations” of the mathematical objects at play.

Similar to aspect A, several studies focus on students’ use of dragging, tracing and
using sliders, and illustrate how these actions transform the meaning of the involved
mathematical objects. When dragging, the relationship between spatio—graphical and
theoretical aspects of a figure change, since DGS mediates the theoretical aspects of the
figure during dragging in the form of invariants—which is not relevant in a static figure [22].
Furthermore, dragging within the coordinate system makes it possible for the students to
translate between mathematical representations [40]. Students can use the trace function
to find a trajectory for a point. This is useful for identifying dependent and independent
variables in a function and for inventing and constructing a function for the trajectory [31].

The use of DT results in outsourcing/assistance of systematic translations of mathe-
matical representations, thus making it possible for students to easily move and translate
between representations (although in an assisted manner). When dragging points, using a
slider or tracing tool, students have the opportunity to realize and move between represen-
tations, which may result in better connecting and understanding different representations
of objects. Despite the potentials of the systematic translations that ease the students’ use
and give them access to a wide range of representations, mathematics educators should be
aware of the extent of outsourcing that takes place and orchestrate students’ use of the tool
to be meaning-oriented.
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5.4. Reflectively Choosing Representations

For aspect D, reflectively choosing representations in dealing with mathematical
situations and tasks, N = 4 studies are included. N = 2 of these utilize CAS, N = 1 utilizes
DGS, and N = 1 includes both CAS and DGS. The use of different tools is also evident from
the mathematical content in play. One focuses on functions, one on geometry, and two
studies are a combination of geometry and algebra/calculus/functions. All four studies
include the symbolic register, and one study (i.e., [19]) includes all four registers.

Hershkowitz and Kieran [19] point out that even though students are aware of the
algebraic expression being key to solving growth problems, the shape of the algebraic
model of functional growth might fall in the background when they apply strong graphic
tools. This is because graphic tools allow the students to produce a graph and its algebraic
expression by applying regression analysis rather than modeling the algebraic expression
based on the problem situation. Hence, students’ choice of representation is influenced by
the potential solution strategies available in the tool as well as the strategies accessible to
the students.

Despite visual representations being the main form of representation to access geo-
metric problems, Kadunz and Strédfier [33] argue that geometric problem solving cannot
only be done through the visual representations of the figurative in a DGS. In order to
link conceptual knowledge of geometry to visual iconic representations, continual shifts
between the figurative and symbolic registers have to go both ways. Based on similar ideas,
drawing on both algebraic and geometric argumentation, Santos-Trigo and colleagues [26]
provide an example of how the figurative geometric representations in a DGS can lead to
conjectures and discoveries of relationships, which in turn must be argued clearly. They ob-
tain this argumentation by choosing CAS to support the algebraic proof of the conjectures
and discoveries.

Weigand [47] concentrates on students’ difficulties with using DT in terms of choosing
adequate representations by considering the relation between students” written solutions
and their solutions obtained in a CAS environment in test situations. This relation demands
that students are able to detect how to translate the use of digital representations to well-
documented solutions, which points out that, in general, the work with digital tools poses
a new aspect of the representation competency. This aspect entails the documentation of
solutions obtained by digital tools, as the students have to consider which representations
and processes should be documented, and which (traditional) representations should be
added to present a coherent solution.

It is noteworthy that the studies included under this aspect do not directly address
students’ ability to choose representations reflectively, but rather emphasize the importance
of this ability for solving mathematical problems. The studies mostly point to the fact that
DT can be useful for aspect B, knowing the strengths and weaknesses of representations,
which is a key element to this aspect of the representation competency. As for aspect
B, aspect D is less investigated in the literature. Both task designers and mathematics
educators can however be conscious of the implications of the strong graphic tools on
students’ problem-solving solutions.

6. Discussion

With our two analyses using Duval’s [4] registers of semiotic representations and
the representation competency of the KOM framework [5,6], we illustrate the role of
representations in relation to the use of DGS and CAS. In the first analysis, looking at
representational transformations, we found that the registers in use are strongly connected
to the mathematical topic in focus, and that representations within the linguistic register
are underrepresented in all topics. In the second analysis, regarding the representation
competency, we found that the multi-representational possibilities and dynamic features of
DGS and CAS hold potentials and pitfalls depending on the four different aspects of the rep-
resentation competency. Notably, only a few included studies directly investigate aspects
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of the representation competency: Weigand [47] studies aspect D (i.e., choosing appropriate
representations), and Gray and Thomas [36] examine representational fluency.

Looking deeper into the potentials and pitfalls for the use of DT, Niss [11] distin-
guishes between how DT can enhance students’ mathematical capacities or replace them.
Applying this point of view to our study, we can consider whether the potentialities offered
by DT replace or enhance students’ capacities in relation to the representation competency.
A potential of DT is to produce static and dynamic images of objects and create connections
between different representations of a mathematical entity. Many included studies take
advantage of these potentials, for instance using split screen (e.g., [24]) or exploiting the po-
tential that representations are interconnected in the software and, therefore, manipulating
one representation leads to an instantaneous and continuous change of any linked represen-
tation (e.g., [41]). The potentialities of DT to produce static and dynamic images and create
connections between different representations may therefore provide students with tools
to interpret and understand how the different representations of the same mathematical
entity are connected, which is closely related to aspect A, interpreting and understanding
reciprocal relations between representations (N = 20). If these potentialities of DT are
exploited in a designed teaching/learning sequence, it is possible that DT can contribute
to enhancing students’ capacities in relation to representation competency. The aforemen-
tioned potentialities are also utilized in the studies included in aspect C—translating and
moving between a wide range of representations (N = 12). However, using DGS and
CAS without designing appropriate tasks and teaching sequences may have the effect of
replacing students’ capacities in relation to aspect C rather than enhancing them, since the
use of DT often results in outsourcing the transformations between representations (cf.,
Section 5.3). Despite the intention of using DT to support translations, DT rather support
interpreting and understanding the connections (aspect A). Furthermore, the outsourcing
of transformations does not automatically support critical thinking regarding the different
representations, which relates to aspect B, knowing about the strengths and weaknesses of
representations (N = 4), and aspect D, reflectively choosing representations in dealing with
mathematical situations and tasks (N = 4) (cf., Sections 5.2 and 5.4). However, this does not
imply that DT cannot be used to activate these aspects of the representation competency,
but the outcome of using DT depends on the properties of the DT at issue, the teacher’s
orchestration—which is a discussion we will not go further into here—and the task de-
signs involving DT [11,24]. The first subsection of the discussion addresses task design
involving use of DT, including five suggestions/considerations when implementing DT.
The second subsection concerns whether or not new registers or representations arise due
to the implementation of DT.

6.1. Task Design including Representation Competency and Use of Digital Tools

The use of DT influences students’ development differently with respect to the four
aspects of representation competency (cf., Section 5). In this section, we discuss how
DT, such as CAS or DGS, may be used in mathematical task designs in order to activate
the students’ representation competency. We rely on the literature included for research
question 1, analyses and results from Section 4 and 5, and the theoretical perspectives
defined in Section 2.

As described earlier, mathematical tasks involving DT serve the purpose of creat-
ing experiences for the students in which the use of DT makes it possible to experience
mathematics [8,16]. Duval [4,7] points out that the most essential part of mathematical
activity is the ability to conduct treatments and conversions within and between different
representations. However, as mentioned in the introduction of the discussion, aspects of
the representation competency are often outsourced to DT (i.e., aspect C, translating and
moving between representations). This is because the multiplicity of an MDBO (Math-
ematical Digital Boundary Object) readily produces transformations of representation
done by DT, which is noted by several authors (e.g., [19,29,46]). As transformations are
fundamental parts of mathematical activity, the implementation of DT changes the math-
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ematical activities at play. As presented in Section 5, some included studies consider
the multi-representational opportunities of DGS and CAS as a gateway to conceptual-
ization [20,30,37-39,41]. With regard to task design and conceiving of DGS and CAS as
MDBOs, dragging, sliders, and tracing are features within DGS and CAS, and thus can
be part of the MDBOs. An essential part of MDBOs is multiplicity, meaning that tools
offer different representations simultaneously [8,16]. Yet, multiplicity does not necessarily
lead to learning, nor to students automatically interpreting and connecting representations,
even though it is a common idea in educational research and teaching practice. Multiplicity
may lead to confusion if the user is not already familiar with the ways of thinking and
working in mathematics. Multiplicity allows for the design of mathematical tasks involv-
ing DT, which may lead the students to connect and relate the multiple representations
embedded in the MDBOs. According to Duval [7], the primary key to any mathematical
activity is, however, conversion between any two registers; hence, essential aspects of
mathematical activities change with the implementation of DT.

Another important perspective on using MDBOs is that one register is often being
neglected, i.e., the linguistic, which is stressed by Duval [7] and shown in the results
presented in Section 4. DT do not represent the linguistic register, but this register is still an
essential part of mathematical nature (e.g., reasoning and communicating) and semiotic
representations. Hence, task designs involving DT must also include the linguistic register
if the aim is to construct a bridge between mathematical representations and activating the
mathematical representation competency.

In the following, we discuss the activation of the representation competency while
using DGS and CAS in relation to task design. We group its forms using the four aspects of
the competency.

For aspect A, interpreting and being able to understand reciprocal relations, multi-
plicity being part of MDBOs is presented as highly important for this aspect. Particularly,
manipulation of different representations holds great potential in understanding math-
ematical objects and the reciprocal relations of representations (e.g., [18,20,23,30,34,39]).
For aspect A, sliders, dragging, and tracing are marked as fundamental parts of the MDBOs
helping the students to relate and understand the reciprocal relations between the differ-
ent representations. The multiplicity, however, does not necessarily imply that students
interact with and relate the representations involved [7]. Therefore, it is an important part
of task design involving tracing, dragging and sliders to request the students to reflect
upon their actions with these features and to investigate and relate the reciprocal rela-
tionships of the representations. In addition, Lagrange [24] suggests that new windows
and tools in DT should be introduced gradually to avoid confusion among students when
studying functions on geometric relationships. In relation to geometry, Laborde [21] states
that, when using DT, students should break down a representation of a given object into
different units in order to identify the nature of the different units leading to the recon-
struction of the object. The notions of pragmatic and epistemic value of instrumented
techniques [48] are relevant to consider when discussing the use of tools for concept devel-
opment. Epistemic use mediates insight about a given problem, whereas pragmatic use
solely mediates a solution to a given problem. Artigue (2002) argues that for education
use, epistemic techniques should precede pragmatic techniques. In a recent study, Iversen,
Misfeldt and Jankvist [49] argues for the need to also take into account students” identity as
a third component, next to epistemic and pragmatic mediations, in relation to CAS-related
work and being mathematically proficient.

A feature of MDBOs presented in the literature with positive results is the possibility
of exploiting feedback. When using DT, students are provided with constant feedback,
for instance, when calculating, solving or drawing graphs that introduce them to a mathe-
matical world. This leads to students being able to explore failures and mistakes, test their
conjectures and so forth (e.g., [18,34,43]).

For aspect B, knowing about the strengths and weaknesses of representations, be-
ing critical is important, e.g., by comparing representations and investigating their strengths
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and weaknesses [19,21,23,26]. Multiplicity can again be used as a part of MDBO for
this aspect. Yet, compared to aspect A, aspect B focuses more on the differences and
strengths /weaknesses of each representation [5,6]. An example that offers different per-
spectives is splitting 3D representations into 2D representations using a tool such as Ge-
oGebra. In this case, the tool opens a mathematical world building on Euclidean geometry,
which the students can explore.

If we aim to avoid that multiplicity is meaningless, as often indicated by students
using DT in a mechanical-algorithmic way [19], the mathematical tasks must contain a
critical dimension. Thus, it is important to encourage students to use DT in a meaningful
way by comparing representations and possibly having multiple representations presented
simultaneously within a given tool.

Related to aspect B, Santos-Trigo and colleges [26] do not only focus on the repre-
sentations themselves, but also on the strengths and weaknesses of different digital tools.
Different tools make use of different representations and mediate different perspectives of
the conventional mathematical world to the students. Thus, for students to know about
the strengths and weaknesses of different representations, the ability to understand the
different tools and the strengths and weaknesses of these is important as well. Such an
argument is in line with the aids and tool competency of the KOM [5,6], and the statement
indicates a strong relationship between the representation and the aids and tool compe-
tencies, which are constantly engaged in task designs involving DT and activating the
representation competency. Using different types of DT as MDBOs in mathematical tasks
can evoke the previously mentioned critical aspect, because technological environments
may bring students to use non-appropriate representations if they do not know the crucial
properties of the tools in play [19]. New strides in mathematical digital tools expand
the possibilities of students’ access to feedback, as automated feedback, and additionally
assessment tools are developed to support students” work with DT. This opens up possibil-
ities for students to receive feedback on their appropriation of representations in solutions
(e.g., [50,51]).

For aspect C, translating and moving between a range of representations, parts of
the representation competency are outsourced to the tools doing constant treatments and
conversions [19,29,34,37,40,46]. Due to the outsourcing of treatments and conversions,
which are easily accessed due to the multiplicity offered by MDBOs, it is easy to move
between different representations. A feature, previously mentioned, in the MDBOs is
feedback, which provides security for the students concerning their transformations of
representations used in a given task [22,34]. A way of exploiting feedback, when focusing
on aspect C, is to make the students write down their expectations and predictions of
changes in representations and thereby keep the students active [41].

Again, dragging, tracing and using sliders are mentioned as ways of manipulating
mathematical objects (e.g., [22,31,37,40]). In this way, the MDBO introduces new mathemat-
ical activities [16] in which students can manipulate mathematical objects as if they were
real [7] by using DGS and/or CAS to translate and move between representations [22].
When using DT, the ability to translate representations becomes a manner of learning to
use the tool, for example, by pressing a button, opening a window, drawing a line, and so
forth. However, an exception occurs with regard to the linguistic register, which is not
usually part of MDBO [7]. If the linguistic register should be embedded into the task de-
sign, students would still activate aspect C of the representation competency. For instance,
by having a description of a function in natural language (i.e., a linguistic representation),
students would have to transform it into an equation (i.e., a symbolic representation).
Alternatively, at the end of a task, students could be asked to give a description of a graph
(i.e., of the graphic register) in natural written language (i.e., in the linguistic register).

For aspect D, reflectively choosing representations, the included studies rather con-
cern the importance of such ability than directly answer how students reflectively choose
representation for a given task. In relation to MDBO, Hershkowitz and Kieran [19] state
that it is the possible solution strategies offered by a certain technology that influence which
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representations students choose to use in an answer. This is also in line with Santos-Trigo
and colleges [26], who identify that students must be aware of what different tools offer in
relation to representations. Therefore, educators and task designers also have to be aware
of the affordances of the specific digital tool, and of what to expect of students” solutions
and representations. This emphasizes the mediation of the MDBO regarding students’
mathematical experiences [16]. Another aspect of this is presented by Weigand [47], who ar-
gues that students must be able to translate and understand the representations provided
by DT, which may be influenced by the use of DT. For instance, bringing the answers of
mathematical problems to a form, where CAS’ solve command can take care of the rest and
presenting this as the solution to a task is not part of conventional mathematical discourse.
Novices of mathematical activities might not see this difference, since CAS has influenced
their view of how symbolic expressions and equations can be represented [52]. An MDBO
presents a new mathematical activity for the students that mediates the mathematical na-
ture. When looking at mathematical tasks, for instance, students are asked to do treatments
within the symbolic register, from CAS expressions of the DT to expressions accepted in the
mathematical discourse they participate in, such as written exams. Furthermore, they are
asked to discuss and critically relate to which representations are best suited to answer a
certain question. Related to aspect B, knowing strength and weaknesses, the students must
be aware of the differences between the representations of a formal mathematical nature
and representations generated by the use of DT.

Regarding the representation competency as a whole, we propose the following when
designing tasks aiming at activating the representation competency to ensure that all
aspects are covered. The suggestions take the mathematical worlds presented by the
MDBO into account.

1.  Include the discursive multifunctional register (linguistic), both at the beginning and
at the end of each task, to make sure that the register is not neglected. For instance,
by posing questions in natural language (i.e., in the linguistic register) to be converted
to another register, or asking for answers expressed using natural language (i.e., in the
linguistic register).

2. Exploit the feedback opportunities provided by the DT as a fundamental part of
the MDBO. As an example, ask the students to predict changes for representations
before using DT to ensure the ability to translate representations and understand their
reciprocal relationships.

3. Break objects/representations into smaller units or gradually introduce new windows
and features within a given MDBO.

4. Use sliders, dragging and tracing as they hold potentials for students” ability to
move and translate (using the tools) as well as interpreting and understanding the
representations and their reciprocal relations. To exploit the multiplicity of an MDBO,
ask students to relate and explore such relations, as they do not necessarily understand
the relationship just because many representations are presented simultaneously.

5. Focus on activating students’ critical thinking by encouraging them to investigate
strengths and weaknesses of representations, focusing on representations both inside
and outside an MDBO, but also between MDBOs. Furthermore, this emphasizes the
use of different tools in teaching mathematics, but it also includes discussions among
students concerning which representations are most appropriate in the given task.

The review results indicated that transformations within and between registers were
outsourced to DT, and that the linguistic register was often left out. Our task design
includes five suggestions for designing mathematical tasks using DT and aiming to activate
students’ representation competency. Educators must be aware of what specific DT offer
and exploit the affordances of using an MDBO. This means that the educator must know
features such as sliders, tracing, and dragging, as they may help students to interpret and
connect representation (i.e., aspects A and B), as well as moving between representations
(i.e., aspect C). Educators should also be aware that the multiplicity in itself does not
automatically bring students to understand and connect representations. Educators should
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be able to support students in making these connections, since the multiplicity in itself does
not support such abilities in a mathematical task design. The MDBO does not automatically
stimulate critical thinking, but tasks using MDBO, designed to activate the representation
competency, can encourage students to do so. The five suggestions for task design using
DT take into account the pitfalls and potentials of DT listed in the included literature,
when activating representation competency in primary and secondary school.

6.2. New Questions Emerging from the Literature Review and Analyses

In the two analyses and our above discussion on task design in relation to represen-
tation competency, we have found that dynamic representations play a crucial role when
involving DGS and CAS. Laborde and Laborde [22] consider the dynamic representations
of dragging as a new kind of representation in mathematics and mathematics education.
Duval [7] strongly disagrees, arguing that the computer displays the same representations
as produced with pen and paper. Duval considers the computer to have an

unlimited treatment power compared with the possibilities of the graphic-visual
mode. We obtain immediately, much more than anything we could get by writing
calculations or constructing geometrical figures and graphs, for several hours or
days. [7] (p. 100).

Thus, a consequence of the computer’s treatment power is the dynamic aspect. With this,
Duval [7] questions the degree of cognitive activity needed for a novice in mathematics to
process such a load of information. In their study, Gray and Thomas [36] found that using
a graphic calculator with multi-representations for the study of quadratic equations did not
support students in building representational fluency. To do so, it is important to be able to
interpret the feedback of the DT. In line with this, Weigand [47] argues that an important
aspect of using DT is the requirement of the user to know the relations between the digital
representations in the tool and the representations used for documentation, for example
in a written exam. This leaves us with the question of whether or not representations
of DT are a new kind of representation, a new semiotic register, or merely new types of
mathematical activities.

The dynamic feature of dragging figurative representations is, using Duval’s [7]
terminology, regarded as unlimited treatment within the figurative register. Similarly, a cal-
culation done by CAS, such as a “solve” command applied to various forms of equations,
can be viewed as a treatment within the symbolic register. These activities imply that
students need to be able to carry out new forms of treatment such as dragging or CAS
commands, but still within the figurative and symbolic registers. It is not as straightfor-
ward when we consider the multi-representational possibilities of dynamic environments.
For instance, using a digital tool to study the connection between the parabola and the
quadratic function with a slider for a coefficient of the function, see Figure 4, the computer
does conversions between the parabola in the graphic register and the algebraic expression
in the symbolic register. However, where does this leave the slider, which in this case
is a representation of a given parameter in the quadratic equation? An answer could be
that it is simply a transitional auxiliary representation, helping the user to navigate the
conversions between the representations of the two registers.

In this way, we can place the different elements of dynamic representations within
the four registers of semiotic representations and the category of transitional auxiliary
representations, just as Duval [7] argues. However, because of the importance of these
dynamic representations and activities, we suggest that they need their own name in order
to distinguish between how we work and deal with static and with dynamic represen-
tations. Such terminology should emphasize the action of the dynamic representation.
Considering the example of dragging in the figurative register, such dynamic representa-
tions could be termed “continuously interactive treatment”, since the digital tool performs
the treatment, and the treatments are shown continuously by the interaction of the user.
In contrast, having CAS doing symbol manipulation and carrying out calculations is not as
interactive. In this case, the user only types in a command once, executes the command,
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and obtains a single result. Moreover, solving geometric problems in DGS does not nec-
essarily require the continuous interaction of the user. For instance, using a measuring
tool or constructing a geometric figure also results in one output only—which then can
be controlled interactively afterwards depending on the task. These actions also require
some interaction from the user, but not in the same continuous way. Rather such actions
are solitary interactive treatments. These two suggestions address dynamic representations
within the same semiotic register, i.e., for treatments.

flz) = 0.7 2%

Figure 4. An example of a parabola and the quadratic function connected with a slider for parameter
a, represented in GeoGebra (our own construction).

Considering the example of the parabola and the quadratic equation connected with
the slider, the digital tool in use illustrates a conversion and, as with dragging, the student is
continuously interactive. Hence, this would be called a continuously interactive conversion.
This further indicates that the tool illustrates the conversion between representations of
different registers, and that the activities of the student are expected to be different from
static conversion activities. Additionally, this notion entails all elements of the conversion
and unites the slider of the parameter with the graphic representation of the parabola as
well as with the algebraic representation of the quadratic function. The change of the slider
instantaneously affects the parabola and the algebraic expression via the user’s activity.
Similar to the category of treatments, we also have solitary interactive conversions, such as
typing in an algebraic formula in the symbolic register, whereupon the given digital tool
converts it into a graph in the graphic register.

All the examples given above and the cases identified in the included studies are of
this interactive character. However, DT can also be used to illustrate different treatments
and conversions such as animations, where the user is passive rather than interacting with
the tool. Whether a representation is passive or interactive depends not only on the setup
of the MDBO, but also on how it is used. For instance, if the educator uses a continuously
interactive conversion to illustrate the conversion itself or the properties of the included
mathematical concepts, the representation will be passive for the students, whereas when
they work with it themselves it will be interactive.

7. Conclusions

The results of the included literature illustrate that the multi-representational affor-
dances of DGS and CAS have great potential in teaching and learning mathematics and
mathematical conceptualization. Only a few of the included studies address the potential of
DT in relation to dealing particularly with representations. With the use of Duval’s [4,7] semi-
otic registers and the representations competency of the KOM framework [5,6], the analyses
focus on the elements particularly relevant to dealing with representations.
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In relation to the four registers of semiotic representations [4,7], there is a clear connec-
tion between the topic at issue and which of the registers are involved. Studies of functions
mainly involve representations of the symbolic and graphic registers, whereas studies of
geometry make use of figurative representations. In contrast, the linguistic register does
not relate specifically to any topic, and in general does not receive much attention, which is
also one of Duval’s [7] points of critique on introducing DT.

The perspective of the representation competency is divided into four aspects (A,
B, C and D, cf., Section 5), as none of the included studies covers the whole competency.
From the analysis, we found that 20 out of the 30 studies have elements pointing toward
aspect A, interpreting and being able to understand the reciprocal relations between
different representational forms of the same entity. Using multi-representations with
DGS and CAS in particular support this aspect, since the multiplicity can constitute a
beneficial environment for investigating the connection between representations of the
same mathematical entity. Considering aspect C, translating and moving between a wide
range of representations, the analysis and the discussion hereof point to this aspect not
being as easy to promote with the use of DT, as the translations between representations are
often outsourced to the digital tool in use. Therefore, using DT often replaces this aspect
rather than enhancing it.

To ensure that all aspects of the representation competency are covered, we give five
suggestions for consideration when implementing DT in task design with the particular
purpose of activating the representation competency. For using DGS or CAS as an MDBO
to mediate between two mathematical worlds, such as a mathematics curricula and a
mathematics class of students, we suggest being aware of the following in task design:
(1) to include the D/Multi register; (2) to exploit the feedback opportunities provided by
the DT as a fundamental part of the MDBO; (3) to break down representations into smaller
units and gradually introduce new windows and features of the DT in use; (4) to exploit
the multiplicity of the MDBO by asking students to relate and explore relations between
representations by using dynamic features such as sliders, dragging and tracing; and finally
(5) to focus on activating students’ critical thinking by encouraging them to investigate the
strengths and weaknesses of representations.

Since even well-produced task designs do not ensure constructive use of DT on its
own, mathematics educators play a crucial role when using DT in the teaching and learning
of mathematics. From our analysis using the four aspects of the representation competency,
we suggest educators to be aware of that using the multiplicity of DT does not automati-
cally make students connect and understand different representation. Educators should
support the students in interpreting the automatic feedback from the tool in coherence
with mathematical concepts and conventional mathematical discourse. Furthermore, ed-
ucators should be aware of the affordances of different digital technologies, such that as
aspect B, knowing about the strengths and weaknesses of representations, and aspect D,
reflectively choosing representations, also can be included. Lastly, the educators should be
aware of the extent of outsourcing that takes place when introducing DT, and orchestrate
students’ use of tools to be meaning-oriented and epistemic rather than only pragmatic.

Our analyses and discussions gave rise to a question of whether DT introduce new
representations or even new registers, or just new activities. We found that even if represen-
tations in digital tools are not new in relation to the semiotic registers, they have become so
important for mathematics teaching and learning that framing them in a new terminology
can emphasize the change in activities expected of the involved students. With Duval’s [4,7]
distinction between treatments within and conversions between registers, we suggest fur-
thermore to distinguish between whether a digital treatment or conversion in DGS or CAS
is continuously or solitarily interactive. For instance, using sliders, dragging or tracing,
the students are often continuously interacting with the tool, exploring the changes of using
the dynamic features, whereas typing in an input and obtaining an output is a solitary
interaction. In addition, such representations are either interactive, activating the user,
or passive, illustrated as an animation or by someone else being active. This means that
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representations in DGS and CAS can illustrate either a treatment or a conversion. Fur-
thermore, the activity can be continuous or solitary and interactive or passive, leaving us
23 new classifications of representations given by DT.
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