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Abstract: The multistage differential transformation method (MSDTM) is used to find an approximate
solution to the forced damping Duffing equation (FDDE). In this paper, we prove that the MSDTM
can predict the solution in the long domain as compared to differential transformation method
(DTM) and more accurately than the modified differential transformation method (MDTM). In
addition, the maximum residual errors for DTM and its modification methods (MSDTM and MDTM)
are estimated. As a real application to the obtained solution, we investigate the oscillations in a
complex unmagnetized plasma. To do that, the fluid govern equations of plasma species is reduced
to the modified Korteweg–de Vries–Burgers (mKdVB) equation. After that, by using a suitable
transformation, the mKdVB equation is transformed into the forced damping Duffing equation.

Keywords: multistage differential transformation method; Duffing equation; nonlinear damping
oscillations

1. Introduction

Mathematical techniques are very important tools in mathematics. Mathematicians
have developed many mathematical methods to compute linear or nonlinear differential
equations which describe many important phenomena and applications in science [1–7].
The mathematical techniques are classified as algebraic methods, semi-approximate, gen-
eral analytical, approximate analytical, numerical, or qualitative techniques. The basic
concept of approximate analytical techniques such as Adomian decomposition method
(ADM), Laplacian decomposition method (LDM), or differential transformation method
(DTM) is assuming that the solution is descried by a Taylor expansion form. Indeed, some
solutions of equations have well-known Taylor expansions such as exponential function or
hyperbolic function. In this case, it is easy to determine the exact solution by a few terms
of the Taylor expansion series. Otherwise, the approximate solution will be obtained in the
form of few terms of Taylor expansion series. Since Taylor expansion is local convergent
about the initial condition, the method can approximate the solution in the neighborhood
of the initial point. Thus, the solution is obtained in a very short domain. This feature
of ADM, LDM or DTM has been mentioned by some researchers [8–12]. DTM has been
improved by dividing the domain into subdomains and modifying the initial point in
each subdomain. The other modification is by using the Laplacian transformation and
Padé approximate. In Section 2, we describe these modifications in details. However, it is
very important to determine the optimal modification of DTM to present fast and accurate
techniques.
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Some of the most important and famous differential equations whose solutions are
related to many natural phenomena, physical concepts, and engineering phenomena are
the Duffing equation (including conservative and non-conservative cases), the Helmholtz
equation (including conservative and non-conservative cases), and their families [13–24].
Given the importance of the family of Duffing equation, a great effort has been made
by many researchers to solve this equation and its family, with a numerical, analytical,
or semi-analytical solution according to the type of Duffing equation. Examples of these
approximate methods for solving the conservative Duffing equation (u′′+ βu(t) + γu3 = 0)
include the homotopy perturbation method [25], harmonic balance method [26], energy bal-
ance method [27], modified variational approach [28], and coupled homotopy–variational
approach [29]. On the other hand, many researchers have tried to find a solution to the
damping Duffing equation (DDE),

(
u′′ + αu′ + βu(t) + γu3 = 0

)
[30–35], since it is more

closely related to reality than the undamping Duffing equation, which is correct only for
idealized isolated systems, i.e., systems in which the frictional force and viscosity are
absent. One of the most important approximate methods that has been used and developed
to solve many differential equations is DTM, which has been used in solving DDE [11].
Nourazar et al. [11] used the modified DTM to get an approximate solution to the DDE. The
authors compared their solution with both the fourth-order Runge–Kutta (RK4) numerical
solution and the DTM solution. They found that the DTM solution is suitable only for small
time intervals while the MDTM solution is suitable for the whole time domain. In our study,
we solve the forced damping Duffing equation (FDDE)

(
u′′ + αu′ + βu(t) + γu3 = F

)
us-

ing the multistage differential transformation method (MSDTM) for arbitrary initial condi-
tions. Moreover, we compare the approximate solutions of DTM and MDTM as well as the
numerical solution using RK4 in order to determine the optimal technique. Furthermore,
the oscillations in complex unmagnetized plasmas are investigated by reducing the fluid
govern equations of the plasma species to an evolution equation and then transform this
equation to the Duffing-type equation using a suitable transformation.

2. Methodology

This section is devoted to briefly describing DTM and its modifications. Assume the
following ordinary differential equation (ODE)

P(u, u′, u′′, ....) = 0, (1)

where u(t) is the solution of this ODE in domain [t0, tN ], P is a polynomial in terms of u
and its derivative, and u(t0) = c.

2.1. Differential Transformation Method (DTM)

Assume that the goal is finding the approximate solution of Equation (1). The main
concept of DTM is based on applying the differential transformation u(t) =⇒ U(k) at
t = t0 as follows:

U(k) =
1
k!
[
dku(t)

dtk ]t=t0 . (2)

The differential inverse transformation U(k) =⇒ u(t) is defined as

u(t) =
∞

∑
k=0

U(k)(t− t0)
k, (3)

Inserting Equation (2) into Equation (3), u(t) can be approximated in finite number
series as follows

uN(t) =
N

∑
k=0

(t− t0)
k

k!
[
dku(t)

dtk ]t=t0 = gN . (4)

Some differential transformation rules are introduced in Table 1.
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Table 1. Differential transformation rules.

Original Function Transformed Function

u(t)± v(t) U(t)±V(t)

cu(t) cU(t) (c is constant)
du(t)

dt
(k + 1)U(k + 1)

dnu(t)
dtn

(k+n)!
k! U(k + n)

u(t)v(t) ∑k
m=0 U(m)V(k−m)

It is well known that, since the DTM based on Taylor expansion, the approximate solu-
tion if it is locally analytic converges to the exact solution with the following approximated
error

|u(t)−gN(t)| ≤
M

(N + 1)!
|t− t0|N+1,

where |u(tN)| ≤ M.
It is obvious that the error increases when |t− t0| incenses for fixed term N. Note

that DTM gives accurate results only in a small domain around the initial point. Therefore,
to obtain good results, some modifications to this method must be introduced. There are
some attempts to improve this method, such as the modified differential transformation
method (MDTM) and the multistage differential transformation method (MSDTM).

2.2. Modified Differential Transformation Method (MDTM)

MDTM is presented in [11]. The idea is described simply by applying the Laplacian
transformation into Equation (3) Lu(t). We obtain the polynomial in terms of 1/ts. Next,
we use Padé approximate, [3/3] or [4/4], and then apply the Laplacian inverse transform.
The method is improved and able to approximate the solution in long domain.

Definition 1. We say the function g(t) is Padé approximate of order [m/n] for function u(t) if

g(t) =
a0 + a1t + a2t2 + ...... + amtm

1 + b0 + b1t + b2t2 + ...... + bntn ,

where u(0) = g(0), u′(0) = g′(0), u′′(0) = g′′(0), ........, u(m+n)(0) = g(m+n)(0). The constants
ai, i = 1, 2, ..., m and bj, j = 1, 2, ..., n are uniquely determined. The Padé approximate is unique for
given n and m.

2.3. Multistage Differential Transformation Method (MSDTM)

The other modification is MSDTM. The main concept is dividing the domain into
subdomains [ti, ti+1] = Di and applying DTM in each subdomain with the initial condition
at ti to approximate u(t) at the subdomain Di.

2.4. Example

In this section, we apply DTM and its modifications to one of the most famous
equations in dynamic systems which is called the Duffing oscillator or the Duffing equa-
tion. It is known that the Duffing equation has many formulas, and, in this paper,
we restrict our attention to investigating the forced damping Duffing equation (FDDE)(

u′′ + αu′ + βu(t) + γu3 = F
)
. This equation is non-integrable and does not have an exact

solution except under certain conditions on its coefficients (α, β, γ). Therefore, the approxi-
mate solution to the following FDDE for arbitrary values of its coefficients (α, β, γ) and for
arbitrary initial conditions is obtained:{

u′′ + αu′ + βu(t) + γu3 = F,
u(0) = u0 &u′ = u′0.

(5)
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In the following analysis, we give some numerical examples to solve the initial value
problem (i.v.p.) (5) using the aforementioned methods and examine the accuracy of these
methods for calculating the residual error for each method compared to the RK4.

2.4.1. MDTM

Firstly, let us use the same values of (α, β, γ, F) = (0.5, 25, 25, 0) as mentioned by [11]
with the initial conditions u(0) = 0.1 andu′(0) = 0. Note that the solution of the i.v.p. (5)
for unforced (F = 0) using MDTM is introduced in details in [11]. In the case of using Padé
approximate of [3/3], we have

u(t) = 0.00194 + 0.000238e−0.25t(411 cos(5.068t)

+ 20.273 sin(5.068t)), (6)

In the case of using Padé approximate of [4/4], the solution is approximated as

u(t) = Ae(−0.60107−15.0816i)t + Be(−0.60107+15.0816i)t

+ Ce(−0.24894−5.0125i)t + De(−0.24894+5.0125i)t, (7)

with

A = 1.6932× 10−5 − 1.3567× 10−4i,

B = 1.6932× 10−5 + 1.3567× 10−4i,

C = 4.9983× 10−2 − 2.5633× 10−3i,

D = 4.9983× 10−2 + 2.5633× 10−3i.

In the second example, we use the values (α, β, γ, F) = (1, 20, 2, 0) and with initial
condition u(0) = −0.2 and u′(0) = 2 and apply Padé approximate of [3/3] and [4/4]. The
solution in the case of using Padé approximate of [3/3] reads

u(t) = 0.003101 exp(−6.3493t)

+ exp(−0.52098t)(0.434516 sin(4.4046t)

− 0.203101 cos(4.4046t)), (8)

and for [4/4] reads

u(t) = Ae(−2.0169+12.6572i)t + Be(−2.0169−12.6572i)t

+ Ce(−0.4965+4.4826i)t + De(−0.4965−4.4826i)t, (9)

with

A = 2.265× 10−4,−4.807× 10−5i,

B = 2.265× 10−4,+4.807× 10−5i,

C = −0.100226− 0.21195i,

D = −0.100226 + 0.21195i.

2.4.2. MSDTM

In this work, we focus our attention to solve the i.v.p. (5) for arbitrary initial conditions
using MSDTM by dividing the domain [0, 20] to subdomains with time step 10−2 and apply
DTM with k = 3 to find ui as follows:

ui
k+1 =

k!
(k + 1)!

yi
k, (10)
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yi
k+1 =

k!
(k + 1)!

[
−βui

k − αyi
k − γ

k

∑
r=0

(
r

∑
l=0

(ui
lu

i
r−l)

)
ui

k−r + F

]
, (11)

where y = u′.
To check the accuracy of the aforementioned methods as compared the RK4 solution,

we use the following error formula for the maximum residual error

LD(method) = max
t0≤t≤tN

|RK(t)− u(t)|.

Figures 1 and 2 demonstrate the approximate solutions to the i.v.p. (5) for different
values of the coefficients (α, β, γ, F). The results show that the MDTM4 and MSDTM are
better approximations than MDTM3. Moreover, the comparison of the maximum residual
errors for the approximate solutions shown in Table 2 proves that the accurate method
is MSDTM. Aljahdaly [10] proved that the MSDTM and RK4 techniques have the same
accuracy, but MSDTM is faster than RK4. Thus, we conclude that MSDTM is a fast, accurate,
and reliable method for many differential equations in physics and in different branches of
science. In the next section, a new application to the damping Duffing equation in plasma
physics is introduced.

Table 2. The error LD(methods) is estimated for different values of the coefficients
(
α, β, γ, u0, u′0

)
.

(α, β, γ, u0, u′
0) Time Range LD(MDTM3) LD(MDTM4) LD(MSDTM)

(0.5, 25, 25, 0.1, 0) 0 ≤ t ≤ 20 1.19631× 10−2 1.67636× 10−3 4.81974× 10−4

(1, 20, 2,−0.2, 2) 0 ≤ t ≤ 6 1.83182× 10−2 7.99595× 10−3 1.96895× 10−5

0 5 10 15 20
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(a)Comparing RK method and MDTM3

Figure 1. Cont.
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b

(b)Comparing RK method and MDTM4

c

(c)Comparing RK method and MSDTM

Figure 1. Plot the solution u(t) for α = 0.5, β = γ = 25, F = 0, u(0) = 0.1, u′(0) = 0.
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(a)Comparing RK method and MDTM3

Figure 2. Cont.
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Time
b  

(b)Comparing RK method and MDTM4

c

(c)Comparing RK method and MSDTM

Figure 2. Plot the solution u(t) for α = 1, β = 20, γ = 2, F = 0, u(0) = −0.2, u′(0) = 2.

3. Application in Plasma Physics

Let us consider the propagation of nonlinear structures in a complex unmagnetized
plasma composed of inertial positive ions (with subscript “i”) and two different types
of electrons (with subscripts “l” and “h” for the lower and higher electron temperatures,
respectively) that follow the kappa distribution in addition to static dust grains with
negative charge (with subscript “d”) [36]. Accordingly, the neutrality condition reads
n(0)

l + n(0)
h + zdn(0)

d = n(0)
i , where n(0)

j represents the unperturbed number density of
species j (j ≡ l, h, d, i) and zd gives the number of electrons residing on the surface of the
dust grains. The dynamics of the nonlinear structures whose phase speed is much larger
than the ion thermal speed but smaller than the electron thermal speed are governed
by the following dimensionless fluid continuity, momentum, and Poisson’s equations,
respectively, 

∂tni + ∂x(niui) = 0,
∂tui + ui∂xui + ∂xφ = η∂2

xui,
∂2

xφ− ne + ni − µd = 0,
(12)

where the number density of the electrons in kappa distribution is given by

ne = nl + nh = µl

(
1− σlφ

Rl

)Sl

+ µh

(
1− σhφ

Rh

)Sh

≡ Γ0 + Γ1φ + Γ2φ2 + Γ3φ3 + · · · , (13)
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with

Γ0 = µl + µh,

Γ1 = −
[

Slµlσl
Rl

+
Shµhσh

Rh

]
,

Γ2 =

[
Slµlσ

2
l (Sl − 1)
2R2

l
+

Shµhσ2
h (Sh − 1)
2R2

h

]
,

Γ3 = −
[

Slµlσ
3
l (Sl − 1)(Sl − 2)

6R3
l

+
Shµhσ3

h (Sh − 1)(Sh − 2)
6R3

h

]
,

Sl =

(
−κl +

1
2

)
& Sh =

(
−κh +

1
2

)
,

Rl =

(
κl −

3
2

)
& Rh =

(
κh −

3
2

)
.

where ni/nl/nh is the normalized number density of the positive ions/low temperature
electrons/high temperature electrons, ui refers to the normalized velocity of the positive
ions, φ is the normalized electrostatic potential, η represents the normalized coefficient of
ionic kinematic viscosity, σl,h = Te f f /Tl,h is the electron temperature ratio, the effective

electron temperature is Te f f = n(0)
e TlTh/

(
n(0)

l Th + n(0)
h Tl

)
, n(0)

e ≡
(

n(0)
l + n(0)

h

)
is the total

unperturbed electrons density, µd = zdn(0)
d /n(0)

i is the dust concentration, µl = n(0)
l /n(0)

i is

the concentration of low electron temperature, µh = n(0)
h /n(0)

i is the concentration of high
electron temperature, and κl,h(> 3/2) is the kappa index parameter [36].

To model and analyze the nonlinear structures that can propagate in the present
plasma model, the reductive perturbation method (RPM) [37,38] is used to reduce the basic
set of fluid Equations (12) and (13) to an evolution equation. According to this method, the
independent variables (x, t, η) can be stretched as follows:

X = ε
(

x− vpht
)

, T = ε3t & η = εη̃, (14)

where ε is a real and small parameter (ε << 1) that measures the strength of the nonlinearity
and vph represents the normalized phase velocity, which is scaled by Ci. In addition, the
dependent quantities Π(x, t) ≡ (ni, ui, φ) are expanded as follows:

Π(x, t) = Π(0) +
∞

∑
s=1

εsΠ(s)(X, T), (15)

where Π(0) ≡ [1, 0, 0]T , Π(s)(X, T) ≡
[
n(s)

i , u(s)
i , φ(s)

]T
, and T gives the matrix transpose.

Inserting both stretching (14) and expansion (15) into the basic set of fluid Equations
(12) and (13), we get a system of reduced equations in different powers of ε. From the
lowest-order of ε, i.e., O(ε), the values of the first-order quantities

(
n(1)

i , u(1)
i

)
and the

phase velocity vph can be obtained as

u(1)
i = vphn(1)

i =
1

vph
φ(1),

vph =
1√
Γ1

. (16)
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The solution of next-order of ε, i.e., O
(
ε2), gives the values of the second-order quanti-

ties
(

n(2)
i , u(2)

i

)
n(2)

i =
1

v4
ph

(
3
2

φ(1)2 + v2
phφ(2)

)
,

u(2)
i =

1
v3

ph

(
1
2

φ(1)2 + v2
phφ(2)

)
, (17)

and the Poisson’s equation gives

Aφ(1)2 + Acφ(2) = 0, (18)

where A =
[
3/
(

2v4
ph

)
− Γ2

]
= 0 at the critical value of low electron temperature con-

centration µl = µlc and the coefficient Ac =
(

1/v2
ph − Γ1

)
represents the compatibility

condition, i.e., Ac = 0.
From the next-order of ε, i.e., O

(
ε3), we get

∂Tn(1)
i + ∂X

(
n(1)

i u(2)
i

)
+ ∂X

(
n(2)

i u(1)
i

)
− vph∂Xn(3)

i + ∂Xu(3)
i = 0, (19)

∂Tu(1)
i + ∂X

(
u(1)

i u(2)
i

)
+ ∂X

(
n(2)

i u(1)
i

)
− vph∂Xu(3)

i + ∂Xφ(3) − η̃∂2
Xu(1)

i = 0, (20)

and the Poisson’s equation gives

∂X

(
n(3)

i − Γ3φ(1)3 − 2Γ2φ(1)φ(2) − Γ1φ(3) + ∂2
Xφ(1)

)
= 0. (21)

By solving Equations (19)–(21) with the help of Equations (16) and (17), we finally get
the mKdVB equation

∂T ϕ + P1 ϕ2∂X ϕ + P2∂3
X ϕ = P3∂2

X ϕ, (22)

with

P1 =
(

15− 6Γ3v6
ph

)
/
(

4v3
ph

)
,

P2 =
v3

ph

2
&P3 =

η̃

2
,

where ϕ ≡ φ(1).
It is known that Equation (22) supports the shock solution due to the presence of

ion kinematic viscosity. However, in this paper, we want to investigate the damping
oscillations in the present model. Accordingly, the transformation ϕ(X, T) = Φ(ξ), where
ξ = X + v f T, is used to transform Equation (22) into the FDDE as follows:

ϕ′′ + αϕ′ + βϕ + γϕ3 = F, (23)

where α = −P3/P2, β = v f /P2, γ = P1/(3P2), and F is the constant of integration.
Let us now investigate the effect of typical complex plasma parameters, namely

(κl , σh, µl , µh) = (3, 0.1, µc, 0.4), and different values for (σl , κh, η̃) on the profile of plasma
oscillations. Some plasma data are used as an example for investigating the solution of
MSDTM, as shown in Figure 3. It is clear from the results in Figure 3 that the enhancement
of the viscosity parameter η̃ leads to an increase in the number of oscillations and decreasing
the time of periodicity. Note that the effect σl has on the profile of oscillation is the same as
its effect on η̃ while κh has the opposite effect, in which the number of oscillations decreases
and the time periodicity increases with the enhancement of κh.
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Figure 3. Plot of the initial solution u(t) for ηh = 0.4; κl = 3; κh = 3; σl = 2.5; σh = 0.1; u f = 0.1; η = 0.3. The plot shows the
effects of: η (a); σl (b); and κh (c).

4. Conclusions

The forced damping Duffing equation
(

ϕ′′ + αϕ′ + βϕ + γϕ3 = F
)

with arbitrary ini-
tial conditions is investigated numerically via the highly-accurate MSDTM. The comparison
between the approximate solutions using MDTM and MSDTM with RK4 numerical so-
lution is reported. Moreover, the maximum residual error for all approximate numerical
solutions as compared to the RK4 solution is estimated. It is observed that the approximate
numerical solution using MSDTM is highly accurate and better than both DTM and MDTM.
Furthermore, the application of the FDDE in the practical plasma model is investigated to
study the dynamics of nonlinear oscillations that occur in a complex unmagnetized plasma.
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This solution might help many researchers in studying and investigating many problems
in various fields of science such as plasma physics and optical fiber.

Future work: in this work, the MSDTM is devoted for solving the FDDE for con-
stant force, but sometimes the perturbation force is not constant but periodic with time(

ϕ′′ + αϕ′ + βϕ + γϕ3 = f (t)
)
, this is considered an important and vital problem but out

of the present scope.
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