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Abstract: In order to increase the paired-domination number of a graph G, the minimum number of
edges that must be subdivided (where each edge in G can be subdivided no more than once) is called
the paired-domination subdivision number sdγpr (G) of G. It is well known that sdγpr (G + e) can be
smaller or larger than sdγpr (G) for some edge e /∈ E(G). In this note, we show that, if G is an isolated-
free graph different from mK2, then, for every edge e 6∈ E(G), sdγpr (G + e) ≤ sdγpr (G) + 2∆(G).

Keywords: paired-domination number; paired-domination subdivision number

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let V(G) and
E(G) be the vertex set and edge set of a graph G, respectively. The open neighborhood NG(v)
of a vertex v in G is the set of all vertices that are adjacent to v, the closed neighborhood
NG[v] is the set NG(v) ∪ {v}, and the set of edges incident with v is E(v). The degree of a
vertex v is the number of vertices in NG(v). The maximum degree among all vertices of G
is denoted by ∆(G). The union of simple graphs G and H is the graph G ∪ H with vertex
set V(G) ∪V(H) and edge set E(G) ∪ E(H). A star of order n ≥ 2 is the complete bipartite
graph K1, n−1. The center of the star is the vertex of maximum degree.

A leaf of G is a vertex with degree one and a support vertex is a vertex adjacent to a
leaf. For a vertex subset S ⊆ V(G), we denote by G[S] the subgraph induced by S. A
subdivision of an edge uv is obtained by removing the edge uv, adding a new vertex w, and
adding edges uw and wv. Throughout this paper, when an edge e = uv is subdivided, the
subdivision vertex for e is denoted by we = wuv. For a set F of edges in a graph G, we
use GF to denote the graph obtained from G by subdividing every edge in F. Note that
we 6= w f for every two different edges e, f ∈ F.

A set S ⊆ V(G) is a paired-dominating set of G, PD-set for short, if each vertex in
V(G)\S has at least one neighbor in S and G[S] contains a perfect matching. The minimum
cardinality of a PD-set of G is called the paired-domination number of G and is denoted by
γpr(G). Let S be a PD-set of G with a perfect matching M. Then, two vertices u and v are
called partners (or paired) in S if the edge uv ∈ M. Paired domination in graphs was first
studied in [1] and has been studied since then by several authors (for example, see [2–6]).
The literature on the subject of paired domination has been detailed in the recent book
chapter [7].

As good models of many practical problems, graphs sometimes have to be changed
to adapt the changes in reality. Thus, we must pay attention to the change of graph
parameters under graph modifications, such as deletion of vertices, deletion or addition
of edges, and subdivision of edges. For example, Kok and Mynhardt [8] introduced the
reinforcement number, which is the minimum number of edges which must be added to G
in order to decrease the domination number of G. Fink et al. [9] introduced the bondage
number of a graph, which is the minimum number of edges in which removal increases the
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domination number. For the subdivision of edges, Velammal [10], in his thesis, introduced
the domination subdivision number which is the minimum number of edges that must
be subdivided (where each edge can be subdivided at most once) in order to increase
the domination number. The study of this kind of problems has been extended to other
domination parameters (see, for instance [11–18]).

In this paper, we are interested in studying the paired-domination subdivision number
introduced by Favaron et al. in [19]. In order to increase the paired-domination number
of G, the minimum number of edges that must be subdivided (where each edge in G can
be subdivided no more than once) is called the paired-domination subdivision number and is
denoted by sdγpr (G). We note that the subdivision of the unique edge of a path of order 2
does not increase the paired-domination number. Thus, we always assume that all graphs
involved have a component of order at least 3. The minimum cardinality of a set F ⊆ E(G)
such that γpr(GF) > γpr(G) is called an sdγpr (G)-set. The paired-domination subdivision
number has been studied by several authors (see, for instance [20,21]).

Let G be a connected graph of order at least 3. Favaron et al. [19] posed the following
question: Is it true that, for any edge e /∈ E(G), sdγpr (G+ e) ≤ sdγpr (G)? A negative answer
to this question was given by Egawa et al. [22]. However, they approved the question in
the affirmative if the following additional condition is added: each edge e /∈ E(G) satisfies
γpr(G + e) < γpr(G). We can further specify that, if γpr(G + e) < γpr(G) for some edge
e /∈ E(G), then the difference sdγpr (G)− sdγpr (G + e) can be arbitrary large. To see this,
consider the connected graph Gt obtained from t ≥ 3 disjoint K2 by adding a new vertex
attached to one vertex of each K2. Now, for two leaves x and y of Gt, one can easily see that
γpr(Gt) = sdγpr (Gt) = 2t, while γpr(Gt + xy) = 2t− 2 and sdγpr (Gt + xy) = 3.

Let St (t ≥ 4) denote the subdivided star obtained from a star K1,t−1 of order t by
subdividing all edges of K1,t−1. Let G1 be obtained from t copies of St by adding a new
vertex x and joining x to the central vertices of subdivided stars, G2 be obtained from t− 1
copies of St by adding a new vertex y and joining y to the central vertices of subdivided stars
and adding a pendant edge yz, and let Gt be the union G1 ∪ G2. Note that ∆(Gt) = t. It is
not hard to verify that sdγpr (Gt) = t and sdγpr (Gt + xz) = 2t + 1 = sdγpr (Gt) + ∆(Gt) + 1,
where the graph Gt + xz for t = 4 is illustrated in Figure 1. Hence, the difference of
sdγpr (G + e)− sdγpr (G) can be arbitrary large for some edge e 6∈ E(G). Thus, an interesting
problem is to find good bounds on sdγpr (G + e) in terms of sdγpr (G) and ∆(G) if e 6∈ E(G).

x y
z

G1 G2.

Figure 1. The graph Gt + xz for t = 4.

In this paper, we provide an upper bound for sdγpr (G + e) for any e /∈ E(G) in terms
of sdγpr (G) and ∆(G), the proof of which will be given in Section 3. More precisely, we
mainly show the following.

Theorem 1. Let G be an isolated-free graph different from mK2. Then, for every e 6∈ E(G),

sdγpr (G + e) ≤ sdγpr (G) + 2∆(G).
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Furthermore, this bound is sharp.

We close this section by recalling three useful results.

Proposition 1 ([19]). For any connected graph G of order at least three and any graph G′ formed
from G by subdividing an edge e ∈ E(G), γpr(G′) ≥ γpr(G).

Proposition 2 ([22]). Let G be a graph with no isolated vertex. Then, for every edge e 6∈ E(G),
either γpr(G) = γpr(G + e) or γpr(G) = γpr(G + e) + 2.

Proposition 3 ([22]). Let G be a connected graph of order at least three, and let e 6∈ E(G) satisfy
γpr(G + e) < γpr(G). Then, sdγpr (G + e) ≤ sdγpr (G).

2. Preliminary Results

In this section, we give some preliminary results useful for the proof of Theorem 1.
We begin by extending the result of Proposition 3 to disconnected graphs different from
mK2 and having no isolated vertices.

Proposition 4. Let G be an isolated-free graph different from mK2. If γpr(G + e) < γpr(G) for
some edge e 6∈ E(G), then sdγpr (G + e) ≤ sdγpr (G).

Proof. Let F be an sdγpr (G)-set and observe that GF + e = (G + e)F. We shall show that
γpr(GF + e) > γpr(G + e). Assume that e = xy and let P be a γpr(GF + e)-set. If P ∩
{x, y} = ∅ or x, y ∈ P, and they are not partners in P, then, clearly, P is a PD-set of GF, so
γpr((G + e)F) ≥ γpr(GF) > γpr(G) > γpr(G + e). Hence, we assume that P ∩ {x, y} 6= ∅.
First, let x, y ∈ P be two partners in P. Since P is a γpr(GF + e)-set, we may assume
that NGF (x) * P. Let x′ ∈ NGF (x) \ P. If y has a neighbor y′ ∈ V − P, then the set
P ∪ {x′, y′} (in which x and y are partners with x′ and y′, respectively) is a PD-set of GF;
thus, γpr((G + e)F) ≥ γpr(GF)− 2 ≥ γpr(G) > γpr(G + e).

Hence, we can assume that NGF (y) ⊆ P. Then, the set (P \ {y}) ∪ {x′} (in which
x and x′ are partners) is a PD-set of GF, and the result follows as above. Finally, let
|P ∩ {x, y}| = 1. Without loss of generality, assume that x ∈ P. If y has a neighbor in
P other than x, then P is a PD-set of GF and the result follows as above. Now, if x is the
unique neighbor of y in P, then, by considering a vertex y′ ∈ NGF (y), one can see that the
set P ∪ {y, y′} (in which y and y′ are partners) is a PD-set of GF; thus, γpr((G + e)F) ≥
γpr(GF)− 2 ≥ γpr(G) > γpr(G + e). In either case, γpr(GF + e) > γpr(G + e), implying
that sdγpr (G + e) ≤ sdγpr (G), which completes the proof.

Lemma 1. Let G be an isolated-free graph different from mK2. If γpr(G + e) < γpr(G) for some
edge e 6∈ E(G), then sdγpr (G + e) ≤ 3.

Proof. Assume that e = xy, and let x1 ∈ NG(x) and y1 ∈ NG(y). We denote by G′ the
graph formed from G + e by subdividing the three edges e, xx1, yy1 and adding three new
vertices z1, z2, z3, respectively. In addition, we denote by G1 the graph formed from G
by subdividing the two edges xx1, yy1 and adding two new vertices z2, z3, respectively,
and we denote by G2 the graph formed from G by subdividing only the edge xx1 and
adding a new vertex z2. Let P be a γpr(G′)-set. If z1 6∈ P, then P is a PD-set of G1, so
γpr(G′) = |P| ≥ γpr(G1) ≥ γpr(G) > γpr(G + e). Hence, assume that z1 ∈ P, and let,
without loss of generality, x be the partner of z1 in P.

Assume first that (NG′ [y]− {z1}) ∩ P 6= ∅. If x has a neighbor w in G′ − {z1} such
that w 6∈ P, then (P− {z1}) ∪ {w} is a PD-set of G1, and, as before, we have γpr(G′) >
γpr(G + e). Thus, we can assume that all neighbors of x in V(G′)− {z1} belong to P. Then,
clearly, P− {x, z1} is a PD-set of G1, and, as before, γpr(G′) > γpr(G + e). Assume now
that (NG′ [y]−{z1})∩ P = ∅. Then, we have y1 ∈ D. If x has a neighbor w in V(G′)−{z1}
such that w 6∈ P, then (P− {z1}) ∪ {w} is a PD-set of G2, and, as above, one can easily
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see that γpr(G′) > γpr(G + e). Finally, if all neighbors of x in G′ − z1 belongs to P, then
P− {x, z1} is a PD-set of G2; thus, γpr(G′) > γpr(G + e). Therefore, sdγpr (G + e) ≤ 3.

As an immediate consequence of Proposition 4 and Lemma 1, we, therefore, have the
following result.

Corollary 1. Let G be an isolated-free graph different from mK2. If γpr(G + e) < γpr(G) for
some edge e 6∈ E(G), then sdγpr (G + e) ≤ min{3, sdγpr (G)}.

Lemma 2. For any isolated-free graph G different from mK2, let F be a set of edges of G in which
subdivision increases γpr(G), e = xy 6∈ E(G), and let G′ be the graph formed from G + e by
subdividing the edges in F ∪ {e}. If P is a γpr(G′)-set such that we 6∈ P or x, y ∈ P, then

sdγpr (G + e) ≤ |F|+ 1.

Proof. According to Proposition 4, we may assume that γpr(G) = γpr(G + e) (otherwise,
the result is straightforward from this proposition). If wxy 6∈ P, then, clearly, P is a PD-set
of GF; thus, γpr(G′) ≥ γpr(GF) > γpr(G) = γpr(G + e). Hence, assume that wxy ∈ P.
Since, by assumption, x, y ∈ P, we may assume, without loss of generality, that x and wxy
are partners in P. If all neighbors of x in V(G′)− {wxy} belong to P, then P− {x, wxy}
is a PD-set of GF; thus, γpr(G′) ≥ γpr(GF) + 2 > γpr(G) = γpr(G + e). Now, if x has a
neighbor w in V(G′) − {wxy}, then (P − {wxy) ∪ {w} is a PD-set of G′′, and, as before,
γpr(G′) ≥ γpr(GF) > γpr(G) = γpr(G + e), which completes the proof.

Lemma 3. Let G be an isolated-free graph different from mK2, and let F be an sdγpr (G)-set. If
e = xy 6∈ E(G) such that E(x) * F and E(y) * F, then

sdγpr (G + e) ≤ sdγpr (G) + 3.

Proof. If γpr(G + e) < γpr(G), then by Corollary 1, the assertion is trivial. So, in the
following, we may assume that γpr(G + e) = γpr(G). Since E(x) * F and E(y) * F, let
t1 and t2 be the neighbors of x and y, respectively, such that t1x, t2y 6∈ F. Let G′ be the
graph formed from G + e by subdividing the edges in F ∪ {e, xt1, yt2}. We denote by P
a γpr(G′)-set. According to Lemma 2, we may assume that we ∈ P and |P ∩ {x, y}| = 1
(otherwise, the result is straightforward from this lemma). Without loss of generality,
assume that x is the partner of we.

First, let (NG′ [y]− {we}) ∩ P 6= ∅. If x has a neighbor w in V(G′) such that w 6∈ P,
then, clearly, (P− {wxy})∪ {w} is a PD-set of G1 which is obtained from G by subdividing
the edges of F ∪ {xt1, yt2}. It follows that γpr(G′) ≥ γpr(G1) ≥ γpr(GF) > γpr(G) =
γpr(G + e). Hence, we assume that all neighbors of x in V(G′) belong to P. In this case,
P− {x, wxy} is a PD-set of G1, and, as before, we obtain γpr(G′) > γpr(G + e).

Assume now that (NG′ [y]− {wxy}) ∩ P = ∅. Therefore, t2 ∈ P (to paired-dominates
wxt2 ). If x has a neighbor w in G′−{wxy} such that w 6∈ P, then, clearly, (P−{wxy})∪ {w}
is a PD-set of G2 which is obtained from G by subdividing the edges of F ∪ {xt1}, and as
before one can see that γpr(G′) > γpr(G + e). Hence, we can assume that all neighbors of
x in G′ − {wxy} belong to P. In this case, P− {x, wxy} is a PD-set of G2; thus, γpr(G′) ≥
γpr(G2) > γpr(G) = γpr(G + e). In either case, sdγpr (G + e) ≤ sdγpr (G) + 3.

Lemma 4. Let G be an isolated-free graph different from mK2. If e = xy 6∈ E(G) such that x or y
is a support vertex, then

sdγpr (G + e) ≤ sdγpr (G) + 2.

Proof. If γpr(G + e) < γpr(G), then the result follows from Proposition 4. Hence, we
assume that γpr(G + e) = γpr(G). Without loss of generality, let x be a support vertex,
and let xx1 be a pendant edge. Suppose that F is an sdγpr (G)-set. We denote by G1 the
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graph formed from G by subdividing the edges in F. In addition, we denote by G2 the
graph formed from G by subdividing the edges in F ∪ {xx1}, and we denote by G′ the
graph formed from G + e by subdividing the edges in F ∪ {e, xx1}. Let P be a γpr(G′)-set.
By Lemma 2, we may assume that we ∈ P and |P ∩ {x, y}| = 1 (otherwise, the result is
straightforward from this lemma).

First, let x be the partner of wxy in P. Then, we must have x1, wxx1 ∈ P. If NG′ [y] ∩
(P− {wxy}) 6= ∅, then the set P− {wxy, x1} in which x and wxx1 are partners, is a PD-set
of G2 yielding γpr(G′) ≥ γpr(G2) > γpr(G) = γpr(G + e). Hence, assume that NG′ [y] ∩
(P− {wxy}) = ∅ and let w be a neighbor of y in G′. Then, the set (P− {wxy, x1}) ∪ {y, w}
in which x and y are partners with wxx1 and w, respectively, is a PD-set of G2. As before,
we get γpr(G′) ≥ γpr(G2) > γpr(G) = γpr(G + e).

Now, assume that y is the partner of wxy in P. Clearly, wxx1 ∈ P (to paired-dominates
x1). If y has a neighbor w in V(G′)− {wxy} such that w 6∈ P, then (P− {wxy}) ∪ {w} is
a PD-set of G2; thus, γpr(G′) ≥ γpr(G2) ≥ γpr(G1) > γpr(G) = γpr(G + e). Now, if all
neighbors of y in V(G′)− {wxy} belong to P, then P− {y, wxy} is a PD-set of G2, and, as
before, we obtain γpr(G′) > γpr(G + e). In either case, sdγpr (G + e) ≤ sdγpr (G) + 1.

Before going further, we give some notation and definitions. For a vertex x ∈ V(G),
the set of isolated vertices in the subgraph induced by NG(x) is denoted by IS(x). We
also denote by XG the set of pairs (x, y) of non-adjacent vertices in G. Moreover, for a
pair (x, y) ∈ XG, let E(x, y) = {tx | ty ∈ E(y)}, in other words, E(x, y) is the set of edges
incident with x in which end vertices are neighbors of y. In addition, we consider two
functions q1 and q2 on XG as follows.

(a) q1 : XG → N≥0 defined by q1(x, y) = 2 if neither N(x) nor N(y) is independent, and

q1(x, y) = min{min{|N(v) ∩ (V − N[x])| : v ∈ IS(x)}, min{|N(u) ∩ (V − N[y])| : u ∈ IS(y)}}

otherwise. Note that q1(x, y) = 0 if and only if x or y is a support vertex.
(b) q2 : XG → N≥0 defined by q2(x, y) = 2 if there exits an sdγpr (G)-set M such that

E(x) * M and E(y) * M, and

q2(x, y) = min{|(E(x) ∪ E(y)) \M| − |E(x, y) \M| : M is a sdγpr (G)-set}

otherwise.

Lemma 5. Let G be an isolated-free graph different from mK2, and let e = xy 6∈ E(G).

1. If neither N(x) nor N(y) is independent, then

sdγpr (G + e) ≤ sdγpr (G) + 3 + max{q2(x, y), q2(y, x)} ≤ sdγpr (G) + ∆(G) + 3.

2. If F is an sdγpr (G)-set such that E(x) ⊆ F, E(y) * F and N(y) is not independent, then

sdγpr (G + e) ≤ sdγpr (G) + q2(x, y) + 2 ≤ sdγpr (G) + ∆(G) + 2.

3. If N(x) ∩ N(y) 6= ∅, then

sdγpr (G + e) ≤ sdγpr (G) + 2 + min{∆(G), max{q2(x, y), q2(y, x)}}.

Proof. According to Proposition 4, we may assume that γpr(G + e) = γpr(G). Note that
since G is isolated-free and different from mK2, ∆(G) ≥ 2. We now show items of the
lemma one by one.
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1. If there is an sdγpr (G)-set F such that E(x) * F and E(y) * F, then q2(x, y) = 2, and,
by Lemma 3, we have

sdγpr (G + e) ≤ sdγpr (G) + 3
≤ sdγpr (G) + max{q2(x, y), q2(y, x)}+ 1
≤ sdγpr (G) + ∆(G) + 1.

Hence, we may assume that, for every sdγpr (G)-set F, E(x) ⊆ F or E(y) ⊆ F. In that
case, it is clear that sdγpr (G) + max{q2(x, y), q2(y, x)} + 3 ≤ sdγpr (G) + ∆(G) + 3.
Now, let F be an sdγpr (G)-set with, without loss of generality, E(x) ⊆ F. Since, by
assumption, neither N(x) nor N(y) is independent, let x1, x2 be two adjacent vertices
of N(x), likewise y1, y2 two adjacent vertices of N(y). In addition, consider the graph
G′ formed from G + xy by subdividing the edges in F ∪ {xy, x1x2, y1y2} and all edges
in (E(y)− F) \ (E(y, x)− F) and let P be a γpr(G′)-set. If wxy 6∈ P or x, y ∈ P, then, by
Lemma 2, we have sdγpr (G + e) ≤ |F|+ 3 + q2(y, x) ≤ sdγpr (G) + ∆(G) + 3. Hence,
we may assume that wxy ∈ P and |P ∩ {x, y}| = 1. We claim that wxy is the unique
subdivision vertex adjacent to x belonging to P. Suppose, to the contrary, that wxz is a
subdivision vertex adjacent to x such that wxz ∈ P. If x is the partner of wxy, then the
set P− {wxz, wxy}, in which x and z are partners, is a PD-set of G1 which is obtained
from G + e by subdividing all edges in (F ∪ {x1x2, y1y2})− {xz} and the edges of
(E(y)− F) \ (E(y, x)− F). It follows that γpr(G′) > γpr(G1) ≥ γpr(G + e); thus,

sdγpr (G + e) ≤ sdγpr (G) + q2(y, x) + 1 < sdγpr (G) + ∆(G) + 3.

Hence, we can now assume that y is the partner of wxy. If all neighbors of y in G′−wxy
are in P, then P− {y, wxy} is a PD-set of G2 which is obtained from G by subdividing
all edges in F ∪ {x1x2, y1y2} and the edges of (E(y)− F) \ (E(y, x)− F). It follows
that γpr(G′) ≥ γpr(G2) > γpr(G) = γpr(G + e); thus,

sdγpr (G + e) ≤ sdγpr (G) + q2(y, x) + 1 < sdγpr (G) + ∆(G) + 3.

If y has a neighbor w in G′ − wxy with w 6∈ P, then (P− {wxy}) ∪ {w} is a PD-set of
G2 (defined before) and the desired result follows as before. Thus, wxy is indeed the
unique subdivision vertex adjacent to x that belongs to P. We now claim that wxy is
the unique subdivision vertex adjacent to y belonging to P. Suppose, to the contrary,
that wyz is a subdivision vertex adjacent to y such that wyz ∈ P. If y is the partner of
wxy, then the set P−{wyz, wxy}, in which y and z are partners, is a PD-set of G′1 which
is obtained from G + e by subdividing all edges in (F ∪ {x1x2, y1y2}) − {yz} and
the edges of (E(y)− F ∪ {yz}) \ (E(y, x)− F). It follows that γpr(G′) > γpr(G′1) ≥
γpr(G + e); thus,

sdγpr (G + e) ≤ sdγpr (G) + q2(y, x) + 1 < sdγpr (G) + ∆(G) + 3.

Therefore, we may now suppose that x is the partner of wxy. If all neighbors of x in
G′ −wxy are in P, then P−{x, wxy} is a PD-set of G2 (defined before), and the desired
result follows. If x has a neighbor w in G′−wxy with w 6∈ P, then (P−{wxy})∪{w} is
a PD-set of G2, and the desired result follows as before. Thus, wxy is indeed the unique
subdivision vertex adjacent to y that belongs to P. Moreover, to paired-dominate
vertices wx1x2 and wy1y2 , we may assume that x1, y1 ∈ D. In this case, P−{y, wxy} (if y
is the partner of wxy) or P−{x, wxy} (if x is the partner of wxy) is a PD-set of G3 which
is obtained from G by subdividing the edges of (F − (E(x) ∪ E(y)) ∪ {x1x2, y1y2},
implying that γpr(G′) > γpr(G3) ≥ γpr(G) = γpr(G + e). Therefore,

sdγpr (G + e) ≤ sdγpr (G)− |E(x) ∪ E(y)|+ 2

≤ sdγpr (G).
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2. We first note that, since E(x) ⊆ F, we have sdγpr (G) + q2(y, x) + 1 ≤ sdγpr (G) +
|E(y)|+ 1 < sdγpr (G) + ∆(G) + 2. In addition, since, by assumption, E(y) * F and
N(y) is not independent, let e1 = yt ∈ E(y)− F, and let y1, y2 be two adjacent vertices
of N(y). We denote by G1 the graph formed from G + xy by subdividing the edges
of F ∪ {y1y2} and all edges in (E(y)− F) \ (E(y, x)− (F ∪ {e1})), and we denote by
G′ the graph formed from G1 by further subdividing the edge xy. Now, let P be a
γpr(G′)-set, and let F′ be the set of all subdivided edges of G + e,, except xy, such
that their subdivision vertices belong to P. We denote by G2 the graph formed from
G by subdividing the edges of F′. It is easy to check that, if wxy 6∈ P or x, y ∈ P, then,
by Lemma 2,

sdγpr (G + e) ≤ |F|+ 2 + |E(y)| ≤ sdγpr (G) + ∆(G) + 2.

Hence, we may assume that wxy ∈ D and |P ∩ {x, y}| = 1. As in the proof of Item
1, we can see that wxy is the unique subdivision vertex adjacent to x and y that
belongs to P. To paired-dominate vertex wy1y2 , we may assume that y1 ∈ P. Now,
if x and wxy are partners in P and w 6= wxy is a subdivision vertex adjacent to x,
then (P− {wxy}) ∪ {w} is a PD-set of G3 which is formed from G by subdividing
the edges in F ∪ {y1y2}, as well as the edges of (E(y) − F ∪ {e1}) \ (E(y, x) − F).
It follows that γpr(G′) ≥ γpr(G3) > γpr(G) = γpr(G + e). However, if y and wxy
are partners in P, then, clearly, NG(x) ⊆ P; thus, P− {y, wxy} is a PD-set of G2, so
γpr(G′) ≥ γpr(G2) > γpr(G) = γpr(G + e). In either case,

sdγpr (G + e) ≤ sdγpr (G) + q2(y, x) + 2 ≤ sdγpr (G) + ∆(G) + 2.

3. Let t ∈ N(x) ∩ N(y). If there is an sdγpr (G)-set F such that E(x) * F and E(y) * F,
then q2(x, y) = 2, and, by Lemma 3, we have

sdγpr (G + e) ≤ sdγpr (G) + 3 ≤ sdγpr (G) + 2 + min{∆(G), max{q2(x, y), q2(y, x)}}.

Hence, we can assume that, for every sdγpr (G)-set F, E(x) ⊆ F or E(y) ⊆ F. Clearly,
in this case, max{q2(x, y), q2(x, y)} ≤ ∆(G). Now, let F be an sdγpr (G)-set, such that,
without loss of generality, E(x) ⊆ F. We denote by G′ the graph formed from G + xy
by subdividing the edges of F ∪ {xy} ∪ (E(y)− F). Let P be a γpr(G′)-set, and let F′

be the set of all subdivided edges of G + e, except xy, in which subdivision vertices
belong to P. If wxy 6∈ P or x, y ∈ P, then, by Lemma 2, sdγpr (G + e) ≤ |F| + 2 +
|E(y)− F| ≤ sdγpr (G) + 2 + min{∆(G), max{q2(x, y), q2(y, x)}}. Hence, we assume
that wxy ∈ D and |P∩ {x, y}| = 1. As in the proof of Item 1, we can see that wxy is the
unique subdivision vertex adjacent to x and y that belongs to P. Then, clearly, t ∈ P
(to paired-dominate either wxt or wyt), thus, P− {x, y, wxy} is a PD-set of the graph
G′′ which is obtained from G by subdividing only the edges of F′. Consequently,
γpr(G′) > γpr(G′′) ≥ γpr(G) = γpr(G + e); hence,

sdγpr (G + e) ≤
∣∣F′∣∣+ 1

≤ |F|+ |E(y)− F|+ 1

≤ sdγpr (G) + 2 + min{∆(G), max{q2(x, y), q2(y, x)}}.

The proof is completed.

3. Proof of Theorem 1

In this section, we prove Theorem 1.

Proof of Theorem 1. We start by noting that since G is isolated-free and different from
mK2, ∆(G) ≥ 2. Now, let e = xy /∈ E(G). If γpr(G + e) < γpr(G), then, by Proposition 4
sdγpr (G + e) ≤ sdγpr (G). Hence, we assume that γpr(G + e) = γpr(G). By Lemma 5-(3),
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we can assume that N(x) ∩ N(y) = ∅, for, otherwise, the result is obviously valid. If
q1(x, y) = 0, then x or y is support vertex; thus, the result follows by Lemma 4. Now, we
consider two cases.

Case 1. q1(x, y) = 1.

Without loss of generality, assume that 1 = q1(x, y) = |N(v) ∩ (V − N[x])|, where
v ∈ IS(x). Clearly, in this case v has degree two. Let z be the neighbor of v different
from x. Moreover, let F be an sdγpr (G)-set such that q2(x, y) is minimized. We can assume
without loss of generality that E(x) ⊆ F (otherwise, the result follows from Lemma 3). Let
F1 = F ∪ E(y). Consider the graph G′ = (G + e)F1∪{e,vz} and let P be a γpr(G′)-set, and let
F′ be a subset of F in which subdivision vertices are in P. According to Lemma 2, we can
assume that wxy ∈ P and that |P ∩ {x, y}| = 1. As in the proof of item 1 of Lemma 5, one
can see that wxy is the unique subdivision vertex adjacent to x and y that belongs to P.

First, let x ∈ P and y 6∈ P. If v 6∈ P, then wvz ∈ P; thus, the set (P− {wvz, wxy, x}) ∪
{v} is a PD-set of the graph G′′ which is obtained from G by subdividing the edges
of F′ − {e, vz}. It follows that γpr(G′) ≥ γpr(G′′) + 2 > γpr(G) = γpr(G + e); thus,
sdγpr (G + e) ≤ |F1|+ 2 ≤ sdγpr (G) + ∆(G) + 2. Now, if v ∈ P, then wvz is the partner of v
in P; thus, the set (P− {wvz, wx,y}), in which v and x are partners, is a PD-set of the graph
G′′ defined before, which leads to sdγpr (G + e) ≤ sdγpr (G) + ∆(G) + 2. Now, let y ∈ P
and x 6∈ P. Then, we must have v, wvz ∈ P; thus, the set (P − {wxy, wvz, y}) ∪ {x} is a
PD-set of G1 which is obtained from G + e by subdividing the edges in F′ − {e}, yielding
sdγpr (G + e) ≤ sdγpr (G) + ∆(G) + 2 as above.

Case 2. q1(x, y) ≥ 2.

Assume that there exists some sdγpr (G)-set F satisfying E(x) * F and E(y) * F.
By Lemma 3, the result follows. Hence, we assume that, for every sdγpr (G)-set F, either
E(x) ⊆ F or E(y) ⊆ F. By Lemma 5-(3 and 1), we may assume that N(x) ∩ N(y) = ∅
and either N(x) or N(y) is independent. Let z be a vertex in IS(x) ∪ IS(y) such that
q1(x, y) = |N(z) ∩ (V − N[x])| or q1(x, y) = |N(z) ∩ (V − N[y])|. Moreover, let F be an
sdγpr (G)-set. We denote by G′ the graph formed G + xy by subdividing the edges of
F ∪ {xy} ∪ E(x) ∪ E(y) ∪ E(z). Note that since either E(x) ⊆ F or E(y) ⊆ F, the number
of subdivided edges is at most |F|+ 2∆(G). Let P be a γpr(G′)-set. Among all edges of
G that have been subdivided resulting in the graph G′, let F′ be the set of those in which
subdivision vertices are in P. If wxy 6∈ P or x, y ∈ P, then, clearly, the result follows from
Lemma 2. Hence we may assume that wxy ∈ P and |P ∩ {x, y}| = 1. In addition, we
assume, without loss of generality, that x ∈ P and y 6∈ P.

By the similar method to the proof of Lemma 5-(1), we may assume that no subdivision
vertex adjacent to x or y other than wxy belongs to P. Since y 6∈ P, we have NG(y) ⊆ P.
First, let z ∈ NG(y). Then, z ∈ P and it has as a partner a subdivision vertex, say wzz′ . In
this case, one can easily see that the set (P− {x, wzz′ , wxy}) ∪ {y}, in which y and z are
partners, is a PD-set of the graph G2 which is obtained from G + e by subdividing all edges
in F′ − {zz′, yz}. It follows that γpr(G′) > γpr(G2) ≥ γpr(G + e). Now, let z ∈ N(x). Then,
P contains a subdivision vertex wzz′ that may have as a partner either z or z′. If z ∈ P, then
let P′ = P− {wzz′ , wx,y}, and if z′ ∈ P, then let P′ = {z} ∪ P− {wzz′ , wx,y}. Regardless
the situation that occurs, P′ is a PD-set of the graph G3 which is obtained from G + e by
subdividing all edges in F′ − {zz′, xz}; thus, γpr(G′) > γpr(G + e) again. This completes
the proof.

4. Conclusions and Open Problems

In this paper, we considered the effect of subdivision of edges on the paired-domination
number, that is, the paired-domination subdivision number of a graph. In particular,
we proved that, for any isolated-free graph G different from mK2, if e 6∈ E(G), then
sdγpr (G + e) ≤ sdγpr (G) + 2∆(G). As a consequence of this study, we pose the following
conjecture.
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Conjecture 1. For any isolated-free graph different from mK2 and any e 6∈ E(G),

sdγpr (G + e) ≤ sdγpr (G) + ∆(G) + 2.

As a future work, we will focus on this problem.
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