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Abstract: It has recently been shown that the interpretation by partial differential equations (PDEs) of
a class of convolutional neural networks (CNNs) supports definition of architectures such as parabolic
and hyperbolic networks. These networks have provable properties regarding the stability against
the perturbations of the input features. Aiming for robustness, we tackle the problem of detecting
changes in chest X-ray images that may be suggestive of COVID-19 with parabolic and hyperbolic
CNNs and with domain-specific transfer learning. To this end, we compile public data on patients
diagnosed with COVID-19, pneumonia, and tuberculosis, along with normal chest X-ray images.
The negative impact of the small number of COVID-19 images is reduced by applying transfer
learning in several ways. For the parabolic and hyperbolic networks, we pretrain the networks
on normal and pneumonia images and further use the obtained weights as the initializers for the
networks to discriminate between COVID-19, pneumonia, tuberculosis, and normal aspects. For
DenseNets, we apply transfer learning twice. First, the ImageNet pretrained weights are used to train
on the CheXpert dataset, which includes 14 common radiological observations (e.g., lung opacity,
cardiomegaly, fracture, support devices). Then, the weights are used to initialize the network which
detects COVID-19 and the three other classes. The resulting networks are compared in terms of
how well they adapt to the small number of COVID-19 images. According to our quantitative and
qualitative analysis, the resulting networks are more reliable compared to those obtained by direct
training on the targeted dataset.

Keywords: partial differential equations (PDEs); COVID-19; convolutional neural network (CNN);
imbalanced dataset
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1. Introduction

Can one explain the prediction of a neural network? Why are some architectures for
neural networks more suitable for certain tasks? How can one decide on a good design
without an extensive trial and error process? Can neural architecture search (NAS) be
guided by theoretical results? Does one need very deep neural networks, or is it better to
run an ablation study? These are only some of the open questions in the world of deep
neural networks. Despite having enormous success, the lack of a well-established theory
of neural networks, with provable properties, is a drawback.

One line of research to bringing theoretical results into CNNs is based on partial
differential equations (PDEs). In [1], starting from the skip-connections from the ResNet
block [2], a space-time continuous interpretation was given. Based on parabolic and
hyperbolic PDEs, additional constraints were imposed on the network’s weights, and
parabolic and hyperbolic CNNs [1] were defined. It was asserted in that paper that
well-known properties of PDEs are transferred to the newly-introduced CNNs, such as
the property of stability. The size of the networks and their theoretical properties make
them recommended to solve risk-sensitive classification tasks where only small datasets
are available. Consequently, we consider parabolic and hyperbolic networks as good
candidates to address the current necessity to rapidly identify COVID-19 from chest X-rays.

With the outbreak of COVID-19, deep learning has been applied in various tasks:
predicting the number of cases and detecting COVID-19 from the sounds of coughs or
from images, either X-rays [3] or CT scans. Sciacca et al. showed that the most frequent
findings in the radiological data from people with COVID-19 are airspace opacities, with a
predominant bilateral, peripheral, and lower zone distribution. Sciacca et al. also found
that in contrast to parenchymal abnormalities, pleural effusion is rare [4].

According to a Fleischner Society consensus statement published on 7 April 2020,
imaging is recommended for (i) patients with COVID-19 and worsening respiratory status
and (ii) patients with features of moderate to severe COVID-19, regardless of the COVID-19
test result, but not for patients with suspected COVID-19 and mild clinical features, except
when the risk of disease progression is present. CT is preferred to X-rays, but in a resource-
constrained environment, the medical triage of people with suspected COVID-19 could
include radiography. Additionally, it has been stated that findings suggestive of COVID-19
on a CT scan warrant COVID-19 testing [4].

In this context, the detection of COVID-19 from chest X-rays remains a challenging
task. During 2020, an extremely large number of researchers tackled the problem, either
considering X-rays or CT scans, with different results. As is already known from deep
learning, good numerical evaluations do not guarantee a good model due to the limitations
of the training and validation data. Since the problem is novel and the datasets are
subject to continuous development, we argue for a cautious approach when assessing a
classification model.

We follow two research hypotheses: First, the theoretical properties of PDE-inspired
CNNs, like stability and reversibility, could facilitate the correctness of the learning. Second,
domain-specific transfer learning can address the issue of very small datasets. Therefore, we
exploit the available large datasets for the abnormalities existing in X-rays before COVID-19.
Instead of transferring the ImageNet pre-trained weights, our research hypothesis is that
transferring the weights trained on these large datasets will positively impact the generality
of the solutions. We verify these two hypotheses on a dataset compiled by us from publicly
available datasets, including COVID-19 datasets.

The rest of the article is organized as follows: In Section 2, we introduce the theoretical
description of the parabolic and hyperbolic networks as formalized by Ruthotto and
Haber [1]. Then, we describe the steps to build our dataset and how we apply the PDE-
inspired networks to our dataset. Section 3 describes and assesses the experiments with
parabolic and hyperbolic networks and the experiments with DenseNets [5] in a two-
phase learning based on the large chest X-ray dataset CheXpert. Section 4 compares the
PDE-inspired models and CheXpert-based model, while Section 5 concludes the paper.
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2. Materials and Methods
2.1. Theoretical Aspects for PDE Inspired Neural Networks

While designing and training CNNs is a trial-end-error based process, partial differential
equations (PDE) provide solid mathematical properties and results. Data interpreted as
discretization of multivariate functions support PDE-based data processing. Moving forward,
interpreting CNNs as a discretization of a space-time differential equation could bring the
theoretical results of PDE into the world of CNNs. CNNs can benefit from the PDE theory in
two ways: first, by transferring provable properties, like stability, from PDE to networks; and
second, new CNNs architecture can be designed based on the PDE formalism.

Ruthotto et al. have introduced the interpretation of residual CNNs as a discretization
of a space-time differential equation [1]. Starting from the heat equation or wave equation,
parabolic and hyperbolic CNNs have been formalized. Properties of PDEs like stability
and reversibility have been proven for parabolic and hyperbolic CNNs. To describe the
PDE inspired networks, we rely here on the work of Ruthotto et al. [1].

For a machine learning researcher, ResNets (Residual networks) [2] use skip-connections
through which the signal jumps over one or several layers. A ResNet block [2] is described
by Equation (1):

a = W2g(W1X) + X (1)

W1 and W2 stand for the weight vectors, g is the activation function, X is the input vec-
tor for the block, a is the activation of the block, and + is the element-wise addition.
DenseNet [5] extends this type of connections and alleviates the vanishing-gradient prob-
lem. Even though the number of parameters is substantially reduced, feature propagation
is strengthened.

The same residual block is defined in [1] through the linear operators K1 and K2,
while the parameter vector Θ has three parts: Θ(1) and Θ(3) for weights W1 and W2 from
Equation (1), respectively Θ(2) for parameters of the normalization layer N . The residual
block output is defined by Equation (2), where σ is the activation function, and Y is the
input vector. The transformation of a network with several layers with ResNet blocks,
input Y0 and N layers is described in (3).

F(Θ, Y) = K2(Θ(3))σ(N (K1(Θ(1))Y, Θ(2))) (2)

Yi+1 = Yi + F(Θ(i), Yi), i = 0, 1.., N − 1 (3)

A major advantage of describing the filtering made by ResNets in this form is the fact that
the continuous time interpretation (Equation (4)) of the networks becomes more obvious:
the ResNets filtering can be seen as a forward Euler discretization of the initial value
problem [1].

∂tY(Θ, t) = F(Θ(t), Y(t)), for t ∈ (0, T]

Y(Θ, 0) = Y0 (4)

While considering K1 and K2 as convolutional operators, the continuous space-time
interpretation of a convolutional neural network (CNN) is possible. In order to have
networks for which the stability condition is present, either forward and backward in time,
K1 and K2 are constrained to K2 = −KT

1 in Equation (2), resulting in Equation (5).

Fsym(Θ, Y) = −K(Θ)Tσ(N (K(Θ)Y, Θ)) (5)

Based on the these observations, the following CNNs architectures were defined in [1]:

– Parabolic CNNs. The forward propagation of parabolic CNNs (Equation (6) is equiv-
alent to the heat equation when the action function is the identity function, i.e. N (Y) = Y,
and K(t) = ∇. Parabolic PDEs are robust to perturbations of initial conditions, therefore
parabolic-like CNNs are also stable when the activation function σ is monotonically nonde-
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creasing. This makes them more appropriate for smoothing type learning tasks, since they
are not strongly affected by the noise.

∂tY(Θ, t) = Fsym(Θ(t), Y(t)), f or t ∈ (0, T] (6)

– Hyperbolic CNNs. Hyperbolic PDEs have the property of reversibility. In order to
improve memory efficiency, the hyperbolic CNNs: Hamiltonian CNNs and second-order
CNNs, were introduced. The dynamics changes the Equations (7) and ( 8), where Y is the
input vector, and Z is an auxiliary variable.

∂tY(t) = −Fsym(Θ1(t), Z(t)), Y(0) = Y0

∂tZ(t) = Fsym(Θ2(t), Y(t)), Z(0) = Z0. (7)

∂2
t Y(t) = Fsym(Θ(t), Y(t))

Y(0) = Y + 0, ∂tY(0) = 0 (8)

– Stable CNNs. Parabolic and hyperbolic CNNs are CNNs with restricted weights.
The restrictions are introduced in such a way that training the resulting networks is similar
to solving known classes of PDEs. The spatial-time dependent PDEs selected for the
parabolic and hyperbolic networks are stable with respect to perturbations of the initial
conditions [1]. In the definition of the stability from Equation (9), Y and Y1 are solutions of
the Equation (4), which gives the continuous interpretation of the computation in ResNets.
This means that if we have a solution associated with a perturbed input image, then the
norm of the perturbation at any moment T is bound by the norm of the initial perturbation.
The stability property of a CNN would prevent the effect of adversarial attacks. Moreover,
since the classification of medical images are meant to reduce the risks of misdiagnosis, a
provable property of stability could not only reduce the risks, but also increase the trust in
the learned models.

||Y(Θ, T)−Y1(Θ, T)||F ≤ M||Y(0)−Y1(0)||F (9)

2.2. Compiling the Dataset

With the 2020 outbreak of the coronavirus SARS-CoV-2, there were different initiatives
gathering chest X-rays or CT scans in order to apply artificial intelligence (AI) for rapid
and precise diagnoses [6]. From the public datasets, we mention Cohen dataset [7] and
Hannover dataset [8]. We conducted an analysis of the existing COVID-19 X-rays datasets
and we decided to compile our own dataset with images for COVID-19, pneumonia, and
tuberculosis, together with X-rays with normal findings. We used several public datasets,
as follows.

2.2.1. Collecting COVID-19 X-rays

For COVID-19 positive X-rays, we used the Cohen dataset. This gathers X-ray and CT
images from Radiopaedia (https://radiopaedia.org/, accessed on 9 January 2021), SIRM
(https://www.sirm.org/category/senza-categoria/COVID-19/, accessed on 9 January
2021), and other research articles. It also includes scripts for the integration of the Hannover
dataset. For the current experiments, we extracted from the Cohen dataset only the X-ray
AP (anteroposterior) and PA (posteroanterior), which were gathered from Radiopaedia
and SIRM. Out of all the 319 COVID-19 samples from the dataset (both X-ray and CT), only
121 met our filtering conditions. The reason for this decision was the quality of the images.

We underline two aspects which are present in this set of COVID-19 X-rays and which
could affect the learning process:

1. Patients in evolution. Especially for the cases extracted from Radiopaedia, there
are several X-rays done for the same patient in different stages of the disease: from
the moment when they were admitted into the hospital to the moment when the

https://radiopaedia.org/
https://www.sirm.org/category/senza-categoria/COVID-19/
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symptoms improved. On one hand, this is quite useful in order to see whether the
learned model could also predict the disease severity. On the other hand, all the
X-rays are annotated as COVID-19, including the ones from the end of the monitoring.

2. Train/test split. Having several X-rays for the same patient requires extra care at
splitting into train/test set. X-rays from the same patient should not be included both
in the train and test set.

2.2.2. Collecting Pneumonia X-rays

In our first experiments for COVID-19 detection, we used the COVID-19 Radiog-
raphy database [9] (https://www.kaggle.com/tawsifurrahman/COVID19-radiography-
database, accessed on 9 January 2021), which includes X-rays for COVID-19, pneumonia
and normal findings, with Kermany dataset [10] as the source for the normal findings and
viral/bacterial pneumonia X-rays. Our initial experiments show that the dataset is not
adequate for detection of COVID-19, since the Kermany dataset is meant for diagnosing
pediatric pneumonia; consequently, it includes X-rays from children. By using this dataset,
we obtained very good results for predicting COVID-19/non-COVID pneumonia, but the
reason was that our network learned age-related patterns.

Based on these preliminary experiments, we decided to use RSNA pneumonia chal-
lenge (https://www.kaggle.com/c/rsna-pneumonia-detection-challenge, accessed on
9 January 2021) as the source for the pneumonia and normal X-ray images. This challenge
was organized by the Radiological Society of North America. It includes data from [11],
and it aims for the detection and the localization of the pneumonia in chest radiographs
(as it was perceived before the COVID-19 outbreak). From this dataset, we extracted 8851
normal X-rays and 6012 X-rays of patients suffering from pneumonia.

2.2.3. Collecting Tuberculosis X-rays

We faced two challenges when learning to detect COVID-19. First, even though the
COVID-19 disease caused a pandemic, the number of publicly available X-rays remained
small. Consequently, the dataset obtained by joining COVID-19 X-rays with normal find-
ings and pneumonia X-rays is highly imbalanced. Second, some clinical signs identified in
patients suffering from COVID-19 (e.g., airspace opacities, whether described as consolida-
tion or, less commonly, ground-glass opacification) are present for other pulmonary diseases
than COVID-19 or non-COVID pneumonia. For COVID-19, the distribution of these lung
abnormalities is most often bilateral, peripheral, and lower zone predominant [4].

Because of these two difficulties, we decided to include into our dataset an additional
class, whose detection should not be altered by the presence of COVID-19 class. Therefore,
X-rays from patients suffering from tuberculosis were added into our dataset. Since the
differentiation between tuberculosis vs. COVID-19, respectively tuberculosis vs. non-
COVID-19 pneumonia is easier to assess, we consider that this class could help in checking
the generality of the approach.

We used the dataset from Shenzhen No. 3 People’s Hospital in China [12]. We
extracted not only X-rays for the tuberculosis, but also normal X-rays: 335 X-rays for tuber-
culosis and 326 normal X-rays (see Table 1). Note that the compiled dataset is imbalanced
and limited in terms of the number of images for COVID-19.

Table 1. Building the dataset of COVID-19 X-ray images.

Source COVID-19 Pneumonia Tuberculosis Normal

Cohen dataset (RadiopaediaSIRM) 121 - - -
RSNA Pneumonia Challenge - 6012 - 8851
Shenzhen - - 335 326

Total 121 6012 335 9177

https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database
https://www.kaggle.com/tawsifurrahman/COVID19-radiography-database
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
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2.3. Method

Our preliminary experiments on training from scratch on COVID-19 Radiography
database [9] displayed good performance for the detection of COVID-19 (precision and
recall above 0.90), but we considered that the result was not reliable. Even with transfer
learning from ImageNet, the good performance was due to the properties of the dataset
and not to the capability of the models to identify patterns in the COVID-19 images. As
already mentioned, this is the reason for compiling our own dataset.

To exemplify this situation with high performance but erroneously learned patterns,
we bear out in Figure 1 some of the issues behind the high performance metric. These
results were obtained by training DenseNets or VGG with transfer from ImageNet. Figure 1
shows activation maps for some examples from the initial dataset. The red areas are the
ones that mostly influenced the CNN’s decision, while the blue areas have a low impact on
the CNN’s decision. The learning capability of CNN was strongly affected by the small
number of images with COVID-19, since the networks identified other abnormal elements
present in COVID-19 samples.

(a) COVID-19 X-ray with an upper left corner artifact. (b) The most relevant areas are outside the lungs.

(c) Normal X-ray of a child, the most important areas
are related to the bone structure which is age-specific.

(d) Along the correct relevant area, the heart is erroneously
considered important.

Figure 1. Pitfalls of learning to detect COVID-19 from COVID-19 Radiography database [9].

For instance, in Figure 1d, along the correct relevant area, the heart is also considered
relevant, since it has abnormal size (cardiomegaly). Figure 1c shows how the CNN based
its decision on age-specific structural elements. Even worse, the presence of artifacts like
symbols L, R influenced the models (Figure 1a). Moreover, the difference between images
in Figure 1b,d is only the upper left corner, but their activation map is completely different.

Aiming to build models able to avoid such problems, our proposed method is twofold:
(i) employing PDEs inspired networks for which the stability property is provable, (ii) using
a more specialized transfer learning: in a first step, we learn to interpret chest X-rays with
respect to a large number of general modifications, and in the second step, we specialize
the learning to a specific problem. This approach is inline with a few-shots training [13],
which heavily relies on building good embeddings.

Figure 2 illustrates our proposed methodology and how it is applied on the available
data. Identification of COVID-19 from X-rays is a new classification problem, therefore
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(i) no stable, curated, and large dataset is available, and (ii) it raises questions not only for
AI models, but also for humans. We consider that these two facts compel us to increase the
attention towards reliability of the trained models by dealing with the following questions:

1. Which are the classes we should compare COVID-19 to in order to learn to identify
COVID-19 from X-rays?

2. Which data source should we use for the selected classes?
3. What kind of architectures and learning should we use?

The main elements of the answer for the first two questions are captured in the left
part of Figure 2. The classes are: the targeted class (COVID-19), the class which is the
most similar to it (non-COVID pneumonia), the normal class, and a class, (tuberculosis),
which is in some degree unrelated to the targeted class. The details about the sources for
these classes were given in Section 2.2. For the third question, we propose two answers:
the first one is to use architectures for which general theoretical properties are known,
such as PDE-inspired CNNs (top-right of Figure 2), while the second one is to exploit the
previously available knowledge about general radiological aspects and apply the transfer
learning twice when going from general to specific (bottom-right of Figure 2).

We underline that any image classification task, including the diagnosis of other
pulmonary diseases or, from a completely different area, health monitoring of industrial
systems [14], could benefit from using PDE-inspired CNNs or going in several phases from
general to specific. With the current scenario, identification of COVID-19, we advocate that
completely new problems which suddenly appear in areas which include stable datasets for
known problems, might be addressed with (i) restricted CNN architectures and (ii) models
initially trained for known domain-specific aspects instead of models trained directly for
the targeted new problem. Learning to identify COVID-19 is different compared to learning
to identify non-COVID pneumonia, due to the issues related to the lack of stable and large
datasets and the lack of clear medical knowledge.

The details about learning with PDE-inspired CNNs and 2-phase transfer learning
from CheXpert are given in the next section: which type of data is used, which type of
network, and whether or not pretrained weights are used, together with details about
the performance.

Figure 2. The proposed method for learning: compiling the dataset (left), employing partial differential equation (PDE)-
inspired networks (top-right), and using CheXpert dataset in 2-phase transfer learning (bottom-right).
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3. Experiments and Results

First, we designed three experiments with parabolic and hyperbolic CNNs. Second,
we used the classical DenseNets.

3.1. Experiments with PDE Inspired CNNs

In order to benefit from the stability of PDEs, we conducted several experiments
for training PDEs inspired networks for the classification of X-rays. For PDE-inspired
CNNs, we use the Meganet [1,15]. We employ one architecture with different dynamics,
corresponding to Parabolic, second-order, and Hamiltonian CNNs. For each dynamic,
we use four ResNet blocks with 32, 64, 112, 112 channels. The number of the learned
parameters for the Hamiltonian CNN is 263, 428, while for the parabolic CNN and for the
second-order CNN is 501, 892.

The input images are RGB and their size is 192× 192. Random flip augmentation was
applied. The split between train/test sets is done randomly, with 80% examples in the
training set.

Because of the imbalance in the dataset, we designed three types of experiments:

Exp1 —train only for the two classes (i.e., normal and pneumonia) for which the number of
images is larger than 1000.

Exp2 —train for all four classes, but with downsampling of the normal and pneumonia
classes.

Exp3 —similar to Exp2, but instead of starting from the random weights, we start from the
weights obtained in Exp1.

3.1.1. Exp1: Distinguishing between Normal and Pneumonia X-ray Images

Figure 3 shows the learning curves of accuracy for parabolic, second-order, and
Hamiltonian CNNs. For training, all the three networks obtained values bigger than 98%,
while for validation values higher than 93%. The Hamiltonian network reaches 93.6%
accuracy on the validation set, with 94.4% precision and 95.1% recall for the normal class,
respectively 92.4% precision and 91.4% recall for pneumonia class. The dataset is not
completely balanced: in the validation set, there are 1, 836 images for the normal class, and
1203 for pneumonia.

These results are comparable with the ones reported in literature for the detection
of pneumonia from this dataset. Pan et al. [16], the winners of the RSNA challenge, have
combined the detection of the pneumonia with the localization. Differently from us, Pan
et al. have used during training the information about the area where the consolidation
is present. Ensemble learning has been used to combine 10 models for the classification
(into normal vs. pneumonia), and 50 models for object detection (for localization of the
consolidation) [16]. The used architectures including Inception ResNetV2, Xception and
DenseNet169, while transfer learning was based on ImageNet pre-trained weights.

Figure 3. Exp1: Accuracy on normal vs. pneumonia classes (train: 12, 150, validation: 3039 examples).
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Ruthotto and Haber have argued in [1] that parabolic CNNs are better suited for tasks
not affected by smoothing the images, while the hyperbolic CNNs are suited for tasks
which require preservation of edge information. Both the learning curve and the reached
accuracy on training for the Hamiltonian CNNs seem to confirm this hypothesis. The
reversibility property of these networks ensures that nothing is lost from the images, and
they seem to be more appropriate for the classification of X-ray images. One justification
might be that the image includes the structural elements of the chest area, and it is of most
importance to know where abnormalities occur.

Taking into account the results in Figure 3, we argue that the stability property of the
three networks facilitates learning from X-ray, even with a small number of parameters
(i.e., much smaller than a DenseNet network), and without any transfer learning.

3.1.2. Exp2: Distinguishing between Normal, Pneumonia, Tuberculosis and COVID-19

Since the dataset is highly imbalanced, mainly due to the extremely small number of
COVID-19 images, we applied downsampling. For the training, we kept 280 images for
the normal and the pneumonia classes. The final structure of the training set is 96 COVID-
19, 280 normal, 280 pneumonia, 268 tuberculosis, while the structure for the test set is:
25 COVID-19, 70 normal, 70 pneumonia, 67 tuberculosis. The learning curves for the
accuracy appear in Figure 4. Over-fitting is reached around the 100th epoch, and even
though the accuracy on training reaches values above 95%, the accuracy of the test set is
around 88%.

Figure 4. Exp2: Accuracy on the downsampled COVID-19 dataset (train: 924, validation: 232 examples).

The confusion matrix for the Hamiltonian network from Figure 5a shows that tuber-
culosis is almost perfectly learned, while the other classes have several problems. The
right column stands for the precision on each class, while the last row for the recall. The
overall accuracy is given in the lower right corner. The classes are in the following order:
COVID-19, normal, (non-COVID) pneumonia, tuberculosis.

A number of 14 normal images (out of 70) are wrongly classified as pneumonia,
therefore the recall for the normal class is only 0.786. The recall for pneumonia is 0.90:
4 pneumonia images are wrongly considered normal, and 3 are considered COVID-19.
Note that the precision and recall metrics for normal and pneumonia classes are smaller
than in Exp1. This is expected, on one hand due to the fact that the training set is very
small compared to Exp1, and on the other hand, due to the fact that two other classes are
introduced, with COVID-19 as the most difficult to detect class.

For COVID-19, 4 out of 25 images are wrongly considered as pneumonia. There is
also a 1 image wrongly classified as normal and another 1 as tuberculosis. The precision
for COVID-19 class is 0.818 and the recall 0.72.

3.1.3. Exp3: Distinguishing between Four Classes with Transfer Learning

This experiment augments Exp2 with transfer learning, where the weights are taken
from the results of Exp1. One question which appeared after running Exp1 and Exp2
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was: How would the two-class Hamiltonian CNN from Exp1, which was not trained
on COVID-19 samples, classify the images from the COVID-19 class? Exp1 Hamiltonian
CNN classifies 95 of them as pneumonia and 26 as normal. This is not surprising, since
COVID-19 has the clinical signs and radiological features of a pneumonia.

So, a first observation is that the networks from Exp1 identified some features which
could be correlated to the COVID-19 class.

The second observation is that the number of images in the classes normal and pneu-
monia is much larger than the number of images in the classes COVID-19 and tuberculosis.

Based on these two observations, we decided to apply transfer learning from Exp1
into training on the downsampled dataset. Hence, we train the networks for the four
classes on the downsampled dataset built for Exp2, but the initial weights are set to the
ones learned for the classification into normal and pneumonia (Exp1).

On running Exp3, we made the following observations:

• The confusion matrix in Figure 5b shows that the normal and pneumonia classes
are better predicted in Exp3 than in Exp2, even though the used dataset is the same.
Differently, COVID-19 is a little bit worse in Exp3.

• The learning curves in Figure 5c show that the accuracy in Exp3 does not have the
high variations from one epoch to another, which is present in Exp2.

• The difference between training and validation accuracy is smaller in Exp3 compared
to Exp2.

(a) Exp2: Confusion matrix for the Hamiltonian con-
volutional neural networks (CNNs) on
downsampled COVID Dataset.

(b) Exp3: Confusion matrix for the Hamiltonian
CNNs on
downsampled COVID Dataset with transfer learning.

(c) Comparison between learning curves for training with/without transfer (Exp2 and Exp3).
Figure 5. Confusion matrix and learning curve for the Hamiltonian networks trained in Experiment 2 and Experiment 3.
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Based on the above observations, we conclude that, for parabolic and hyperbolic
networks, learning first from a larger dataset for 2 classes and after that moving to 4 classes
with the downsampled dataset is more reliable, even though from the numerical point of
view of COVID-19 class, Exp2 seems better than Exp3. Further investigation is needed
here, and a method other than downsampling could be used for dealing with the im-
balanced data, like class weights, such that all the available data is used. Furthermore,
visualization of the activation maps or filtered images could get some insights into what
the networks learned.

3.2. 2-Phases Learning with CheXpert as X-ray Embedding

The second approach relies on using the classical DenseNets. It is a common practice in
image classification to use transfer learning from ImageNet [17]. Since we classify medical
images, we expect to have limited benefits in doing this transfer. Therefore, the proposed
method exploits the benefits of the transfer learning in two phases: first from ImageNet,
and then from a general and large dataset of chest X-rays, i.e., CheXpert. The first phase is
building models for the detection of the 14 observations from the CheXpert dataset.

We call these models CheXpert-14 and we start their training from ImageNet pre-
trained weights. The second phase is to build models for the detection of the three diseases:
COVID-19, pneumonia, tuberculosis, together with the normal aspect from our custom-
made dataset. We name these models CheXpert-COVID19, since we start learning from
the CheXpert-14 weights as pretrained weights (see Figure 2). CheXpert [18] is a large
public dataset for chest radiograph interpretation. It consists of 224, 316 chest radiography
from 66, 240 patients, collected from Stanford Hospital for patients in 2002–2017. For each
patient, there are 14 observations that can be positive, negative or uncertain, except for
NoFinding, which can only be positive or negative (see Table 2). Even though the data are
real, since the annotations are extracted with an automated rule-based labeler from the
radiology reports, the data are not error-free.

Table 2. CheXpert labeler performance on the 14 observations [18].

Positive Negative Uncertain

Atelectasis 0.998 0.833 0.936
Cardiomegaly 0.973 0.909 0.727
Consolidation 0.999 0.981 0.924
Edema 0.993 0.962 0.796
Pleural Effusion 0.996 0.971 0.707
Pneumonia 0.992 0.750 0.817
Pneumothorax 1.000 0.977 0.762
Enlarged Cardiom. 0.935 0.959 0.854
Lung Lesion 0.896 0.900 0.857
Lung Opacity 0.966 0.914 0.286
Pleural Other 0.850 1.000 0.769
Fracture 0.975 0.807 0.800
Support Devices 0.933 0.720 -
No Finding 0.769 - -

Table 2 lists the performance (F1) of the labeler on all 14 observations [18]. Note
here that the performance varies among the observations. For instance, the observations
support device and NoFinding have F1 values lower than 0.8 for one of the possible
values (positive, negative, uncertain), while the observations atelectasis, consolidation,
cardiomegaly, edema, pleural effusion, pneumothorax have values higher than 0.8 for
positive and negative values. This suggests that the annotations for the later observations
are more reliable than the former mentioned ones.
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3.2.1. First Phase: Classifying the 14 Observations from CheXpert

The architecture of the network for CheXpert-14 models is standard: a DenseNet121
followed by a Dense layer and the output layer (Figure 6—truncated due to the lack of space).

Figure 6. CheXpert-14 models: using DenseNet121 for training with 14 multi-outputs and 2 or
3 classes for each output.

For each of the 14 observations, there is an output as a softmax layer with 3 neurons
(or 2 neurons for no finding class), meaning that we have a 3-class classification for each of
the 13 observations and a 2-class classification for no finding class.

CheXpert dataset is imbalanced [18], and the difference between the number of ex-
amples for positive, negative and uncertain classes also varies among observations. For
example, for cardiomegaly, there are 12.26% positive samples, 3.52% uncertain, and 84.23%
in the negative class. Lung opacity has 49.39% positive, 2.31% uncertain and 48.3% for the
uncertain class. Therefore, in addition to fine-tuning parameters of the optimizer, we tested
different combinations of the following elements:

1. Class weights: for each of the 14 observations, the weights of the 3 classes is computed
according to the number of examples in each class (except for the no finding class,
where the weight is computed only for 2 classes since there is no example in the
uncertain class).

2. Reliable classes: training is done only for the the first 5 classes for which F1 of the
labeler on positive and negative classes are all very high: edema, consolidation,
atelectasis, cardiomegaly, pleural effusion.

3. Value of the weight for the uncertain class: the weight of the uncertain class for some
outputs is halved such that the errors on this class to have reduced impact on the loss.
The reason for doing this is the smaller quality of the labeler on this class.

4. Replacing the uncertain class: the samples from the class uncertain for some observa-
tions are considered from either positive or negative class.

Figure 7 shows the learning curves for six observations in two similar experiments:
in Exp14_1, the learning is done on all the 14 observations for 50 epochs, with the class
weight computed according to the number of the examples in each class, while in Exp14_2,
the learning is done only on the 5 best annotated classes, with the halved weight for
the uncertain class, for 25 epochs. The orange and dark blue curves are for the training,
respectively, the validation set for Exp14_1, while red and light blue are used for Exp14_2.

Both experiments reveal that: (i) the overfitting is reached at different epochs for
different observations; (ii) cardiomegaly seems to be underfit due to the difference between
values on the validation and training sets; (iii) the value for the validation accuracy ranges
from 75% for atelectasis and 94% for the pneumothorax. The observations support device
and pneumothorax were included as outputs only for the experiment Exp14_1.
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(a) Atelectasis (b) Cardiomegaly (c) Pleural effusion

(d) Consolidation (e) Support device (f) Pneumothorax
Figure 7. Learning curve for the accuracy of 6 observations for CheXpert-14 models. Two experiments (Exp14_1
and Exp14_2).

We underline again that we built the CheXpert-14 models in order to use the transfer
knowledge approach for avoiding the lack of generality specific to learning from a small
dataset. We considered that the features identified by CheXpert-14 models are considerably
more valuable for learning from chest X-rays than features identified by training only
on ImageNet.

3.2.2. Second Phase: Classifying COVID-19, Pneumonia, Tuberculosis and Normal with
CheXpert Pretrained Weights

Our final aim is to build models which can distinguish among COVID-19, pneumonia,
tuberculosis and normal classes. Since we build on top of the CheXpert-14 models, we
named these models CheXpert-COVID19. We used the same architecture as the one for
CheXpert-14 (Figure 6), with changes in the output layer, since there are 4 outputs, each with
2 classes (positive and negative). The network relies on all the layers from the CheXpert
model, except the top layer. We decreased the learning rate in order to take small steps in
adapting previously learned features on the new classification problem.

Note that the problem framing is different here than in the PDE-inspired networks
(Exp2 and Exp3). In parabolic and hyperbolic networks, one of the COVID-19, pneumonia,
tuberculosis or normal classes is mandatory for each image, since the networks predict
4 probabilities whose sum is 1. Differently, in CheXpert-COVID19, it is possible for an
image to be positive for more than one of the COVID-19, pneumonia, tuberculosis or
normal classes, or to be negative for all.

We considered that this design choice gives more flexibility to the network, and it is
more appropriate to the medical perspective. That is, because a patient can have none of
the three diseases, but at the same time, he or she does not have a normal aspect on the
chest X-ray.

Differently to PDEs networks, for CheXpert-COVID19 model, the training is done
on the complete dataset (Table 1). The imbalancing effect is tackled here with different
class weights for each of the 4 outputs. The imbalancing effect is increased by the choice
of having 4 outputs, since for instance, for COVID-19 examples, the negative examples
include all the examples from normal, pneumonia, and tuberculosis.

Given that the dataset is imbalanced, the accuracy is not so informative, even though
we obtain values ≥ 0.97 for all the 4 outputs. Figure 8 presents the precision and the recall
for all the 4 outputs, while Figure 9 includes the AUC for all four outputs.
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(a) COVID precision (b) COVID recall (c) Normal precision (d) Normal recall

(e) Pneumonia precision (f) Pneumonia recall (g) Tuberculosis precision (h) Tuberculosis recall
Figure 8. Learning curve for CheXpert-COVID19 model for COVID-19, normal, pneumonia, tuberculosis (orange—training,
blue—validation).

(a) COVID AUC (b) Normal AUC (c) Pneumonia AUC (d) Tuberculosis AUC
Figure 9. AUC for CheXpert-COVID19 model for COVID-19, normal, pneumonia, tuberculosis (orange—training,
blue—validation).

We can observe that the precision for COVID-19 increases, while the recall tends to
decrease after several epochs. At the epoch 24, precision is 0.90 for the training set and 0.81
for the validation set, while the recall is 0.99 for the training set and 0.75 for the validation
(see Table 3). At the same time, at epoch 26, the precision on validation is 0.74 and the recall
0.88. The effect of having a very small number of samples for COVID-19 is still present. At
the same epoch 24, the precision for the normal output is 0.98 on the training set, 0.94 on
the validation, while the recall is 0.98 on training and 0.96 on validation. We remind the
reader that the number of normal images is much higher than the number of COVID-19
images. Tuberculosis is well recognized when present, with high values for recall on both
training and validation sets, but the precision is small. This is due to the fact that several
COVID-19 images are wrongly included in the positive class for the tuberculosis output.
We underline again that with the CheXpert-COVID19 architecture, an image can have
positive class for more than one outputs (i.e. to have a positive class for both tuberculosis
and COVID-19). The experiments for CheXpert-14 and CheXpert-COVID19 models were
run on Nvidia Tesla V100 with TensorFlow 2.0 (https://www.tensorflow.org/, accessed on
9 January 2021).

Table 3. CheXpert-COVID19 model: precision and recall on training and validation sets for the epoch
24 (and for epoch 26 for COVID-19.

Output Training Validation
Precision (%) Recall (%) Precision (%) Recall (%)

COVID 90 99 82 (74) 77 (88)
Normal 98 98 94 96

Pneumonia 97 97 94 92
Tuberculosis 77 99 60 97

https://www.tensorflow.org/
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3.2.3. Qualitative Analysis

To go beyond the numerical evaluation, we applied our models on a set of X-rays from
a different set, COVID-Net, and we analyzed the results together with two radiologists.
We detail here the 14 observations predicted by the CheXpert-14 model, together with the
predictions of the model CheXpert-COVID19 for the 4 class (Figure 10).

Figure 10. Three predictions of CheXpert-14 and CheXpert-COVID19 models on representative X-rays of COVID-19 patients;
public available images from COVID-net dataset [19].
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In the first example from Figure 10, all the predictions are correct, except the one for
the fracture.

In the second example, even though the X-ray images are over-saturated at the bottom,
the presence of consolidation and pleural effusion are correct, together with the decision
for COVID-19. The prediction for pneumonia is wrong if we consider pneumonia to be the
non-COVID pneumonia.

The third example is correctly classified as COVID-19, but the probability of having
tuberculosis is too large (0.797). The probability of "No finding" is 0.52, which wrongly
asserts the image to be without abnormalities (even though it is quite close to the 0.5
threshold). The model correctly identifies the presence of the support device and the
lung opacity.

According to the qualitative analysis, even though the quality of the predictions
improved after using the 2-phase training with CheXpert compared to a training without
CheXpert, there is still room for improvement. The most important limitation remains the
small number of samples for COVID-19-positive.

4. Discussion and Related Work
4.1. PDE-Inspired Networks

From our knowledge, this is the first approach of using PDE-inspired networks
on chest X-rays. The performance of these networks on large datasets, as normal vs.
pneumonia, is extremely good, even though the number of the trained parameters is
small and the resolution of the images is 192 × 192. Precision and recall values (%) are
92.4/91.4 for non-COVID pneumonia, and 94.4/95.1 for normal class (obtained in Exp1).
For traditional CNNs, these values are common when non-COVID pneumonia is detected.
The novelty of our results comes from using PDE-inspired CNNs.

Hyperbolic networks are also competitive with traditional CNNs for detection of
tuberculosis. In [20], an accuracy of 84.4 is reported for the Shenzhen dataset. We underline
that in the experiments Exp2 and Exp3, the downsampled dataset includes all the examples
for tuberculosis class from the Shenzhen dataset. The precision and recall values for
tuberculosis obtained in Exp2 and Exp3 are 98.5/100, respectively 98.5/95.5.

We obtained considerably smaller values for the detection of COVID-19. The values
for precision and recall on the downsampled dataset are 81.8/72 without transfer learning,
respectively 77.3/68.0 with transfer learning from Exp1 (pneumonia vs. normal). In the
next subsection, we compare these values to the ones obtained by CAD4COVID-XRAY [21].
We consider that CAD4COVID-XRAY stands out among the current results for COVID-19
identification from X-rays: not only a dataset extended with data from two hospitals is
used, but also a comparison of the system performance to the performance of several
radiologists was conducted.

Since discretizations of stable PDEs are used, we expected, and it indeed happened on
our data, that once the objective function is learned, even though the training continues for
several epochs, the value of the objective function does not increase (as it happens in the
case of classical CNNs at some epochs after the overfitting point).

4.2. 2-Phase CheXpert-Based Networks

We compare CheXpert based networks with other existing approaches for COVID-19
identification in terms of: the considered classes and data sources, the used networks and
the training method.

COVID-Net [19] was among the first efforts towards learning from X-ray images for
COVID-19 and explaining the predictions through visualization. The used data included
normal and pneumonia cases from RSNA pneumonia challenge, while for COVID-19, they
combined several datasets, including Cohen dataset and Kaggle COVID-19 Radiography
Database [9]. Wang et al. have used VGG-19, ResNet-50 and their own COVID-Net archi-
tecture. The best results, obtained with the COVID-Net architecture, are: accuracy 93.3%,
recall for COVID-19 91%, respectively 95% for normal and 94% for non-COVID pneumonia.
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Our performance for the detection of the normal and the non-COVID pneumonia classes
are comparable with the ones obtained by COVID-Net. For the detection of COVID-19, we
have smaller values, but here we have a possible explanation related to the used dataset.
In our view, the [9] is a problematic dataset, since it includes pediatric X-ray images for
normal and pneumonia classes.

When training DenseNet, with transfer learning directly from ImageNet, on the set
from [9] (which is included in the COVID-net dataset), we also obtained good precision
and recall (above 90%) for COVID-19 class. However, these results are not included here
because of the previously mentioned pitfalls (recall Figure 1).

The fact that the classical deep neural network architectures work on chest X-ray
images is also shown by Bressem et al. [22]. Densenet121, ResNet, SqueezeNet and VGG-19
are compared on CheXpert dataset and on a set for COVID-19, similar to the one used in
COVID-net. We also trained on the CheXpert dataset but for different reasons, i.e. transfer
the weights trained on this large dataset to the training on the small 4 classes dataset.

CAD4COVID-XRAY [21] is another approach based on the classical CNNs. Different
to us, Murphy et al. have a significantly larger number of COVID-19 positive X-rays, 994,
gathered from public sources, but also from Nerbhoven Hospital and Radboud University
Medical center. Still, 994 images remains a small number, but significantly larger than
what we used. Murphy et al. have pretrained the system on RSNA pneumonia challenge
in order to tackle the issue of having too few samples for COVID-19. This approach is
similar to our Exp3 from PDEs inspired networks and with CheXpert-COVID19 model.
The differences are: (i) in the case of the PDEs inspired networks, we used a downsampled
dataset for the final training. (ii) in the case of the CheXpert-COVID19, we transfer from
CheXpert instead of RSNA. Murphy et al. have considered the following classes: normal,
non-COVID pneumonia, COVID-19 pneumonia, and other abnormalities inconsistent with
pneumonia. They obtained AUC ROC = 0.81: at a 60% sensitivity; the specificity was
85%, at a 75% sensitivity, the specificity was 78%, and at 85% sensitivity, the specificity
was 61%. Even though these values are not above 90%, Murphy et al. concluded that the
AI system is comparable or even better than the human. They reached this conclusion
after comparing the results of the AI system with 6 radiologists with experience. These
sensitivity/specificity values for detecting COVID-19 pneumonia are comparable to the
ones obtained by both PDE-inspired networks and the CheXpert-COVID19 model (see the
confusion matrices for the Hamiltonian CNNs—Figure 5a,b, and for CheXpert-COVID19,
recall the learning curves for precision and recall from Figure 8). Our CheXpert-COVID19
obtained better values on the validation set, but for a real comparison between methods
only, we need to extend the set for COVID-19 positive X-rays.

From a different perspective, CT scans include significantly more information com-
pared to X-ray images. The interested reader can explore the recent work of Yang et al. [23]
or Zhou et al. [24] for screening COVID-19 or for the prediction of the disease severity/
monitoring. The ImagingCOVID19AI European initiative, which gathers several hospitals
from Europe, is of much interest, given the current technological difficulties, due to the
lack of COVID-19 images.

4.3. Comparison between PDE-Inspired Networks and CheXpert-Based Network

We compare parabolic and hyperbolic networks with CheXpert-based network along
several dimensions: (i) the size of the models (ii) the impact of the transfer learning; (iii) the
quality of learning of the control class, tuberculosis.

The number of parameters is much smaller for the parabolic and hyperbolic net-
works: 8e6 for each of the models for CheXpert and the CheXpert-based COVID-model,
while for the parabolic network 501,892, and hyperbolic network even less, 263,428. The
fact that the small models of parabolic and hyperbolic networks successfully learned to
differentiate pneumonia from normal images is inline with the conclusion suggested in [25]
that “large models designed for ImageNet might be too overparameterized for the very
small data regime”.
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Transfer learning: in both approaches, PDE-based and classical DenseNets approach,
pretrained weights improve the final performance for the identification of the diseases.

In case of Exp3 for PDE-inspired networks, the data on which we build the pretrained
weights and the data for which we apply the transfer contain common classes (normal
and pneumonia). The model built with transfer (Exp3) is better at the level of normal and
pneumonia than the model built without transfer (Exp2) when only a small part of the data
for normal and pneumonia is used.

For CheXpert-COVID19 model, the generality of the network is increased when
CheXpert pretrained is used. Classification based on wrong relevant areas in the image,
particularly to learning from a very small number of COVID-19 images, is avoided when
using the pretrained weights on CheXpert. Nevertheless, in order to prove that the general-
ity is increased in both cases when the transfer is used, further work is needed, which we
believe must involve a group of radiologists.

Learning the control class—tuberculosis: in all the experiments with PDEs inspired
networks on the four-class dataset, tuberculosis is well learned. In the case of the CheXpert-
COVID19 model, images with tuberculosis are well classified, but sometimes, COVID-19
images are wrongly classified as tuberculosis. We could assume that this happens due to
the stability property of the PDEs networks, but this needs further investigation.

5. Code and Data Availability

The data stored as MATLAB files, the logs and models for the parabolic and hyperbolic
networks, together with trained weights for CheXpert-14 and CheXpert-COVID19 models and
some running examples, are publicly available at GitLab.utcluj.ro/Anca.Marginean/XRay,
accessed on 9 January 2021.

6. Conclusions

In the context of the actual pandemic, in certain areas with an increased number of cases
and a lack of trained specialists (radiologists), the neural network’s interpretation of chest
X-rays from COVID-19 patients can act as a triage instrument, being a valuable tool, even if
only to raise suspicion where the seen aspect is not normal, leading to more specific testing.

We framed the problem of identification of COVID-19 from X-rays as a multi-label
classification into COVID-19, non-COVID pneumonia, tuberculosis and normal aspect.
The contributions of this article are: (1) applying parabolic and hyperbolic CNNs on chest
X-rays, on large and balanced dataset for normal and non-COVID pneumonia classes, and
on the downsampled dataset for COVID-19, normal, pneumonia and tuberculosis classes;
(2) using CheXpert dataset for a domain-specific transfer learning for differentiation of
COVID-19 from pneumonia, tuberculosis and normal findings; (3) compiling a dataset
with COVID-19, pneumonia, and tuberculosis, along with normal chest X-ray images. Our
results have shown that PDE-inspired networks are competitive for learning from chest
X-rays, even though the models are much smaller compared to DenseNets, and even when
they are trained on an extremely small dataset. However, in order to have reliable models
for the detection of COVID-19 from a very small number of images, domain-specific transfer
learning helps in the case of both PDE-inspired networks and traditional DenseNets.

One observation which emerged during this work is that trained models with a high
performance when analyzing X-rays should be treated cautiously and the radiologists
should be involved in the design and learning process.

As future work, we plan to: (i) extend the set of COVID-19 images; (ii) do an exten-
sive qualitative analysis of the results obtained by the PDE-inspired networks; (iii) train
parabolic and hyperbolic networks on CheXpert dataset and explore the impact of the
stability and reversibility properties on the learned features; (iv) consider the severity and
the evolution of the disease.

https://gitlab.utcluj.ro/Anca.Marginean/xray
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