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Abstract: In order to increase the paired-domination number of a graph G, the minimum number of
edges that must be subdivided (where each edge in G can be subdivided no more than once) is called
the paired-domination subdivision number sd,,, (G) of G. It is well known that sd,,, (G + ¢) can be
smaller or larger than sd,,, (G) for some edge e ¢ E(G). In this note, we show that, if G is an isolated-
free graph different from mKj, then, for every edge e ¢ E(G), sd,,, (G +e¢) < sd,,, (G) +2A(G).

Keywords: paired-domination number; paired-domination subdivision number

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let V(G) and
E(G) be the vertex set and edge set of a graph G, respectively. The open neighborhood Ng(v)
of a vertex v in G is the set of all vertices that are adjacent to v, the closed neighborhood
Ng|v] is the set Ng(v) U {v}, and the set of edges incident with v is E(v). The degree of a
vertex v is the number of vertices in N (v). The maximum degree among all vertices of G
is denoted by A(G). The union of simple graphs G and H is the graph G U H with vertex
set V(G) UV(H) and edge set E(G) U E(H). A star of order n > 2 is the complete bipartite
graph Kj ,_1. The center of the star is the vertex of maximum degree.

A leaf of G is a vertex with degree one and a support vertex is a vertex adjacent to a
leaf. For a vertex subset S C V(G), we denote by G[S] the subgraph induced by S. A
subdivision of an edge uv is obtained by removing the edge uv, adding a new vertex w, and
adding edges uw and wv. Throughout this paper, when an edge e = uv is subdivided, the
subdivision vertex for e is denoted by w, = w,,. For a set F of edges in a graph G, we
use Gr to denote the graph obtained from G by subdividing every edge in F. Note that
we # wy for every two different edgese, f € F.

A set S C V(G) is a paired-dominating set of G, PD-set for short, if each vertex in
V(G)\S has at least one neighbor in S and G[S] contains a perfect matching. The minimum
cardinality of a PD-set of G is called the paired-domination number of G and is denoted by
Ypr(G). Let S be a PD-set of G with a perfect matching M. Then, two vertices u and v are
called partners (or paired) in S if the edge uv € M. Paired domination in graphs was first
studied in [1] and has been studied since then by several authors (for example, see [2-6]).
The literature on the subject of paired domination has been detailed in the recent book
chapter [7].

As good models of many practical problems, graphs sometimes have to be changed
to adapt the changes in reality. Thus, we must pay attention to the change of graph
parameters under graph modifications, such as deletion of vertices, deletion or addition
of edges, and subdivision of edges. For example, Kok and Mynhardt [8] introduced the
reinforcement number, which is the minimum number of edges which must be added to G
in order to decrease the domination number of G. Fink et al. [9] introduced the bondage
number of a graph, which is the minimum number of edges in which removal increases the
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domination number. For the subdivision of edges, Velammal [10], in his thesis, introduced
the domination subdivision number which is the minimum number of edges that must
be subdivided (where each edge can be subdivided at most once) in order to increase
the domination number. The study of this kind of problems has been extended to other
domination parameters (see, for instance [11-18]).

In this paper, we are interested in studying the paired-domination subdivision number
introduced by Favaron et al. in [19]. In order to increase the paired-domination number
of G, the minimum number of edges that must be subdivided (where each edge in G can
be subdivided no more than once) is called the paired-domination subdivision number and is
denoted by sd,,, (G). We note that the subdivision of the unique edge of a path of order 2
does not increase the paired-domination number. Thus, we always assume that all graphs
involved have a component of order at least 3. The minimum cardinality of a set F C E(G)
such that v, (Gr) > 7pr(G) is called an sd,, (G)-set. The paired-domination subdivision
number has been studied by several authors (see, for instance [20,21]).

Let G be a connected graph of order at least 3. Favaron et al. [19] posed the following
question: Is it true that, for any edge e ¢ E(G), sd,,, (G +e) < sd,,, (G)? Anegative answer
to this question was given by Egawa et al. [22]. However, they approved the question in
the affirmative if the following additional condition is added: each edge e ¢ E(G) satisfies
Ypr (G +e) < 7pr(G). We can further specify that, if v,,(G +¢) < 7,,(G) for some edge
e ¢ E(G), then the difference sd,, (G) — sd,,, (G + ¢) can be arbitrary large. To see this,
consider the connected graph G; obtained from t > 3 disjoint K, by adding a new vertex
attached to one vertex of each K;. Now, for two leaves x and y of G;, one can easily see that
Ypr(Gt) = sdy,, (Gt) = 2t, while 7, (G + xy) = 2t — 2 and sd,,, (Gt + xy) = 3.

Let S¢ (t > 4) denote the subdivided star obtained from a star K; ;1 of order ¢t by
subdividing all edges of K ;_1. Let G; be obtained from t copies of S; by adding a new
vertex x and joining x to the central vertices of subdivided stars, G, be obtained from t — 1
copies of S; by adding a new vertex i and joining y to the central vertices of subdivided stars
and adding a pendant edge yz, and let G; be the union G; U G;. Note that A(G¢) = t. Itis
not hard to verify that sd,, (Gt) = t and sd,, (Gt + xz) = 2t + 1 = sd,,,(Gt) + A(Gt) +1,
where the graph G; + xz for t = 4 is illustrated in Figure 1. Hence, the difference of
sdy,, (G +e) —sd,,, (G) can be arbitrary large for some edge e ¢ E(G). Thus, an interesting
problem is to find good bounds on sd,,, (G + ¢) in terms of sd,,, (G) and A(G) if e  E(G).

z

Gy Gz
Figure 1. The graph G; + xz for t = 4.

In this paper, we provide an upper bound for sd,,, (G +e) forany e ¢ E(G) in terms
of sd,,, (G) and A(G), the proof of which will be given in Section 3. More precisely, we
mainly show the following.

Theorem 1. Let G be an isolated-free graph different from mKy. Then, for every e ¢ E(G),

sdy,, (G +e) < sdy,, (G) +2A(G).
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Furthermore, this bound is sharp.
We close this section by recalling three useful results.

Proposition 1 ([19]). For any connected graph G of order at least three and any graph G’ formed
from G by subdividing an edge e € E(G), vpr(G') > vpr(G).

Proposition 2 ([22]). Let G be a graph with no isolated vertex. Then, for every edge e ¢ E(G),
either yp (G) = vpr(G +e) or 1pr (G) = ¥pr (G + ) + 2.

Proposition 3 ([22]). Let G be a connected graph of order at least three, and let e ¢ E(G) satisfy
Ypr (G +e) < vpr(G). Then, sdw,(G +e) < sdyp,(G).

2. Preliminary Results

In this section, we give some preliminary results useful for the proof of Theorem 1.
We begin by extending the result of Proposition 3 to disconnected graphs different from
mKjp and having no isolated vertices.

Proposition 4. Let G be an isolated-free graph different from mKy. If v, (G + ) < v (G) for
some edge e ¢ E(G), then sdy,, (G +e) < sdy,, (G).

Proof. Let F be an sd,,, (G)-set and observe that Gr + ¢ = (G + ¢)p. We shall show that
Ypr(Gr +¢) > 7pr(G +e). Assume that e = xy and let P be a 7v,,(Gr + e)-set. If PN
{x,y} = @ or x,y € P, and they are not partners in P, then, clearly, P is a PD-set of G, so
Ypor((G+e)r) > vpr(GE) > 7pr(G) > 7pr(G + ). Hence, we assume that PN {x,y} # @.
First, let x,y € P be two partners in P. Since P is a 7,/(Gr + e)-set, we may assume
that Ng,(x) € P. Letx’ € Ng,(x)\ P. If y has a neighbor y' € V — P, then the set
PU{x,y'} (in which x and y are partners with x" and v/, respectively) is a PD-set of Gr;
thus, 7pr((G +e)r) = 1pr(Gr) =2 > 7pr(G) > 7pr(G +e).

Hence, we can assume that Ng,.(y) € P. Then, the set (P \ {y}) U {x’} (in which
x and x" are partners) is a PD-set of Gp, and the result follows as above. Finally, let
|P N {x,y}| = 1. Without loss of generality, assume that x € P. If y has a neighbor in
P other than x, then P is a PD-set of Gr and the result follows as above. Now, if x is the
unique neighbor of y in P, then, by considering a vertex y’ € Ng, (v), one can see that the
set PU{y,y'} (in which y and y’ are partners) is a PD-set of Gf; thus, 7,,((G +e)r) >
Yor(Gr) =2 > vpr(G) > 7pr(G + ). In either case, v, (Gr +€) > 7, (G + ¢), implying
that sd,, (G +e¢) < sd,,, (G), which completes the proof. [

Lemma 1. Let G be an isolated-free graph different from mKy. If v, (G 4 e) < v,r(G) for some
edge e ¢ E(G), then sd,,, (G +e) <3.

Proof. Assume that e = xy, and let x; € Ng(x) and y; € Ng(y). We denote by G’ the
graph formed from G + e by subdividing the three edges e, xx1, yy; and adding three new
vertices z1,zp, z3, respectively. In addition, we denote by G; the graph formed from G
by subdividing the two edges xx1,yy; and adding two new vertices zy, z3, respectively,
and we denote by G, the graph formed from G by subdividing only the edge xx; and
adding a new vertex z;. Let P be a 'ypr(G’ )-set. If zy ¢ P, then P is a PD-set of Gy, so
Ypr(G') = |P| > 9pr(G1) > ¥pr(G) > 9pr(G +e). Hence, assume that z; € P, and let,
without loss of generality, x be the partner of z; in P.

Assume first that (Ng/[y] — {z1}) N P # @. If x has a neighbor w in G’ — {z;} such
that w ¢ P, then (P — {z1}) U {w} is a PD-set of Gy, and, as before, we have v,,(G’") >
Ypr(G + e). Thus, we can assume that all neighbors of x in V(G’) — {21} belong to P. Then,
clearly, P — {x,z1} is a PD-set of Gy, and, as before, 7,,(G’) > 7,,(G + ¢). Assume now
that (Ng/[y] — {z1}) NP = @. Then, we have y; € D. If x has a neighbor w in V(G') — {21}
such that w ¢ P, then (P — {z1}) U {w} is a PD-set of G,, and, as above, one can easily
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see that v, (G’) > 7p,(G + e). Finally, if all neighbors of x in G’ — z; belongs to P, then
P — {x,z1} is a PD-set of G; thus, 7r(G") > 7pr(G + e). Therefore, sd,,, (G +e¢) <3. [

As an immediate consequence of Proposition 4 and Lemma 1, we, therefore, have the
following result.

Corollary 1. Let G be an isolated-free graph different from mKy. If v (G +e) < vpr(G) for
some edge e ¢ E(G), then sd,, (G +e) < min{3,sd,,, (G)}.

Lemma 2. For any isolated-free graph G different from mKy, let F be a set of edges of G in which
subdivision increases yp(G), e = xy & E(G), and let G’ be the graph formed from G + e by
subdividing the edges in F U {e}. If P is a 7y, (G")-set such that w, & P or x,y € P, then

sdy, (G +e) < |F| + 1.

Proof. According to Proposition 4, we may assume that ,,(G) = v,,(G +e) (otherwise,
the result is straightforward from this proposition). If wy, ¢ P, then, clearly, P is a PD-set
of Gp; thus, v, (G') > vpr(Gr) > Ypr(G) = 7pr(G +e). Hence, assume that wy, € P.
Since, by assumption, x,y € P, we may assume, without loss of generality, that x and wy,
are partners in P. If all neighbors of x in V(G’) — {wy, } belong to P, then P — {x, wyy}
is a PD-set of Gr; thus, v,,(G') > 7pr(Gr) +2 > 9pr(G) = v (G +¢). Now, if x has a
neighbor w in V(G') — {wyy}, then (P — {wy,) U {w} is a PD-set of G”, and, as before,
Yor(G") = Ypr(GF) > Ypr(G) = 7pr (G + €), which completes the proof. [

Lemma 3. Let G be an isolated-free graph different from mKy, and let F be an sd,, (G)-set. If
e =xy & E(G) such that E(x) ¢ F and E(y) € F, then

sdy,, (G +e) <sdy, (G)+3.

Proof. If v,,(G +¢e) < 7pr(G), then by Corollary 1, the assertion is trivial. So, in the
following, we may assume that 7, (G +¢) = 9,-(G). Since E(x) € Fand E(y) ¢ F, let
t1 and f; be the neighbors of x and y, respectively, such that t1x,t,y € F. Let G’ be the
graph formed from G + e by subdividing the edges in F U {e, xt1, yt2}. We denote by P
a vpr(G')-set. According to Lemma 2, we may assume that w, € Pand [PN{x,y}| =1
(otherwise, the result is straightforward from this lemma). Without loss of generality,
assume that x is the partner of w,.

First, let (Ng/[y] — {we}) N P # @. If x has a neighbor w in V(G’) such that w ¢ P,
then, clearly, (P — {wyy }) U {w} is a PD-set of G; which is obtained from G by subdividing
the edges of F U {xty,yty}. It follows that v, (G') > vpr(G1) = ¥pr(GE) > ¥ (G) =
Ypr(G + e). Hence, we assume that all neighbors of x in V(G’) belong to P. In this case,
P — {x,wy,} is a PD-set of Gy, and, as before, we obtain v,,(G") > 7,,(G +e).

Assume now that (Ng/[y] — {wx,}) N P = @. Therefore, t; € P (to paired-dominates
Wyt,). If x has a neighbor w in G’ — {wyy } such that w ¢ P, then, clearly, (P — {wy,}) U {w}
is a PD-set of G, which is obtained from G by subdividing the edges of F U {xt; }, and as
before one can see that ,,(G") > 9,,(G + e). Hence, we can assume that all neighbors of
x in G’ — {wyy } belong to P. In this case, P — {x, wyy,} is a PD-set of Gy; thus, v, (G") >
Ypr(G2) > 7pr(G) = 7pr(G + ¢). In either case, sd,, (G +¢) <sd,, (G) +3. O

Lemma 4. Let G be an isolated-free graph different from mKy. If e = xy ¢ E(G) such that x or y
is a support vertex, then

sdy,, (G +e) <sdy, (G) +2.
Proof. If v,,(G +e) < 7pr(G), then the result follows from Proposition 4. Hence, we

assume that v, (G +e) = v,-(G). Without loss of generality, let x be a support vertex,
and let xx; be a pendant edge. Suppose that F is an sd,, (G)-set. We denote by G; the
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graph formed from G by subdividing the edges in F. In addition, we denote by G, the
graph formed from G by subdividing the edges in F U {xx;}, and we denote by G’ the
graph formed from G + e by subdividing the edges in F U {e, xx1 }. Let P be a 7,,(G')-set.
By Lemma 2, we may assume that w, € P and |P N {x,y}| = 1 (otherwise, the result is
straightforward from this lemma).

First, let x be the partner of wyy in P. Then, we must have x1, wxy, € P. If Ng/ [y] N
(P —{wyy}) # O, then the set P — {wyy, x1 } in which x and wy,, are partners, is a PD-set
of Gy yielding v, (G") > vpr(G2) > vpr(G) = 7pr(G + ¢). Hence, assume that N/ [y] N
(P — {wyy}) = @ and let w be a neighbor of y in G’. Then, the set (P — {wyy, x1}) U {y, w}
in which x and y are partners with wy,, and w, respectively, is a PD-set of G,. As before,
we get ’)’pr(G/) > ")’pr(Gz) > ')/pr(G) = ')/pr(G + 6).

Now, assume that y is the partner of wyy in P. Clearly, wyy, € P (to paired-dominates
x1). If y has a neighbor w in V(G’) — {wyy } such that w ¢ P, then (P — {wy, }) U {w} is
a PD-set of Gy; thus, 75, (G') > 7pr(G2) = vpr(G1) > ¥pr(G) = 7pr(G + ¢). Now, if all
neighbors of y in V(G’) — {wyy } belong to P, then P — {y, wyy } is a PD-set of Gy, and, as
before, we obtain v, (G’) > 7v,(G + e). In either case, sd,,, (G +e) <sd,, (G)+1. O

Before going further, we give some notation and definitions. For a vertex x € V(G),
the set of isolated vertices in the subgraph induced by Ng(x) is denoted by IS(x). We
also denote by X the set of pairs (x,y) of non-adjacent vertices in G. Moreover, for a
pair (x,y) € Xg, let E(x,y) = {tx | ty € E(y)}, in other words, E(x, y) is the set of edges
incident with x in which end vertices are neighbors of y. In addition, we consider two
functions g; and g2 on X as follows.

(@) q1:Xg — N=20 defined by g1(x,y) = 2 if neither N(x) nor N(y) is independent, and
q1(x,y) = min{min{|N(0) N (V = N[x])| : v € IS(x)}, min{|N(u) N (V = N[y])| : u € IS(y)}}

otherwise. Note that g1 (x,y) = 0 if and only if x or y is a support vertex.
(b) g2 : Xg — N=0 defined by g2(x,y) = 2 if there exits an sd,,, (G)-set M such that
E(x) € Mand E(y) € M, and

q2(x,y) = min{[(E(x) UE(y)) \ M| — |[E(x,y) \ M| : M is a sd,,, (G)-set}
otherwise.

Lemma 5. Let G be an isolated-free graph different from mKy, and let e = xy & E(G).
1. Ifneither N(x) nor N(y) is independent, then

sdy,, (G +e) <sdy, (G) +3 +max{q2(x,y),92(y,x) } < sd,,,(G) +A(G) +3.
2. IfFisansd,, (G)-set such that E(x) C F, E(y) € F and N(y) is not independent, then
sdy, (G +e) <sdy, (G) +q2(x,y) +2 < sd,,,(G) + A(G) +2.
3. IfN(x)NN(y) # D, then
sdy,, (G +e) < sdy, (G) +2 +min{A(G), max{qa(x, ), 2(y, )} .

Proof. According to Proposition 4, we may assume that 7, (G +¢) = 7,,(G). Note that
since G is isolated-free and different from mKj,, A(G) > 2. We now show items of the
lemma one by one.
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If there is an sd.,,, (G)-set F such that E(x) ¢ F and E(y) ¢ F, then g»(x,y) = 2, and,
by Lemma 3, we have

sdy,, (G +e) sdy,, (G) +3
sdy,, (G) +max{q2(x,y),q2(y, x) } +1

sdy, (G) +A(G) + 1.

VARVANRVAN

Hence, we may assume that, for every sd,, (G)-set F, E(x) C F or E(y) C F. In that
case, it is clear that sd,,, (G) + max{q2(x,y),q2(y, x) } +3 < sd,,, (G) + A(G) + 3.
Now, let F be an sd,, (G)-set with, without loss of generality, E(x) C F. Since, by
assumption, neither N(x) nor N(y) is independent, let x1, x, be two adjacent vertices
of N(x), likewise y1,y» two adjacent vertices of N(y). In addition, consider the graph
G’ formed from G + xy by subdividing the edges in F U {xy, x1x2, Y112 } and all edges
in (E(y) — F) \ (E(y,x) — F) and let Pbe a 7, (G)-set. If wy, & Porx,y € P, then, by
Lemma 2, we have sdy,, (G +e) < |[F| +3+q2(y, x) < sdy,, (G) + A(G) + 3. Hence,
we may assume that wy, € P and |PN{x,y}| = 1. We claim that wy, is the unique
subdivision vertex adjacent to x belonging to P. Suppose, to the contrary, that wy; is a
subdivision vertex adjacent to x such that wy, € P. If x is the partner of Wyy, then the
set P — {wy, wxy}, in which x and z are partners, is a PD-set of G; which is obtained
from G + e by subdividing all edges in (F U {x1x2,y1y2}) — {xz} and the edges of
(E(y) — F)\ (E(y,x) — F). It follows that ,,(G") > 7p,(G1) > 7, (G +e); thus,

sdy, (G +e) <sdy, (G) +q2(y,x) +1 < sd,,,(G) + A(G) +3.

Hence, we can now assume that y is the partner of wy,. If all neighbors of y in G’ — wy
arein P, then P — {y, wyy } is a PD-set of G, which is obtained from G by subdividing
all edges in F U {x1x2, 112} and the edges of (E(y) — F) \ (E(y,x) — F). It follows
that v, (G") > vpr(G2) > pr(G) = 7pr (G +e); thus,

Sd"/pr(G + e) S Sd’)’pr(G) + qZ(yr x) + 1< Sd'Ypr(G) + A(G) + 3.

If y has a neighbor w in G’ — wy, with w ¢ P, then (P — {wy,}) U {w} is a PD-set of
G2 (defined before) and the desired result follows as before. Thus, wy, is indeed the
unique subdivision vertex adjacent to x that belongs to P. We now claim that wyy, is
the unique subdivision vertex adjacent to y belonging to P. Suppose, to the contrary,
that wy; is a subdivision vertex adjacent to y such that w,, € P. If y is the partner of
Wyy, then the set P — {w,;, wyy }, in which y and z are partners, is a PD-set of G] which
is obtained from G + e by subdividing all edges in (F U {x1x2,y1y2}) — {yz} and
the edges of (E(y) — FU{yz}) \ (E(y,x) — F). It follows that y,,(G") > 7,(G}) >
Ypr (G +e); thus,

sdy, (G +e) <sdy, (G) +q2(y,x) +1 < sd,,, (G) + A(G) +3.

Therefore, we may now suppose that x is the partner of wyy. If all neighbors of x in
G’ — wyy arein P, then P — {x, wy, } is a PD-set of G, (defined before), and the desired
result follows. If x has a neighbor w in G’ — wy, withw & P, then (P — {wy,}) U{w} is
a PD-set of Gy, and the desired result follows as before. Thus, wyy is indeed the unique
subdivision vertex adjacent to y that belongs to P. Moreover, to paired-dominate
vertices Wy, y, and wy,,,, we may assume that x1,; € D. In this case, P — {y, wxy} (ify
is the partner of wy,) or P — {x, wyy } (if x is the partner of w,,) is a PD-set of G3 which
is obtained from G by subdividing the edges of (F — (E(x) U E(y)) U {x1x2, y1y2},
implying that v, (G") > 7pr(G3) > ¥pr(G) = vpr(G + e). Therefore,

sdy,, (G+e) < sdy, (G)—[E(x)UE(y)|+2
< sdy, (G).
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O

We first note that, since E(x) C F, we have sd,, (G) + q2(y,x) +1 < sd,,,(G) +
|E(y)| +1 < sd,,(G) + A(G) + 2. In addition, since, by assumption, E(y) £ F and
N(y) is not independent, lete; = yt € E(y) — F, and let y;, y» be two adjacent vertices
of N(y). We denote by G; the graph formed from G + xy by subdividing the edges
of FU{y1y2} and all edges in (E(y) — F) \ (E(y,x) — (FU{e1})), and we denote by
G’ the graph formed from G; by further subdividing the edge xy. Now, let P be a
Ypr(G’)-set, and let F’ be the set of all subdivided edges of G + e, except xy, such
that their subdivision vertices belong to P. We denote by G, the graph formed from
G by subdividing the edges of F'. Ttis easy to check that, if wyy, & Porx,y € P, then,
by Lemma 2,

sday, (G +¢) < [F| +2+ [E()] < sdy, (G) + A(G) +2.

Hence, we may assume that wy, € D and [P N {x,y}| = 1. As in the proof of Item
1, we can see that wyy is the unique subdivision vertex adjacent to x and y that
belongs to P. To paired-dominate vertex wy,,,, we may assume that y; € P. Now,
if x and wyy are partners in P and w £ Wwyy is a subdivision vertex adjacent to x,
then (P — {wy,}) U {w} is a PD-set of G3 which is formed from G by subdividing
the edges in F U {y1y>}, as well as the edges of (E(y) — FU{e1}) \ (E(y,x) — F).
It follows that 7, (G') > 7pr(G3) > ¥pr(G) = 7pr(G + e). However, if y and wyy
are partners in P, then, clearly, Ng(x) C P; thus, P — {y, wyy } is a PD-set of Gy, so
Yor(G') = ¥pr(G2) > ¥pr(G) = 7pr(G +e). In either case,

Sd"rpr(G + 6) S Sd/ypr(G) + ‘72(% .X) +2 S Sd'Ypr(G) + A(G) + 2.

Lett € N(x) N N(y). If there is an sd.,, (G)-set F such that E(x) ¢ Fand E(y) € F,
then g2(x,y) = 2, and, by Lemma 3, we have

sdy,, (G +e) <sdy, (G) +3 < sdy, (G) +2+min{A(G), max{q2(x,y),q2(y, x) } }.

Hence, we can assume that, for every sd,,, (G)-set F, E(x) C For E(y) C F. Clearly,
in this case, max{q2(x,¥),92(x,¥)} < A(G). Now, let F be an sd, (G)-set, such that,
without loss of generality, E(x) C F. We denote by G’ the graph formed from G + xy
by subdividing the edges of F U {xy} U (E(y) — F). Let P be a ,,(G’)-set, and let F’
be the set of all subdivided edges of G + e, except xy, in which subdivision vertices
belong to P. If wyy & P or x,y € P, then, by Lemma 2, sd,,, (G +e¢) < [F[+2+
|E(y) — F| < sdy,,(G) +2 +min{A(G), max{q2(x,y),q2(y, x) } }. Hence, we assume
that wyy € D and [P N {x,y}| = 1. As in the proof of Item 1, we can see that w,, is the
unique subdivision vertex adjacent to x and y that belongs to P. Then, clearly, t € P
(to paired-dominate either wy; or wy;), thus, P — {x,y, wyy } is a PD-set of the graph
G” which is obtained from G by subdividing only the edges of F’. Consequently,
7pr(Gl> > 'Ypr(G//) > 'Ypr(G) = 'Ypr(G + e); hence,

sdy, (G+e) < |F|+1
< [Fl+[E(y) - Fl+1
< sdy,,(G) +2+ min{A(G), max{qa(x, ), 32(y, ¥)} .
The proof is completed.

3. Proof of Theorem 1

In this section, we prove Theorem 1.

Proof of Theorem 1. We start by noting that since G is isolated-free and different from
mKy, A(G) > 2. Now, lete = xy & E(G). If 7,(G +¢) < 7,+(G), then, by Proposition 4
sdy, (G +e) < sdy, (G). Hence, we assume that ,,(G +¢) = 7p/(G). By Lemma 5-(3),
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we can assume that N(x) N N(y) = @, for, otherwise, the result is obviously valid. If
q1(x,y) = 0, then x or y is support vertex; thus, the result follows by Lemma 4. Now, we
consider two cases.

Casel. q1(x,y) = 1.

Without loss of generality, assume that 1 = g1(x,y) = |N(v) N (V — N[x])|, where
v € IS(x). Clearly, in this case v has degree two. Let z be the neighbor of v different
from x. Moreover, let F be an sd,, (G)-set such that g>(x, y) is minimized. We can assume
without loss of generality that E(x) C F (otherwise, the result follows from Lemma 3). Let
F; = FUE(y). Consider the graph G’ = (G + ¢), u(¢,0-} and let P be a 7,,(G')-set, and let
F’ be a subset of F in which subdivision vertices are in P. According to Lemma 2, we can
assume that wy, € P and that [P N {x,y}| = 1. As in the proof of item 1 of Lemma 5, one
can see that wyy is the unique subdivision vertex adjacent to x and y that belongs to P.

First,letx € Pand y ¢ P. If v ¢ P, then wy, € P; thus, the set (P — {wyz, wyy, x}) U
{v} is a PD-set of the graph G” which is obtained from G by subdividing the edges
of F' — {e,vz}. It follows that v,,(G') > 7 (G") +2 > vpr(G) = (G +e); thus,
sdy,, (G +e) <|F|+2<sd,, (G)+A(G) +2. Now, if v € P, then wy; is the partner of v
in P; thus, the set (P — {wyz, Wy, }), in which v and x are partners, is a PD-set of the graph
G" defined before, which leads to sd,,, (G +e¢) < sdy,, (G) + A(G) +2. Now, lety € P
and x ¢ P. Then, we must have v,w,, € P; thus, the set (P — {wyy, Wy, y}) U {x} is a
PD-set of G; which is obtained from G + ¢ by subdividing the edges in F’ — {e}, yielding
sdy,, (G +e) <sdy, (G) + A(G) + 2 as above.

Case 2. g1(x,y) > 2.

Assume that there exists some sd.,, (G)-set F satisfying E(x) ¢ F and E(y) ¢ F.
By Lemma 3, the result follows. Hence, we assume that, for every sd,, (G)-set F, either
E(x) C For E(y) C F. By Lemma 5-(3 and 1), we may assume that N(x) N N(y) = @
and either N(x) or N(y) is independent. Let z be a vertex in IS(x) U IS(y) such that
q1(x,y) = [N(z) N (V — N[x])| or g1(x,y) = |[N(z) N (V — Nly])|. Moreover, let F be an
sdy,, (G)-set. We denote by G’ the graph formed G + xy by subdividing the edges of
FU{xy} UE(x)UE(y) UE(z). Note that since either E(x) C F or E(y) C F, the number
of subdivided edges is at most |F| +-2A(G). Let P be a 7,,(G’)-set. Among all edges of
G that have been subdivided resulting in the graph G/, let F’ be the set of those in which
subdivision vertices are in P. If wy, ¢ P or x,y € P, then, clearly, the result follows from
Lemma 2. Hence we may assume that wy, € P and |[PN{x,y}| = 1. In addition, we
assume, without loss of generality, that x € Pand y ¢ P.

By the similar method to the proof of Lemma 5-(1), we may assume that no subdivision
vertex adjacent to x or y other than w,, belongs to P. Since y ¢ P, we have Ng(y) C P.
First, let z € Ng(y). Then, z € P and it has as a partner a subdivision vertex, say w,,/. In
this case, one can easily see that the set (P — {x, w,,, wyy}) U {y}, in which y and z are
partners, is a PD-set of the graph G, which is obtained from G 4 e by subdividing all edges
in F' — {zz/,yz}. It follows that 7, (G') > 7, (G2) > 7pr(G +¢). Now, let z € N(x). Then,
P contains a subdivision vertex w,,, that may have as a partner either z or z’. If z € P, then
let P' = P — {w,,,wyy}, and if 2 € P, thenlet P’ = {z} UP — {w,,, wy,}. Regardless
the situation that occurs, P’ is a PD-set of the graph Gz which is obtained from G + e by
subdividing all edges in F' — {zz/, xz}; thus, v,(G") > 7,(G + e) again. This completes
the proof. O

4. Conclusions and Open Problems

In this paper, we considered the effect of subdivision of edges on the paired-domination
number, that is, the paired-domination subdivision number of a graph. In particular,
we proved that, for any isolated-free graph G different from mKjy, if e ¢ E(G), then
sdy,, (G +e) < sdy, (G) +2A(G). As a consequence of this study, we pose the following
conjecture.
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Conjecture 1. For any isolated-free graph different from mKy and any e ¢ E(G),
Sd'Ypr(G + 8) S Sd"ypy (G) + A(G) + 2.
As a future work, we will focus on this problem.
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