
mathematics

Article

Improving the Gridshells’ Regularity by Using
Evolutionary Techniques

Marjan Goodarzi 1, Ali Mohades 1,* and Majid Forghani-elahabad 2

����������
�������

Citation: Goodarzi, M.; Mohades, A.;

Forghani-elahabad, M. Improving the

Gridshells’ Regularity by Using

Evolutionary Techniques.

Mathematics 2021, 9, 440.

https://doi.org/10.3390/math

9040440

Received: 2 January 2021

Accepted: 23 January 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Algorithms and Computational Geometry, Department of Mathematics and Computer Science,
Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591639675, Iran; marjangoodarzi@aut.ac.ir

2 Center of Mathematics, Computing, and Cognition—Federal University of ABC,
Santo André, SP 09210-580, Brazil; m.forghani@ufabc.edu.br

* Correspondence: mohades@aut.ac.ir; Tel./Fax: +98(21)-6454-5657

Abstract: Designing and optimizing gridshell structures have been very attractive problems in
the last decades. In this work, two indexes are introduced as “length ratio” and “shape ratio” to
measure the regularity of a gridshell and are compared to the existing indexes in the literature. Two
evolutionary techniques, genetic algorithm (GA) and particle swarm optimization (PSO) method,
are utilized to improve the gridshells’ regularity by using the indexes. An approach is presented to
generate the initial gridshells for a given surface in MATLAB. The two methods are implemented in
MATLAB and compared on three benchmarks with different Gaussian curvatures. For each grid, both
triangular and quadrangular meshes are generated. Experimental results show that the regularity
of some gridshell is improved more than 50%, the regularity of quadrangular gridshells can be
improved more than the regularity of triangular gridshells on the same surfaces, and there may
be some relationship between Gaussian curvature of a surface and the improvement percentage of
generated gridshells on it. Moreover, it is seen that PSO technique outperforms GA technique slightly
in almost all the considered test problems. Finally, the Dolan–Moré performance profile is produced
to compare the two methods according to running times.

Keywords: gridshell structures; shape ratio; length ratio; regularity; particle swarm optimization;
genetic algorithm

1. Introduction

Gridshells which are also called lattice shells or reticulated shells are generally defined
as structures with the shape and rigidity of a double curvature shell consisting of a grid
not a continuous surface [1]. Although gridshells come to several forms, they are usually
designed with triangular, quadrilateral, or hexagonal faces (or grid cells) [1–10]. Forming
and optimizing gridshell structures have been very attractive problems in the past decades.
Several approaches, such as inversion method [1], dynamic relaxation [2,4,11], force density
method [3,12], and so forth [10,13], have been studied so far in the literature to address the
problem of forming a grid shell structure. Moreover, various techniques from gradient-
based to evolutionary methods have been employed for optimization of gridshells taking
into account various aspects of a gridshell such as economic, structural, or aesthetic [11–18].
The focus of this work is on the optimization problem, and it is assumed that the initial
forms of the desired gridshells are given.

Bouhaya et al. [1] coupled genetic algorithms with a geometric technique, which is
called compass method, to present a novel approach for generating elastic gridshells on
an imposed shape with boundary conditions. The authors used three benchmarks with
different Gaussian curvature to illustrate the proposed technique. These benchmarks are
also employed in the present work for generating the numerical results as they contain a
variety of conditions with different Gaussian curvatures. Richardson et al. [11] presented a
two-phase design technique. Using a multi-objective genetic algorithm, Winslow et al. [17]

Mathematics 2021, 9, 440. https://doi.org/10.3390/math9040440 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6118-2245
https://orcid.org/0000-0003-1691-7633
https://doi.org/10.3390/math9040440
https://doi.org/10.3390/math9040440
https://doi.org/10.3390/math9040440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040440
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/440?type=check_update&version=2


Mathematics 2021, 9, 440 2 of 18

established a design tool for synthesis of optimal gridshell structures taking into account
two or more load cases such as wind load. Feng et al. [5] considered three categories of
indexes including mechanical, geometry, and economic criteria for optimization of free-
form cable-braced gridshells. Focusing on triangular gridshells and optimization over a
free-form surface, Wang et al. [16] presented a framework to generate gridshells.

We note that usually the researchers have taken into account the structural aspects of
gridshells in optimization phase and less attention has been heeded to improvement of
the gridshells’ regularity while the later can affect directly on the economy and aesthetic
indexes. In fact, improving the regularity of a gridshell may lead to decreasing the number
of different elements’ types as well as enhancing the aesthetic aspect of the desired grids.
Hence, in this work, improvement of the regularity of gridshells is considered as the main
aim. To this end, two indexes are introduced to measure the regularity of a gridshell. The
indexes are called “length ratio” and “shape ratio” and defined as the standard deviation
of all the elements’ lengths and all the inner angles in the gridshells’ faces, respectively.
There are a few studies in the literature which have worked on improving the regularity of
gridshells. In fact, to the best of our knowledge, this is the first time that these two indexes
are introduced for measuring the free-form gridshells’ regularity. Considering the geodesic
domes, Nooshin and his coworkers in [19] have proposed some measures for making the
regularity of such structures quantifiable. Here, we compare our introduced indexes with
the proposed ones in [19] on some benchmark for illustrating the practical efficiency of the
introduced indexes in this work.

It is noted that although gradient-based techniques guarantee a superior convergence
rate for the cases with a few number of design variables, in the cases with many design vari-
ables, generally, evolutionary methods work more appropriately. This is why we employ
evolutionary techniques in this work. Among the evolutionary techniques, genetic algo-
rithms (GAs) have been used the most in optimization of gridshells [1,3,5,8,10,11,13–18].
Another well-known evolutionary method is particle swarm optimization (PSO) to which
less attention has been paid for improving the gridshell structures so far. However, it is a
very powerful technique and has been applied to many other optimization problems [20–27].
Thus, these two techniques are considered in the present work.

We first present an approach, Algorithm 1, for generating initial triangular and quad-
rangular gridshells in MATLAB. Then, it is explained how the nodal positions in a given
grid can be represented as birds (or particles) in PSO technique and as chromosomes in
GA, and how these techniques can be used to improve the regularity of gridshells by
bettering the nodal positions. We introduce two indexes to make the gridshells’ regularity
quantifiable and use them in the improvement process. Moreover, providing the numerical
results, it is illustrated that our introduced indexes are practically more efficient than the
existing indexes in the literature. In addition, the performances of GA and PSO techniques
are compared through experimental results generated on eighteen test problems by which
several interesting observations are obtained. Finally, we produce the Dolan and Moré per-
formance profile [28] to have a more intuitive comparison between GA and PSO technique
based on running times.

The rest of this work is organized as follows. Section 2 presents an algorithm to gener-
ate the initial gridshells for a given surface in MATLAB, explains briefly the GA and PSO
techniques stage by stage, describes how these techniques can be used for improving the
gridshells’ regularity, and moreover provides the mathematical model for the problem. In
Section 3, first our introduced indexes are compared to two existing ones in the literature on
some benchmark, and then the performances of GA and PSO techniques are compared on
three benchmarks. Finally, Section 4 provides the concluding remarks and some directions
for the future works.

2. Main Block

Here, an approach, Algorithm 1, is presented to generate initial gridshells. Then, we
describe the genetic algorithm (GA) and particle swarm optimization (PSO) technique



Mathematics 2021, 9, 440 3 of 18

briefly for making it more convenient to read this work without having previous knowledge
of these methods. Next, two indexes are introduced for making the gridshells’ regularity
quantifiable, and finally the mathematical model of the problem is provided.

2.1. Generating An Initial Gridshell

There are several different approaches in the literature to generate an initial form of
gridshell. Bouhaya et al. [1] used the compass method which is a geometric approach and
allows creating a network of parallelograms on any surface. The authors then coupled
the compass method with genetic algorithms to propose an optimization approach. In
optimization of the cable-braced grid shells, Feng et al. [5] created the initial forms by
translating the generatrix and directrix which allows the mesh to be parallelogram. The
authors then proposed an optimization technique based on the usage of generatrix and
directrix. Wang et al. [16] formed the surface model by using NURBS (non-uniform rational
B-splines), then generated a set of uniformly distributed random points on the surface,
and finally connected the points by using Delaunay-based triangularization to generate an
initial triangular gridshell.

It is noted that usually the proposed optimization methods in the literature are based
on some generating techniques for the initial form. However, the focus of this work is on
the regularity improvement of a given gridshell without taking into account how the initial
form is obtained, and hence the presented techniques here can be used for improving the
regularity of any given initial form of a gridshell which is given as two sets. A set with
the (Cartesian) coordinates of nodes (or vertices), which is denoted by V here, and another
set which shows the faces in the grid and is denoted by F here. In fact, F is a matrix, each
row of which states which vertices form the corresponding face (or grid cell). Having the
set V of the initial gridshell, the proposed approach here can be employed to improve
the regularity of the gridshell by bettering the positions of the nodes without making any
change in the matrix F. Moreover, one can add some restrictions such as fixing the position
of some nodes to the improvement process.

In this work, for convenience and not being involved in the complication of generating
the initial gridshells which is not of our focus, it is assumed that the given gridshell is
based on a surface F(x, y, z) = 0. In this way, to keep the nodes (vertices) on the desired
surface, the improvement process is made on the first two coordinates of the vertices, i.e., x
and y, and the third coordinate is always obtained by using the surface equation. Any way,
we observe that the detailed approach here can be employed for any given initial gridshell.

Another aspect to notice is that although gridshells with the triangular to hexagonal
grid cells have been studied in the literature, triangular grids are the most widely used
in reality as they can describe any free-form shape [16]. In addition, as the triangular
gridshells have less economic advantages in construction than the equivalent structures
built of quadrilateral grids, many researchers have studied quadrangular gridshells [5]. As
a result, one can say that triangular and quadrangular gridshells are the most important
cases, and hence the focus of this work is on these two groups of gridshells.

Given a surface F (x, y, z) = 0, to build an initial gridshell, usually some uniformly
distributed random points are generated on the surface and then those points are connected
to construct the triangular or quadrangular grid cells. However, as our main object here is
to improve the regularity of the initial gridshells, we consider the equidistant points on the
surface at the beginning which is the most regular initial case, and then we see that it can
be still improved by using our introduced indexes. After generating the equidistant points
on the surface, we use a very nice function in MATLAB, i.e., surf2patch(), to transform the
coordinates (x, y, z) to two matrices V and F. However, it is possible to have duplicate
vertices in V as any vertex in a grid cell may belong to some other cells as well. Hence,
there may also be some duplicativeness in matrix F which should be removed.

This way, we present the following algorithm which generates both triangular and
quadrangular initial gridshells (matrices F, faces, and V, vertices) for any given surface
F(x, y, z) = 0.



Mathematics 2021, 9, 440 4 of 18

Some explanations are given in Appendix A Section on the used MATLAB functions
and commands in Algorithm 1. We note that Algorithm 1 works with any generated set
of points in Step 1 including the uniformly distributed random points or the equidistant
points on the surface. However, in our usage of this algorithm, we generate the equidistant
points on x−axis and y−axis (and then the third coordinates of the points are determined
by using the given surface F(x, y, z) = 0) rather than the randomly generated points. This is
only to have the most regular initial gridshell.

Algorithm 1. Generating initial triangular or quadrangular gridshells (matrices F and V) for a
given surface F(x, y, z) = 0 with some specified domain (in MATLAB)

Step 1. Generating some points on the surface in the domain. This way, we obtain three matrices
X, Y, and Z including the coordinates of the points. Set ind (0 for triangular or 1 for quadrangular
case).
Step 2. Determine the matrices F, faces, and V, vertices, as follows.

if ind
[F, V] = surf2patch(X, Y, Z)
else,
[F, V] = surf2patch(X, Y, Z, ‘triangles’).

Step 3. Remove the redundant vertices in matrices F and V as follows.
[V, ∼, I] = unique (V, ‘rows’);

F = I(F);

2.2. Genetic Algorithm

Here, we explain briefly the genetic algorithm (GA) to eliminate the need for previous
knowledge of this technique for the readers. The genetic algorithm (GA) is an iterative
search method which relies on bio-inspired operators such as selection, crossover, and
mutation. This technique was developed by Holland [29] and contains six main stages
explained below. It is noted that our main aim is not proposing an improved GA or
tuning the best parameters of GAs on the desired problems but rather is to show how this
technique can be employed to improve the gridshells’ regularity by using our introduced
indexes in MATLAB. By the way, we tested some of the very common values for the
parameters in GA taken from the literature, and then considered the best ones in our
primary generated numerical results.

(1) Generating an initial population: Based on Darwinism, in this technique it is always
assumed that there is an initial population of individuals which can change partially in
each generation (iteration in the algorithm) according to the fitness (or cost) function. In
fact, in each iteration the weak individuals are normally removed and instead some new
stronger offspring are added to the population according to the crossover and mutation
processes. We note that the number of individuals in each generation are the same as the
number of individuals in the initial population. To generate an initial population, usually
some random solutions are generated within a certain reasonable domain. Moreover, each
solution, which is a member of the initial population, should be represented as a string
(vector or matrix), which is called chromosome in this technique.

It is noted that although both matrices F and V are required to draw (or drive) the
desired gridshells, the matrix F does not change during the improvement process, and we
only need to improve the nodal positions according to the desired cost function. Hence,
only the matrix V is improved. Moreover, with the first two coordinates of each vertex,
i.e., x and y, the third coordinate can be obtained by using the given surface, that is
F (x, y, z) = 0. Therefore, in this work, the first two columns of the initially generated matrix
V are considered as a basic solution and denoted by Vnew. Then, a population of Npop
individuals is randomly generated between Vnew − t and Vnew + t as the initial population,
where t is a tolerance. As the initially generated matrix F, which shows the faces in the
gridshell, does not change in the improvement process, the same matrix is used to evaluate
every individual in the population.



Mathematics 2021, 9, 440 5 of 18

(2) Evaluating each solution: An important part in every improvement process is
determining the fitness function (in the case of maximizing) or cost function (in the case of
minimizing), and then adopting it to the process. After generating the initial population,
every individual is evaluated. The newly obtained solutions in crossover and mutation
processes are also evaluated.

Then, usually in the merging stage, all the solutions are sorted and the weak ones are
removed. Here, the cost function is considered as one of the presented indexes or their
combination. More details on the cost function in our work is given in Section 2.5.

(3) Parent selection: In genetic algorithm, two current solutions (called parents) are
selected in order to create two new solutions (called offspring or children) in crossover
stage. There are various methods to select parents among which the random selection,
tournament selection, and roulette wheel selection are the most used [30–32]. Here, we use
the roulette wheel selection method. For improving this method, we first generate a vector
of probability, i.e., P = (p1, ···, pNpop), based on the Boltzmann selection technique [33,34]
and using a selection pressure β as follows.

(i) P = exp(−β× C/Cmax)

(ii) P = P/ ∑
Npop
j=1 pj

(1)

where C is the vector of the solutions’ costs and Cmax is the cost of the worst solution in
the current population. According to experimental results, to improve the convergence of
GA technique, for each problem, we set the selection pressure β so that the summation of
the first half of components in probability vector P stays between 0.7 and 0.8. This way,
we obtain some probabilities whose summation is 1. Calculating the accumulated vector
and generating a random number from zero to 1, the first component in the accumulated
vector which is equal to or greater than this random number gives the desired parent. The
crossover percentage in GA is usually considered between 0.5 and 1 [31]. Here, it is set to
pc = 0.8. It is noted that in our primary numerical experiments on desired problems here,
changing the crossover percentage from 0.7 to 0.9 led to a negligible change in the final
results, and so the average of pc = 0.8 is considered. Therefore, as the number of parents
should be even, in each iteration Nc = 2 × [pc × Npop/2] parents are selected and the same
number of offspring (children) are generated, where [•] is the nearest integer number to •.

(4) Crossover: This is an important operator in GA which mimics mating in biological
populations. It propagates the good features from the current population to the next one
leading to better fitness (or cost) value on average. There are several strategies to do the
crossover including single point, double-point, uniform, and arithmetic crossover. Here,
as the points can move continuously on the surface, we use the arithmetic crossover. In
this way, we first generate a vector α of random numbers from the continuous uniform
distribution, and then considering X1 and X2, the new children Y1 and Y2 are generated
as follows.

Y1 = α. × X1 + (1− α). × X2 (2)

Y2 = α. × X2 + (1− α). × X1. (3)

(5) Mutation: This operator allows for global search of the solution’s space, promoting
the diversity in population characteristics. It also prohibits getting trapped in local minima.
The mutation percentage in GA is usually chosen between 0.001 and 0.5 [31], and hence
according to our primary generated numerical results pm = 0.3 is considered in this work.
This way, in each generation (from the second generation), Nm = [pm × Npop] of mutants
are generated. Moreover, to generate a mutant, a mutation rate less than 0.1 is usually
considered in GA [31,32]. Comparing the numerical results for different values 0.01, 0.02,
···, 0.08, we consider µ = 0.02 as mutation rate which determines the number of components
(or genes) which are changed in the selected solution (or chromosome), and we do the
mutation by using the standard normal distribution to change the values of the selected
components in each solution. In fact, dµ× Nve component are changed in the selected



Mathematics 2021, 9, 440 6 of 18

solution for mutation, where Nϑ is the number of vertices in the gridshells and d•e is the
smallest integer number not less than •.

(6) Merging: After selecting parents, generating new children, and mutating some so-
lutions, we merge all the current and newly obtained solutions leading to Npop + Nc + Nm
solutions. Then, as the number of solutions in each generation should be the same, all the
solutions are sorted and arranged ascendingly according to the costs, and the first Npop
ones are selected as the next population.

We note that in GA the stages (3)–(6), explained above, are repeated until some
considered stop criteria is satisfied.

Stop criteria. In fact, in all the iterative processes such as GA and PSO, the algorithm
needs some stopping criteria. Some common stopping criteria used in the literature
are: (i) stop by exceeding the given maximum number of iterations, (ii) stop when the
improvement of solution in a given number of iterations is less than a given limit, (iii) stop
when a satisfactory solution is determined, and (iv) stop when the cost function slope is
almost zero. Here, for both GA and PSO, we consider a maximum number of M = 2000
iteration as the stop criterion.

2.3. Particle Swarm Optimization

Here, we explain briefly the particle swarm optimization (PSO) for the reader not
being required to have any previous knowledge of this technique as well. This technique is
also an iterative search method, inspired from social behavior, which was initially proposed
by Kennedy and Eberhart [30]. There are four main stages in PSO explained as follows.

(1) Generating an initial population: Like GA, it is assumed that there is some initial
population of individuals, called particles, in PSO. Usually, all the particles in PSO move
from the current positions to some new positions based on the swarm intelligence in each
iteration. Here, we consider the same initial population for PSO as the GA method. It
is noted that each row in the matrix Vnew, defined in Section 2.3, shows the position of
a particle in the initial population and the matrix is updated whenever the position of
the particles are changed. We note that the initially generated particles move toward the
positions of the so-called Pbest and Gbest, explained below.

Thus, after generating the initial population, we need to evaluate them to determine
Pbest and Gbest in the population.

(2) Velocity Updating: In this technique, the movement of each particle in every
iteration is determined by its velocity. Let xk

i and vk
i respectively denote the position and

velocity of particle i in the kth iteration in the search space. The velocity of particle i for the
next iteration is calculated as follows.

vk+1
i = wvk

i + c1r1

(
Pbestk

i − xk
i

)
+ c2r2

(
Gbestk − xk

i

)
(4)

where w is the inertia factor which controls the flying dynamics, c1 and c2 are the accel-
eration factors for the experiences of Pbest and Gbest, respectively, r1 and r2 are random
variables in the interval [0,1] which provide the ability of stochastic searching for PSO.
The accelerating factors c1 and c2 compromise the trade-off between exploitation and
exploration. It is noted that Pbestk

i is the best experienced position for particle i until the kth
iteration, and Gbestk is the best experienced position among all the particles so far. We also
note that the velocities for the particles in the initial population are set initially to be zero.

There are three parameters in Equation (4) which are w, c1, and c2. Many studies
have been done so far to determine the best parameters for PSO technique. On the in-
ertia weight, i.e., w, the studies show that a fixed w will not get to good results, and
hence several techniques have been proposed in the literature by which w is lessened
along with iteration times [26]. Some researchers suggested the interval [0.9,1.2] and some
others the interval [0,1] for w [25,26,30]. Similarly, several researchers have studied the
acceleration factors c1 and c2, and suggested different values for these factors. As our
main aim is not tuning the best parameters for the PSO method in this area, we simply



Mathematics 2021, 9, 440 7 of 18

compared the four more common strategies taken from literature [26] numerically to select
the best one. The strategies are (1) w = 1, wdamp = 0.999, c1 = 2 and c2 = 2, (2) w = 1,
wdamp = 0.999, c1 = 2.8 and c2 = 1.3, (3) w = 1, wdamp = 0.999, c1 = 1.49445 and c2 = 1.49445
and (4) Letting [yellow]ϕ1 = 2.05, [yellow]ϕ2 = 2.05, [yellow]ϕ = [yellow]ϕ1 + [yellow]ϕ2,
and ξ = 2/([yellow]ϕ − 2 +

√
[yellow]ϕ2− 4[yellow]ϕ), then we have w = ξ,

c1 = ξ × [yellow]ϕ1, and c2 = ξ × [yellow]ϕ2. We note that in the first three strategies,
the inertia weight is updated in each iteration by w = w.wdamp, and this is why wdamp is
called the damping factor. It is also noted that the values of c1 and c2 in the strategies 3 and
4 are the same. We found the first strategy as the best among these four strategies for our
desired problem, and hence we consider its parameters in this work.

We note that after updating velocities and before updating the particles’ positions, it is
important to check if the velocities are within a pre-specified range. In fact, to avoid violent
random walking and control the global exploration of the particles, some lower and upper
speed limits for each particle are determined and when the velocity of a particle exceeds
one of the limits, it is replaced with the related limit. These limits do not impact on the
particle position, and only lessen the step size of velocity, and hence the limits control the
particles’ moves and the aspects of exploration and exploitation [25,30]. Moreover, greater
(smaller) speed limits lead to global (local) exploration [25,30]. The process of controlling
velocity is called velocity clamping.

Although the movement of particles are controlled by velocity limits, sometimes even
by using the lower limit of velocity, the new position of a particle is obtained out of the
search area or feasible space. In fact, when the current position of a particle is close enough
to the borders of the search area, according to the direction of velocity, even with small
velocity, the new position of the particle will be out of the search area. This shows that in
the next iterations, according to the inertia, this will happen again that the new position
of the particle stays out of search space. Hence, to avoid such an event, the direction of
velocity is changed to the opposite direction, that is its sign will be changed. This process
is called “velocity mirror effect”.

(3) Position Updating: Unlike the genetic technique in which usually not all the
members of the population are replaced with some new children in each iteration, in the
PSO method, all the particles in the population move and change in each iteration. To do
so, after calculating the velocity of the particle i, its position is updated as follows.

xk+1
i = xk

i + vk+1
i (5)

Apart from all the modifications and limits on the velocities, the new positions of
some particles may be out of the search area. Hence, the updated positions should be
checked for being within the allowed domain. If the position of a particle exceeds the lower
or upper bounds, the position of the particle is replaced with the associated bound.

(4) Memory updating: In this technique, in each iteration, the position of every particle
may change, and it is one of the differences between GA and PSO. Therefore, after updating
the positions of the particles, we need to evaluate all the particles in order to check if it is
required to update the P best and Gbest variables as they play an essential role in movement
of the particles. However, it is not required to sort the particles after the evaluation process,
and we only need to update the memory of P best and Gbest, if it is required. In this work,
the same cost function is considered for both GA and PSO techniques.

The above-mentioned stages (2)–(4) in PSO are repeated until some considered stop
criteria is satisfied. As stated in the previous section, we consider a maximum number of
M = 2000 iteration as stop criteria for both GA and PSO in this work.

2.4. The Regularity Indexes

Here, we explain in more detail our introduced indexes, which are length ratio and
shape ratio, as well as two similar indexes introduced in [19]. As the indexes introduced
by Nooshin and his coworkers have been also called length and shape ratios, to make the
four indexes distinguishable, we denote our length and shape ratios by OLR and OSR,



Mathematics 2021, 9, 440 8 of 18

respectively, and the introduced length and shape ratios by Nooshin and his coworkers
by NLR and NSR, respectively. We recall that V is a matrix containing the position of all
the vertices in Cartesian coordinates with no redundant vertices. In fact, V is an Nv × 3
matrix, where Nv is the number of vertices in the gridshell. Each row in V provides the
Cartesian coordinates of a vertex in the grid, and the vertices are numbered in the order of
appearance in V.

In the order of appearance in V. For instance, the vertex whose coordinates are given
in the third row of V is numbered 3. The matrix F gives the vertices of each face. In fact,
in a triangular (quadrangular) gridshell, F is an Nf × 3 (Nf × 4) matrix, where Nf is the
number of faces in the grid. Each row in F shows which vertices are in the corresponding
face. To have a better understanding, a simple grid (pyramid) is given in Figure 1. The
matrices F and V for this figure are as follows.

V=


0 0.65 0

0.35 0.45 0.7
0.35 0 0
0.75 0.65 0

 F=


1 2 3
4 2 1
3 2 4
3 4 1



Figure 1. A simple grid (pyramid).

As it is seen, there are four vertices and also four faces in Figure 1. The ith row in V
gives the Cartesian coordinates of the ith vertex. For example, the coordinates of vertex (1)
are (0, 0.65, 0).

The ith row in F gives the vertices of the ith face in the grid. For example, the first face
in the grid is the triangle consisting of vertices (1), (2) and (3).

Length ratios: Our introduced length ratio (OLR) is defined as the standard deviation
of lengths of all the elements in the grid. Hence, after calculation of all the lengths, OLR
can be obtained by computing the standard deviation of all the lengths. The introduced
length ratio by Nooshin and his coworkers [19] (NLR) is (the shortest element’s length/the
longest element’s length) for each face in the gridshell, and then for the gridshell is the
mean value of all the calculated values for the faces.

Hence, for both OLR and NLR, one first needs to calculate the length of all the elements
in the grid. To do so, we use the rows in F to find the beginning and end vertices of each
element, and then use matrix V to find the coordinates of the desired vertices to compute
the distance between them. For example, in Figure 1, according to the first row in F, we
calculate the distance between the vertices (1) and (2), (2) and (3), and (3) and (1) by using
their given coordinates in matrix V.

This way, we obtain the row [0.8078 0.8322 0.7382] as the lengths of elements in the
first face in this figure. The matrix of lengths, which is denoted by L, for this figure is given



Mathematics 2021, 9, 440 9 of 18

below in which each row gives the lengths of the elements in the corresponding face in
matrix F.

L=


0.8078 0.8322 0.7382
0.8307 0.8078 0.7500
0.8322 0.8307 0.7632
0.7632 0.7500 0.7382


Now, OLR can be simply computed as the standard deviation of all the lengths

calculated in matrix L above which is equal to 0.0398. For computing NLR, we first
calculate (the shortest element’s length/the longest element’s length) for each face. This
way, the vector [0.8870, 0.9029, 0.9171, 0.9672] is obtained in which for example the first
component corresponds to the first face in the grid, that is the first row in matrix L above.
Then, NLR is equal to the mean of all the calculated values in this vector, which is 0.9186 in
this example. As a result, we have OLR = 0.0398 and NLR = 0.9186 in this example.

Shape ratios: Our introduced shape ratio (OSR) is defined as the standard deviation
of all the angles between the elements in all the faces. Similar to the length ratio, the
NSR, which is the introduced shape ratio in [19], is (the smallest internal angle/the largest
internal angle) for each face in the gridshell, and then for the gridshell is the mean value of
all the calculated values for the faces. This time, one needs to compute the inner angles in
all the faces of the gridshell. To do so, as we have the Cartesian coordinates of the vertices
from V and the faces from F, in each iteration, we consider a face, which is triangle or

quadrangle, and compute its angles by using the formula θ = arccos(
→
a×
→
b

‖a‖×‖b‖ ), where
→
a

and
→
b are two vectors and θ is the angle between them. This way, a matrix of size of F is

obtained as a matrix of angles, denoted by A here. For example, the angles for the first face
in Figure 1 are [1.1336 0.9335 1.0746] in radian and the matrix of angles (in radian) in this
figure is as follows.

A=


1.1336 1.9335 1.0746
1.0684 1.9506 1.1227
1.0922 1.9537 1.0957
1.0456 1.0191 1.0769


Now, in this example, OSR can be simply calculated as the standard deviation of all

the angles calculated in matrix A above which is equal to 0.0684. To compute NSR, one
first needs to calculate (the smallest internal angle/the largest internal angle) for each face.
This way, the vector [0.8235, 0.8467, 0.8704, 0.9463] is obtained. Then, NSR is equal to the
mean value of all the calculated values in this vector, which equals 0.8717 in this example.
Briefly, we have OSR = 0.0684 and NSR0 = 0.8717 in this example.

We note that in both introduced ratios in [19], the smallest item is divided by the
largest item for each face, and the average of all the calculated values is considered as the
corresponding ratio. However, as the standard deviation is a very popular measure and
has several advantages, we considered it instead of simply dividing the smallest value by
the largest value. In fact, standard deviation measures the deviation from the mean and is
based on all the items (not only the smallest and largest). Moreover, as the square is a nice
function in which the numbers smaller than one become smaller and the numbers larger
than one become larger, and hence we can ignore the small deviations and consider the
larger ones more clearly. To show the practical efficiency of our introduced indexes, we
compare the indexes on some benchmarks in Section 3.

2.5. Mathematical Model of the Problem

Now that the problem has been completely described, the general mathematical model
of the problem is provided in this section as follows.

minf = α

(
∑Ne

i=1(li−l)
2

Ne−1

)
+β

(
∑Na

i=1(θi−θ)
2

Na−1

)
s.t. Vnew ∈ Ω, and F is given and fixed,



Mathematics 2021, 9, 440 10 of 18

where α and β are constants, Ne the number of elements, li the length of the ith element, l
the mean value of all the elements’ lengths, the number of all the angles, θi the ith angle,
and θ is the mean value of all the angles in the given gridshell. Moreover, Ω is a feasible
region in the xy plane, V new an Nv × 2 matrix which contains the first two columns of V,
which contains the Cartesian coordinates of the vertices, and F is a matrix which gives the
faces in the desired gridshell.

Moreover, Ω is a feasible region in the xy plane, V new an Nv × 2 matrix which
contains the first two columns of V, which contains the Cartesian coordinates of the vertices,
and F is a matrix which gives the faces in the desired gridshell.

One can set the constants α and β according to a specific aim in the improvement
process. For example, setting α = 1, β = 0 the gridshell’s regularity is improved according
to the length ratio while setting α = 0, β = 1 the gridshell’s regularity is improved taking
into account the shape ratio. Additionally, setting 0 < α, β < 1, we have a multi-objective
case. We note that having V new and F, one can first calculate the third coordinates of each
vertex by using the formula of the surface, and then the elements’ lengths and the inner
angles of all the faces. Therefore, the mathematical model of the problem is well-defined
and the function f can be minimized by moving V new in Ω.

Now, having described all the processes, we are ready to provide the experimental results.

3. Experimental Results

Here, several numerical results are provided in two sections. In the first one, the prac-
tical efficiency of our introduced ratios and the presented ones in [19] are compared, and in
the second one the performances of GA and PSO methods in improving the regularity of
gridshells are compared.

An important stage of generating numerical results is to choose some benchmarks.
The following criteria have been considered to choose some known benchmarks from the
literature. (1) As the indexes in [19] are introduced for geodesic domes, to have a fairer
comparison, we need some gridshell benchmark which is somehow similar to domes,
and hence we consider Hemisphere surface taken from the literature [1] as one of the
benchmarks in this work. (2) As the effect of Gaussian curvature of a gridshell on the
other structural aspects of the gridshell and vice versa have been widely studied in the
literature [1,35], for observing if the change in the Gaussian curvature has some effect on
the regularity improvement process, we need to choose gridshells with different Gaussian
curvatures (positive, negative, and both). (3) As it is not the focus of this work to be
involved in the complication of generating the initial gridshells, we consider the gridshells
which are associated with some surface equations.

This way, along with Hemisphere surface with positive Gaussian curvature, we
consider two other gridshells associated with surfaces of sinusoidal, which is a surface
with Gaussian positive and negative curvature, and Hyperbolic paraboloid, which is a
surface with Gaussian negative curvature. All the three chosen gridshells are taken from
the literature [1] and depicted in Figure 2.

Figure 2. Three benchmark gridshells (quadrangular) with different Gaussian curvature taken
from [1].



Mathematics 2021, 9, 440 11 of 18

To determine the coordinate matrices of the hemisphere gridshell, which is depicted
in Figure 2a, we use the built-in sphere () command which generates the x−, y−, and
z−coordinates of a unit sphere consisting of 20-by-20 faces. The first 10 faces situate under
or on the xy−plane, and thus we only consider the faces numbered from 11 to 20, which
are above the xy−plane, as the hemisphere.

To determine the coordinate matrices of the sinusoidal gridshell, which is depicted in
Figure 2b, the equation z = 0.05xsin(x) + sin(y) is used for 0 ≤ x ≤ 10 and 0 ≤ y ≤ 4. In fact,
on the x−axis the equidistant points with distance of 0.5 and on y−axis the equidistant
points with distance of 0.4 are considered.

To determine the coordinate matrices of hyperbolic paraboloid gridshell, which is
depicted in Figure 2c, the equation z = x2 − y2 is used for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. In
fact, on the x−axis the equidistant points with distance of 0.4 and on y−axis the equidistant
points with distance of 0.25 are considered. In the last two cases, i.e., sinusoidal and
hyperbolic paraboloid, the x− and y− coordinates are generated by using the meshgrid()
command, and then the z− coordinates matrix is obtained by using the surfaces’ formulas.

As our focus is on improving the regularity of gridshells, to have very regular initial
grids the equidistant points are considered rather than randomly generated points. We
note that the gridshells depicted in Figure 2 are the quadrangular ones. As the triangular
gridshells are the same as the quadrangular ones but with the triangle faces, they are
not given here to avoid the prolongation of the paper. In fact, Algorithm 1 generates the
triangular gridshells by adding the diagonal of the faces in quadrangular gridshells.

To generate the numerical results, both GA and PSO algorithms and Algorithm 1,
our presented approach to generate the initial gridshells, are implemented in MATLAB
programming environment and the program is executed on a PC with Intel(R) Core (TM)
i5-2400S Duo CPU 2.50 GHz, with GB of RAM. We note that when the primary shape
of the structural appearance is ascertained, it is not allowed to make major changes and
one can make only minor changes in the shape improvement process [5]. Therefore, to
generate the initial populations in both GA and PSO algorithms, the feasible solution
domain is restricted to a small interval around the initial equidistant generated gridshells.
To this end, considering Vnew as an Nv × 2 matrix which contains the first two columns
of V, the matrices Vmax = Vnew + 0.02 × 1Nv × 2 and Vmin = Vnew − 0.02 × 1Nv × 2 are
considered as the upper and lower bounds of the feasible domain, respectively, where
1Nv × 2 is an Nv × 2 matrix with all the entities being 1. Therefore, we recall that (i) the
initially generated equidistant gridshells are very regular and (ii) the feasible solution
domain is restricted.

As some initial conditions, we suppose that all the vertices which situate on the edges
of the gridshell should be fixed which is makeable by considering the same maximum
and minimum ranges for those vertices in matrices Vmax and Vmin. The upper and lower
bounds on the velocities of particles in the PSO method are respectively assigned as
Velmax = 0.1 × (Vmax − Vmin) and Velmin = −Velmax. The population size in GA and PSO
algorithms is usually specified between 20–60 [25,26,31,32], among which we set the
average value of Npop = 40 as the population size in both methods. Note that our primary
experimental results did not show notable changes in the results varying the population size
from 40 to 60; however, we obtained better results in both methods by increasing Npop from
20 to 40. Moreover, the stop criteria are set to a maximum number of M = 2000 iterations
for both algorithms. It is recalled that the details and the selected values of parameters
for both algorithms have been discussed in Sections 2.3 and 2.4, and hence we do not
restate them here. The other details on the implementation of algorithms and the generated
numerical results are given in the next sections.

3.1. Comparison of the Regularity Indexes

Here, our two introduced indexes, OLR and OSR, are compared to two corresponding
introduced indexes by Nooshin et al. [19], i.e., NLR and NSR. As Nooshin and his coworkers
have introduced the indexes for geodesic domes and not the free-form gridshells, we



Mathematics 2021, 9, 440 12 of 18

compare the indexes only on the hemisphere’s gridshell, depicted in Figure 2a which is the
closer one to a dome. As the main aim in this section is to compare the regularity indexes,
we only use the PSO method. To have a more complete comparison, both triangular
and quadrangular gridshells associated with the hemisphere are generated. This way,
we improve the regularity of the considered gridshells four times separately, each time
applying one of the indexes as the cost function in the PSO algorithm.

The final results rounded to three decimal places on comparing the length and shape
ratios are respectively stated in Tables 1 and 2. It is seen that using our proposed indexes
as the cost function in the PSO algorithm, the Nooshin et al.’s indexes are also lessened
(improved). For example, in Table 1, for a triangular case, the initial values of OLR and NLR
are respectively 0.087 and 0.611. By applying OLR as the cost function, after 2000 iterations,
the OLR and NLR are respectively equal to 0.083 and 0.615 which shows improvement in
both ratios. However, by applying NLR as the cost function, after 2000 iterations, the OLR
and NLR are respectively equal to 0.096 and 0.633 which shows worsening in OLR and
improvement in NLR. Some similar observations can be made for quadrangular cases in
this table and both cases in Table 2. We note that according to the definition, the best value
of NLR or SLR is 1, and so they are improving as they are approaching 1. Therefore, as
Tables 1 and 2 show, the regularity of the gridshells is practically worsened by using the
introduced indexes by Nooshin et al. [19] which shows clearly the practical efficiency of
our introduced indexes.

Table 1. The final results on comparing the length ratios.

Applied Indexes

Triangular Grid Quadrangular Grid

Initial Value
Final Value

Initial Value
Final Value

OLR NLR OLR NLR

↓ OLR 0.087 0.083 0.615 0.064 0.061 0.754
NLR 0.611 0.096 0.633 0.753 0.066 0.767

Table 2. The final results on comparing the shape ratios.

Applied Indexes

Triangular Grid Quadrangular Grid

Initial Value
Final Value

Initial Value
Final Value

OSR NSR OSR NSR

↓ OSR 0.403 0.397 0.430 0.085 0.085 0.905
NSR 0.426 0.461 0.473 0.914 0.090 0.904

3.2. Improving the Regularity

Here, the performances of GA and PSO techniques are compared together in improv-
ing the regularity of the three gridshells with different Gaussian curvature taken from the
literature [1]. Both triangular and quadrangular gridshells associated with each surface
are generated. The regularity of each generated gridshell is improved by applying our
introduced indexes and using both GA and PSO methods. Three cost functions have been
considered, (1) length ratio, (2) shape ratio, and (3) a multi-objective case by combining
both length and shape ratios with the same weight. Therefore, having three surfaces, two
generated gridshells on each surface, and considering three cost functions to improve
the regularity makes eighteen test problems on which the performances of GA and PSO
algorithms are compared. To have a better reading, all the diagrams of these two methods
on each surface are grouped and depicted in a figure. This way, Figures 3–5 provide the di-
agrams of GA and PSO techniques on Hemisphere, Sinusoidal, and Hyperbolic Paraboloid,
respectively. Note that in these figures, TH, TS, THP, QH, QS, and QHP stand for triangular
hemisphere, sinusoidal, hyperbolic parabolic, and quadrangular hemisphere, sinusoidal,
and hyperbolic parabolic, respectively.



Mathematics 2021, 9, 440 13 of 18

For convenience, a data box has been added into each diagram in which the following
information is given. (1) The applied cost function and the considered gridshell, (2) the
initial cost of each method which is the value of the cost function in the first iteration,
(3) the final cost of each method which is the value of the cost function in the last itera-
tion, and (4) the improvement percentage for each algorithm which is calculated by using
Equation (6). Of note is that the cost values are rounded to three decimal places and the
improvement percentages are rounded to one decimal place. Hence, this is why sometimes
the diagrams are not matched at the end point, that is iteration 2000, while the given final
costs are equal.

Improvement percentage =
Initial cost − Final cost

Initial cost
(6)

In each of Figures 3–5, there are two rows of diagrams, three diagrams in each row.
The first (second) row contains the diagrams associated with triangular (quadrangular)
gridshells. The applied cost functions on the diagrams in each row are always in order of
length ratio, shape ratio, and multi objective case which is length ratio + shape ratio. Next,
several observations concluded from the GA and PSO diagrams are stated and discussed.

(1) In almost all the cases, it is seen that the initial cost for triangular gridshells of
the same surfaces are higher than the cost for the corresponding quadrangular gridshells.
This is due to the higher number of elements in the triangular gridshells. To have a better
understanding, the number of vertices, denoted by Nv, and faces, denoted by Nf, in the
gridshells are given in Table 3. It is noted that the number of vertices for both triangular and
quadrangular cases are equal because Algorithm 1 uses the same procedure for generating
the initial gridshells, and the number of faces in the triangular cases are double of the one
in the corresponding quadrangular one because the algorithm generates the triangular
gridshells by adding the diagonal of the faces in quadrangular gridshells.

Table 3. The number vertices and faces in all the generated gridshells.

Gridshell Type
Triangular Quadrangular

Nv Nf Nv Nf

Hemisphere 201 400 201 200
Sinusoidal surface 231 400 231 200

Hyperbolic parabolic 187 320 187 160

(2) Although the number of vertices and faces are smaller for the hyperbolic parabolic
surface (see Table 3), the costs of either the initial or the final grids for this surface are greater
than the ones for the other surfaces. It seems that as the Gaussian curvature is negative
in this surface, considering the equidistant points do not lead to a gridshell as regular
as the surfaces with positive (or positive and negative) Gaussian curvature. However,
this observation needs further investigation to be validated which will be studied in our
future works.

(3) It is seen that the costs of either the initial or the final gridshells in almost all the
cases for the sinusoidal surface are less than the costs for the corresponding cases with
the other surfaces even when the number of vertices and faces in this surface are the most
ones. It seems that to generate the most regular gridshells, the surfaces with positive and
negative Gaussian curvature are better than the surfaces with merely positive Gaussian
curvature or the surfaces with merely negative Gaussian curvature. This observation also
needs further investigations which is of our interest for the future works.

(4) Although the initial gridshells are greatly regular because of consideration of
equidistant points and the feasible solution domain is restricted, the regularity of gridshells
in some cases has been improved more than 50% which is significant (see the second
diagram in the second row in Figure 3).



Mathematics 2021, 9, 440 14 of 18

(5) In all the cases, the (initial or final) costs increase from the length ratio to the shape
ratio and from the shape ratio to the multi-objective case. It shows that arriving at similar
angles in all the faces of gridshells is more difficult than designing the gridshells with
similar lengths in all the faces, and also that improving in both directions simultaneously
is even more difficult.

(6) It is seen that the improvement percentages of both algorithms are decreased from
Hemisphere to Sinusoidal and then to Hyperbolic Paraboloid surfaces in almost all the
cases. It may also have a relationship with the Gaussian curvature of the surfaces as it
changes from positive in the first surface to positive and negative in the second one, and
finally to negative in the third surface. Hence, it seems that the possibility of improving the
regularity on the gridshells with positive Gaussian curvature is higher than the other cases.
This observation also needs more investigation.

(7) The improvement percentages on all the three surfaces increase from the trian-
gular gridshells to the quadrangular ones which shows a higher possibility of regularity
improvement on the quadrangular gridshells.

(8) It is seen that the behavior of both algorithms are somehow similar on all the three
gridshells. Hence, it seems that changing on the Gaussian curvature or changing from
triangular to quadrangular gridshells do not affect the behavior of GA or PSO methods
considerably. This observation also needs more investigation.

(9) Finally, it is seen that in almost all the test problems, PSO outperforms GA slightly.
We note that the focus of this work is not to tune the best parameters for GA or PSO
algorithms, and hence it is possible that one gets better results on GA by changing the
values of its parameters or selecting some other strategies in the stages of this algorithm,
and surely the same can be happened to PSO technique. What we see in the Figures 3–5
states that the performance of the PSO method with described parameters is slightly better
than the performance of GA technique with detailed parameters here in almost all the cases.

Finally, to have a comparison of running times of GA and PSO, measured in CPU
seconds, on the same Np = 18 test problems provided in this section, the running times
of both methods on the test problems are considered to produce the performance profile
of Dolan and Moré [28]. In this performance profile, for two algorithms, the ratio of the
running times of the methods versus the minimum time of the two methods is considered.

Indeed, considering ti,1 and ti,2 as the running times of GA and PSO techniques, in CPU
seconds, respectively, for i = 1, 2, ···, 18, the performance ratios in this performance profile
are ri,j=

ti,j

min{ti,j :j=1.2} , for j = 1, 2 [28]. The performance of each technique is calculated as

Prj(T) = 1
Np

size
{

i
∣∣ri.j ≤ T

}
, j = 1, 2, where size is the number of test problems. This way,

Prj(t) is the probability for method j (j = 1, 2 corresponds to GA and PSO, respectively)
that a performance ratio ri,j is within the factor T. Figure 6 is the resulting CPU time
performance profiles for the two methods. In this figure, the horizontal axis T gives the
outcome of dividing the running time of the PSO method into the one of the GA method.
This axis states that in the best case, PSO technique solves some problems (almost 10% of
the test problems) around 1.45 times faster than GA method. We note that the vertical axis,
that is Per(T), at time T gives the percentage of problems solved by PSO, T times faster
than the GA method. Using this profile, one algorithm is preferred to another when its
performance diagram lies above the other [28]. Hence, Figure 6 shows clearly that PSO is
preferred to GA based on the running times. However, the differences in running times are
not so significant.



Mathematics 2021, 9, 440 15 of 18

Figure 3. The particle swarm optimization (PSO) and genetic algorithm (GA) diagrams on Hemi-
sphere gridshell considering different cost functions.

Figure 4. The PSO and GA diagrams on Sinusoidal gridshell considering different cost functions.

Figure 5. The PSO and GA diagrams on Hyperbolic Paraboloid gridshell considering different
cost functions.



Mathematics 2021, 9, 440 16 of 18

Figure 6. Dolan–Moré diagram related to comparing PSO and GAs in improving of regularity
of gridshells.

4. Conclusions

Here, we presented two indexes as length ratio and shape ratio which were defined
as the standard deviation of the lengths of all the elements and the standard deviation
of the inner angles between all the elements in a gridshell, respectively. The practical
efficiency of our introduced indexes was shown in comparison with some available indexes
in the literature. We also showed how the genetic algorithm (GA) and particle swarm
optimization (PSO) technique can be utilized for improving the gridshells’ regularity based
on the introduced ratios. To this end, an algorithm was presented to generate initial
gridshells on a given surface. Three surfaces with different Gaussian curvatures were
selected from the literature to provide the experimental results on the proposed approaches
for regularity improvement of gridshells. On each surface, triangular and quadrangular
gridshells were generated and the regularity of each gridshell was improved by using each
ratio separately and also by using a combination of both ratios with the same weight as
the cost function in both techniques. This way, PSO and GA methods were compared on
eighteen test problems.

Through the experimental results, we saw that (1) the initial cost for triangular grid-
shells on the same surfaces are usually higher than the cost for the corresponding quadran-
gular gridshells, (2) even the regularity of the very regular initially generated gridshells
by using the equidistant points can be improved up to 56% in some cases, (3) the initial
and final costs increase from the length ratio to the shape ratio and from the shape ratio
to the multi-objective case in which both length and shape ratios are combined with the
same weight, (4) the percentage improvement on all the three surfaces increase from the
triangular gridshells to the quadrangular ones showing a higher possibility of regularity im-
provement on the quadrangular gridshells, and that (5) PSO method slightly outperforms
GA technique on almost all the test problems.

Moreover, some interesting relationships between the regularity improvement and
Gaussian curvature of the selected surfaces were observed including (1) considering the
equidistant points on the surfaces with negative Gaussian do not lead to a gridshell as
regular as the surfaces with positive (or positive and negative) Gaussian curvature; (2) to
generate the most regular gridshells, the surfaces with positive and negative Gaussian
curvature are better than the surfaces with merely positive Gaussian curvature or the
surfaces with merely negative Gaussian curvature; (3) the possibility of improving the
regularity on the gridshells with positive Gaussian curvature is higher than the other cases;
and (4) the behavior of GA and PSO techniques do not change considerably from triangular
to quadrangular gridshells or from the positive Gaussian curvature to the negative one.
However, these observations need more investigation which will be made in our future
works. Another idea for a future work is to consider our introduced regularity indexes and
some structural aspects of gridshells such as strain energy simultaneously for proposing



Mathematics 2021, 9, 440 17 of 18

some multi-objective optimization method to design gridshells. It would also be interesting
to see how the regularity indexes and other structural aspects affect each other. Finally, to
have an intuitive comparison between GA and PSO based on running times, the Dolan
and Moré performance profile was produced taking into account the running times. This
profile showed that PSO is also preferred to GA in accordance with running times.

Author Contributions: Conceptualization, M.G. and M.F.-e.; Data curation, M.G. and M.F.-e.; Formal
analysis, M.F.-e.; Funding acquisition, M.G.; Supervision, A.M.; Writing—original draft, M.F.-e.;
Writing—review and editing, M.F.-e. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the three anonymous referees for their constructive
comments and recommendations, which have significantly improved the presentation of this paper.
Also, the first two authors thank Algocg group for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Algorithm 1, the MATLAB function of surf2patch () is used for transforming the
Cartesian coordinates (x, y, z) to two matrices V and F. However, as there is a possibility
of generating duplicate vertices in V, the command unique () is used. This command in
addition to remove the duplicate rows in V gives the positions of the removed rows which
can be used to update the matrix F (please see Step 3 in Algorithm 1). We note that having
the matrices V and F obtained by Algorithm 1, the desired gridshell can be drawn by using
the command patch () in MATLAB as follows.

Patch = patch (‘faces’, F, ‘vertices’, V) (A1)

References
1. Bouhaya, L.; Baverel, O.; Caron, J.F. Optimization of gridshell bar orientation using a simplified genetic approach. Struct.

Multidiscip. Optim. 2014, 50, 839–848. [CrossRef]
2. Adriaenssens, S.M.L.; Barnes, M.R. Tensegrity spline beam and grid shell structures. Eng. Struct. 2001, 23, 29–36. [CrossRef]
3. Basso, P.; Grosso, A.E.D.; Pugnale, A.; Sassone, M. Computational morphogenesis in architecture: Cost optimization of free-form

grid shells. J. Int. Assoc. Shell Spat. Struct. 2009, 50, 143–150.
4. Day, A.S. An introduction to dynamic relaxation. Engineer 1965, 29, 218–221.
5. Feng, R.; Zhang, L.; Ge, J.-M. Multi-objective morphology optimization of free-form cable-braced grid shells. Int. J. Steel Struct.

2015, 15, 681–691. [CrossRef]
6. Feng, R.; Ge, J.-M. Shape optimization of free-form cable-braced grid shells based on the translational surfaces technique. Int. J.

Steel Struct. 2013, 13, 435–444. [CrossRef]
7. Khorasani, A.M.; Goodarzi, M.; Forghani-elahabad, M. Particle Swarm Optimization Method in Optimization of Grid Shell

Structures. In Proceedings of the CNMAC 2019—XXXIX Congresso Nacional de Matemática Aplicada e Computacional,
Uberlândia, MG, Brazil, 16–20 September 2020; Series of the Brazilian Society of Computational and Applied Mathematics.
[CrossRef]

8. Marino, E.; Salvatori, L.; Orlando, M.; Borri, C. Two shape parametrizations for structural optimization of triangular shells.
Comput. Struct. 2016, 166, 1–10. [CrossRef]

9. Mueller, K.M.; Liu, M.; Burns, S.A. Fully stressed design of Frame structures and multiple load paths. J. Struct. Eng. 2002, 128,
806–814. [CrossRef]

10. Seifi, H.; Javan, A.R.; Xu, S.; Zhao, Y.; Xie, Y.M. Design optimization and additive manufacturing of nodes in gridshell structures.
Eng. Struct. 2018, 160, 161–170. [CrossRef]

11. Richardson, J.N.; Adriaenssens, S.; Coelho, R.F.; Bouillard, P. Coupled form-finding and grid optimization approach for single
layer grid shells. Eng. Struct. 2013, 52, 230–239. [CrossRef]

12. Schek, H.-J. The Force Density Method for Form Finding and Computation of General Networks. Comput. Methods Appl. Mech.
Eng. 1974, 3, 115–134. [CrossRef]

13. Pugnale, A.; Sassone, M. Morphogenesis and structural optimization of shell structures with the aid of a genetic algorithm. J. Int.
Assoc. Shell Spat. Struct. 2007, 48, 161–166.

http://doi.org/10.1007/s00158-014-1088-9
http://doi.org/10.1016/S0141-0296(00)00019-5
http://doi.org/10.1007/s13296-015-9014-6
http://doi.org/10.1007/s13296-013-3004-3
http://doi.org/10.5540/03.2020.007.01.0416
http://doi.org/10.1016/j.compstruc.2015.12.008
http://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(806)
http://doi.org/10.1016/j.engstruct.2018.01.036
http://doi.org/10.1016/j.engstruct.2013.02.017
http://doi.org/10.1016/0045-7825(74)90045-0


Mathematics 2021, 9, 440 18 of 18

14. Rombouts, J.; Lombaert, G.; De Laet, L.; Schevenels, M. A novel shape optimization approach for strained gridshells: Design and
construction of a simply supported gridshell. Eng. Struct. 2019, 192, 166–180. [CrossRef]

15. Vincenti, A.; Ahmadian, M.R.; Vannucci, P. Bianca: A genetic algorithm to solve hard combinatorial optimization problems in
engineering. J. Glob. Optim. 2010, 48, 399–421. [CrossRef]

16. Wang, Q.-S.; Ye, J.; Wu, H.; Gao, B.-Q.; Shepherd, P. A triangular grid generation and optimization framework for the design of
free-form gridshells. Comput. Des. 2019, 113, 96–113. [CrossRef]

17. Winslow, P.; Pellegrino, S.; Sharma, S.B. Multi-objective optimization of free-form grid structures. Struct. Multidiscip. Optim. 2010,
40, 257–269. [CrossRef]

18. Czerniachowska, K.; Hernes, M. A genetic algorithm for the shelf-space allocation problem with vertical position effects.
Mathematics 2020, 8, 1881. [CrossRef]

19. Nooshin, H.; Mohammadi, N.; Parke, G. Regularity of Geodesic Domes. In Proceedings of the 35th Annual Symposium of
IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures, London, UK, 20–23 September 2011.

20. Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform.
2005, 19, 43–53. [CrossRef]

21. Xu, G.; Yu, G. On convergence analysis of particle swarm optimization algorithm. J. Comput. Appl. Math. 2018, 333, 65–73.
[CrossRef]

22. Engelbrecht, A.P.; Grobler, J.; Langeveld, J. Set based particle swarm optimization for the feature selection problem. Eng. Appl.
Artif. Intell. 2019, 85, 324–336. [CrossRef]

23. Chen, Y.; Li, L.; Xiao, J.; Yang, Y.; Liang, J.; Li, T. Particle swarm optimizer with crossover operation. Eng. Appl. Artif. Intell. 2018,
70, 159–169. [CrossRef]

24. Xu, G.; Yang, Y.-Q.; Liu, B.-B.; Xu, Y.-H.; Wu, A.-J. An efficient hybrid multi-objective particle swarm optimization with a
multi-objective dichotomy line search. J. Comput. Appl. Math. 2015, 280, 310–326. [CrossRef]

25. Zhang, L.; Yu, H.; Hu, S. Optimal choice of parameters for particle swarm optimization. J. Zhejiang Univ. Sci. 2005, 6, 528–534.
26. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
27. Kim, T.-H.; Cho, M.; Shin, S. Constrained mixed-variable design optimization based on particle swarm optimizer with a diversity

classifier for cyclically neighboring subpopulations. Mathematics 2020, 8, 2016. [CrossRef]
28. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002, 91, 201–213.

[CrossRef]
29. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
30. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks

IV, Piscataway, NY, USA, 4–6 October 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.
31. Angelova, M.; Pencheva, T. Tuning genetic algorithm parameters to improve convergence time. Int. J. Chem. Eng. 2011, 2011, 1–7.

[CrossRef]
32. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; The MIT Press: Cambridge, UK, 1992.
33. Lee, C.-Y. Entropy-boltzmann selection in the genetic algorithms. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2003, 33, 138–149.
34. Maza, M.D.L.; Tidor, B. An analysis of selection procedures with particular attention paid to proportional and boltzmann

selection. In Proceedings of the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, 17–21 July
1993; pp. 124–131.

35. Douthe, C.; Mesnil, R.; Orts, H.; Baverel, O. Isoradial meshes: Covering elastic gridshells with planar facets. Autom. Constr. 2017,
83, 222–236. [CrossRef]

http://doi.org/10.1016/j.engstruct.2019.04.101
http://doi.org/10.1007/s10898-009-9503-2
http://doi.org/10.1016/j.cad.2019.04.005
http://doi.org/10.1007/s00158-009-0358-4
http://doi.org/10.3390/math8111881
http://doi.org/10.1016/j.aei.2005.01.004
http://doi.org/10.1016/j.cam.2017.10.026
http://doi.org/10.1016/j.engappai.2019.06.008
http://doi.org/10.1016/j.engappai.2018.01.009
http://doi.org/10.1016/j.cam.2014.11.056
http://doi.org/10.1007/s00500-016-2474-6
http://doi.org/10.3390/math8112016
http://doi.org/10.1007/s101070100263
http://doi.org/10.1155/2011/646917
http://doi.org/10.1016/j.autcon.2017.08.015

	Introduction 
	Main Block 
	Generating An Initial Gridshell 
	Genetic Algorithm 
	Particle Swarm Optimization 
	The Regularity Indexes 
	Mathematical Model of the Problem 

	Experimental Results 
	Comparison of the Regularity Indexes 
	Improving the Regularity 

	Conclusions 
	
	References

