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Abstract: A single-server queuing-inventory system in which arrivals are governed by a batch
Markovian arrival process and successive arrival batch sizes form a finite first-order Markov chain
is considered in this paper. Service is provided in batches according to a batch Markovian service
process, with consecutive service batch sizes forming a finite first-order Markov chain. A service
starts for the next batch on completion of the current service, provided that inventory is available at
that epoch; otherwise, there will be a delay in starting the next service. When the service of a batch is
completed, the inventory decreases by 1 unit, irrespective of batch size. A control policy in which
the server goes on vacation when a service process is frozen until a quorum can initiate the next
batch service is proposed to ensure idle-time utilization. During the vacation, the server produces
inventory (items) for future services until it hits a specified level L or until the number of customers
in the system reaches a maximum service batch size N, with whichever occurring first. In the former
case, a server stays idle once the processed inventory level reaches L until the number of customers
reaches (or even exceeds because of batch arrival) a maximum service batch size N. The time required
for processing one unit of inventory follows a phase-type distribution. In this paper, the steady-state
probability vector of this infinite system is computed. The distributions of inventory processing time
in a vacation cycle, idle time in a vacation cycle, and vacation cycle length are found. The effect of
correlation in successive inter-arrival times and service times on performance measures for such a
queuing system is illustrated with a numerical example. An optimization problem is considered. The
proposed system is then compared with a queuing-inventory system without the Markov-dependent
assumption on successive arrivals as well as service batch sizes using numerical examples.

Keywords: queuing-inventory system; batch Markovian arrival process; batch Markovian service
process; Markov-dependent arrival and service batches; vacation; N−policy

1. Introduction

Bulk arrival and bulk service queues have been extensively analyzed in the literature
(for example, see Chaudhry and Templeton [1] for an in-depth study on bulk queues). The
earliest work considered arrival and service processes to be mutually independent. Further-
more, inter-arrival times and successive service times were assumed to be independent. The
next stage of development had a relaxed assumption of independence between successive
inter-arrival times and/or successive service times. One such extension is the Marko-
vian arrival process (MAP) or Markovian service process (MSP) (single or multi-server
queues), in which successive inter-arrival times or successive service times are correlated
through the respective semi-Markov processes. Its extension to the batch Markovian arrival
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process (BMAP) and/or the batch Markovian service process (BMSP) considers batch
arrival and/or batch service. (Refer to [2–4] for more details and to [5–7] for reviews on
BMAP.) Successive arrival batches are assumed to be mutually independent and “within
independent” in the sense that successive arrival batch sizes are independent. This is also
true for successive service batches. However, there is only one published paper [8] wherein
arrivals are in batches (BMAP) and service is also in batches (BMSP), with arrival and
service batch sizes forming two distinct Markov chains. Thus, successive arrival batch
sizes and successive service batch sizes are determined by two distinct Markov chains.
The purpose of this paper is to extend the work of Krishnamoorthy A. and Anu Nuthan
Joshua [8] for queuing inventory, with items that are to be served to customers or to be
used for serving customers processed by the server while idle.

This work could also be considered an extension of the queuing-inventory problem
considered in Divya et al. [9]. In [9], the authors considered a single server queuing-
inventory system in which customer arrival is governed by a Markovian arrival process
(MAP). The service process with as well as without inventory in stock follows two distinct
phase-type distributions (one in which the processed item is available and the other in
which the processed item is not available at a service commencement epoch). This assump-
tion of the service process is made based on the observation that, with the availability
of additional items at the service commencement epoch, the service time of customers
becomes shorter as the item does not need to be processed before initiation of the service.
The server goes on vacation when the system is empty and produces inventory for future
use. The server returns from vacation once the number of customers in the system reaches
a certain prescribed limit N. It is assumed that customers join the queue with probability p
and, after spending a random time period in the queue (which is exponentially distributed),
become impatient and renege. The impacts of customer behavior on individual optimal
strategies, revenue to the server, and social optimal strategy are analyzed extensively in that
paper using numerical experiments. Earlier works, with some connection to the present
work, in terms of processing of items to be delivered to the customers, are Kazirmsky [10]
(service time depends on the number of items processed and customer arrivals following
BMAP), Hanukov et al. [11], and Divya et al. [12], in addition to Divya et al. [9]. There are
other works in which the service requires an additional item (see [13–15]). In the models
analyzed by Baek et al. [13] and Dhanya et al. [15], additional items required for services
arrive according to the Markovian arrival process (MAP). All of the works mentioned
above are related to queuing systems with single arrival and/or single service at a time.
The literature on vacation queuing systems is also quite extensive. (The concept was
introduced by Levy and Yechiali [16] and reviews of the literature can be found in [17–19]).

However, it is more realistic to consider systems in which both customer arrivals
and services occur in batches. Markov dependence on successive arrival and service
batch sizes is observable in many real-life situations. It is a useful strategy in optimizing
performance and in balancing workload by suitably assigning values to the transition
probabilities in the Markov chain that decides successive service batch sizes (see [8] for
details). For example, many production plants ensure that a minimum number of machines
(service batch size) are put to use (which varies from time to time based on demand) to
ensure optimum production. The demands (arrival batch size) are accommodated based on
previous experience of successful levels of production. The Markov-dependent assumption
on successive service batch sizes has the following disadvantage: whenever the server does
not find the required numbers of customers to initiate the next batch service, it stays idle.
However, in the model that is studied in this paper, the server effectively utilizes its idle
time to further reduce the waiting times of customers by engaging itself in producing items
for service (by going on vacation). The vacation expires when N customers (the maximum
service batch size) accumulate in the system. Thus, in this paper, a model that extends [9]
and captures the following dependencies is considered:

• Successive inter-arrival times and successive service times are correlated.



Mathematics 2021, 9, 419 3 of 29

• Consecutive arrival and service batch sizes form two distinct first-order Markov
chains.

• Service process is governed by a BMSP but has transition rates depending on whether
there are processed items available/not available for service commencement of the
batch now being served; if quorum for the next batch, as determined by the Markov
chain rule, is not available at a service completion epoch, the service process is frozen
until the number of customers in the system reaches N.

This model (Model I) is then compared with another (Model II) in which the successive
arrival and service batch sizes are not Markov-dependent. In Model II, the server goes on
vacation only when the system is empty. The working of the models analyzed in this paper
is illustrated using the flowcharts given in Figures 1 and 2.
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Figure 1. Flowchart indicating the functioning of a queuing-inventory system with Markov-dependent assumption on
successive arrival as well as service batch sizes: Model I.
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Figure 2. Flowchart indicating the functioning of a queuing-inventory system without Markov-dependent assumption on
successive arrival as well as service batch sizes: Model II.

This paper discusses a very general model. However, it is very complex. The main
problem is in the computation. The dimension is very high, and thus, one may face
tractability.

This paper is organized as follows. The mathematical formulation of Model I is de-
scribed in Section 2. Section 3 deals with a steady-state analysis of this queuing system.
In Section 4, certain distributions associated with vacation are derived and performance
measures for the queuing system under consideration are analyzed. A numerical example
is provided in Section 5. A cost function based on performance measures constructed and
the optimal value of L that minimizes the cost is computed in Section 6. The description
and formulation of Model II are given in Section 7. Its steady-state analysis and system
characteristics are presented in Sections 8 and 9, respectively. A numerical comparison
between the two models is presented in Section 10. The conclusions that are drawn from
the study of the proposed problems are briefly sketched in Section 11.
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2. Model Description and Formulation of Model I

Consider a single server queuing-inventory system with customers arriving accord-
ing to a batch Markovian arrival process (BMAP) with maximum arrival batch size a.
Successive arrival batch sizes form a first-order MC {Xn; n ≥ 1} with tpm P = [pij] on
state-space {1, 2, 3...a}. The service time duration is based on whether items are available
at a service initiation epoch. The service process follows a batch Markovian service process
(BMSP) with successive service batch sizes forming a first-order MC {Yn; n ≥ 1} with
tpm Q = [qij] on state-space {1, 2, 3...N}. Additional items are required for providing
service. If an item is not available for service, the server has to process it before the start
of service and this increases the service time duration. If there is an item available at a
service commencement epoch, service will be provided at a rate µ; otherwise, service is
provided at a rate θµ; 0 < θ < 1. This includes the processing time of the item and the
time for serving the present batch of customers. The server goes on vacation when the
service process is frozen due to a lack of quorum to initiate the next batch service, as per
MC determining the service batch size. Let 0(k) denote the status of the server when the
service process is frozen until k customers are reached to initiate the next batch service.
During vacation, the server processes inventory until the inventory level becomes L or
until the number of customers in the system is equal to or exceeds N, whichever occurs
first. The server becomes idle once the inventory level reaches L and waits for N customers
to accumulate to initiate the next service, provided that the former precedes the latter
(the inventory level reaches L first). The inventory processing time follows phase-type
distribution PH(α, T) of order t1. Only one item is provided to each batch of customers
undergoing service, irrespective of batch size. The additional item can be regarded as an
essential item for providing service to customers, irrespective of the size of the batch to
undergo service. Exactly one item is required to provide service to each batch. This item
cannot be reused; that is, it belongs to the “consumable class”.

The arrival process is defined using two stochastic matrices, D0 and D1, of order m.
Here, entries of D0 denote transition rates of an underlying MC of BMAP without arrivals
and entries of D1 denote transition rates of an underlying MC of BMAP with batch arrivals.
Each arrival batch size is determined by the MC rule with tpm P. Hence, if the last arrival
batch is of size i, the next arrival batch size is j with probability pij, i.e., the transition rates
of an underlying MC of BMAP if the last arrival batch size is i and the next arrival of batch
size is j are specified by matrix pijD1. Similarly, the size of the next batch to be served
is determined by the MC with tpm Q. The service process is defined using two matrices
S0 and S1 of order t2, where entries of S0 denote transition rates of an underlying MC of
BMSP without departures and S1 denote transition rates of an underlying MC of BMSP
with departures, i.e., the transition rates of BMSP if the current service batch size is i and
the next batch to be served is of size j are specified by the matrix qijS1.

Let N1(t) be the number of customers in the queue at time t. We write N1(t) = n as
(l, p) if n = lq + p; l ≥ 0; 0 ≤ p ≤ q− 1, where q = max{a, N}. The purpose of redefining
the level using maximum arrival or service batch size is to obtain an LIQBD structure for
the generator matrix.

Let N2(t) be the number of processed inventory available at t.
Let J(t) be the status of the server at t.

J(t) =
{

0, i f the server is on vacation
1, i f the server is busy

A(t) is the size of the last arrival batch before time t.
B(t) is the size of the service batch at time t.
K1(t) is the phase of inventory processing.
K2(t) is the state of an underlying MC of BMSP.
M(t) is the state of an underlying MC of BMAP.

The above model can be studied using a CTMC, {(N1(t), N2(t), J(t), A(t), B(t), K1(t),
K2(t), M(t)) : t ≥ 0} on state-space Ω0 ∪l≥1 Ωl .
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Here, 1 ≤ n′ ≤ L, 1 ≤ n1 ≤ a, 1 ≤ n2 ≤ N, 1 ≤ k1 ≤ t1, 1 ≤ k2 ≤ t2, 1 ≤ k3 ≤ m. The
states in Table 1 correspond to level 0, i.e., to the states with 0, 1, 2...q− 1 customer(s) in the
queue. Table 2 corresponds to level l, i.e., to the states with lq, lq + 1, lq + 2...(l + 1)q− 1
customer(s) in the queue. By redefining the level as described above, the infinitesimal
generator of this CTMC can be brought to the form of an LIQBD with a generator matrix:

Q1 =


B00 B01
B10 B1 B0

B2 B1 B0
B2 B1 B0

. . . . . . . . .

 (1)

B2 =


Cq Cq−1 Cq−2 · · · C1

Cq Cq−1 · · · C2
. . .

...
Cq

 (2)

in which, for i = 1, 2, ..q,

Ci =


Ci

00 0
Ci

10 0
Ci

21 0
. . .

...
Ci

LL−1 0

 (3)

Ci
00 = Ia ⊗Q.Eii(N)⊗ θS1 ⊗ Im

Ci
jj−1 = Ia ⊗Q.Eii(N)⊗ S1 ⊗ Im; f orj = 1, 2, ...L.

Eii(N) = ei(N).e
′
i(N).

Ci = 0; i > N.

(4)

B0 =


Aq

Aq−1 Aq
...

...
. . .

A1 A2 · · · Aq

 (5)

For i = 1, 2, ..q,

Ai = IL+1 ⊗ P.Eii(a)⊗ IN ⊗ It2 ⊗ D1;

Ai = 0, i > a.
(6)

B1 =


F A1 A2 · · · Aq−1

C1 F A1 · · · Aq−2
...

...
...

...
Cq−1 Cq−2 Cq−3 · · · F

 (7)

in which

F =


F0

F1
. . .

F1

 (8)
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F0 = IaN ⊗ (θS0 ⊕ D0);

F1 = IaN ⊗ (S0 ⊕ D0).
(9)

Table 1. States in Ω0 and their descriptions.

Sl. No State Description

1 (0, p, n′, 0, n1, 0(n2), k1, k2, k3)
Service process is frozen with the server

0 ≤ p < N; 0 ≤ n′ ≤ L− 1 on vacation producing
inventory for future use

2 (0, p, L, 0, n1, 0(n2), k2, k3) Server is idle as the maximum inventory level
0 ≤ p < N is reached and the system is on vacation

3 (0, p, 0, 1, n1, n2, k2, k3) Service process without inventory (at the commencement
0 ≤ p ≤ q− 1 epoch of current service) is ongoing

4 (0, p, n′, 1, n1, n2, k2, k3) Service process with inventory is ongoing

5 (0, p, L, 1, n1, n2, k2, k3)
Service process with inventory is activated

0 ≤ p ≤ q− 1; p + n2 ≥ N; 1 ≤ n1 ≤ p + n2
with customer arrivals
on expiry of vacation

Table 2. States in Ωl ; l ≥ 1 and their descriptions.

Sl. No State Description

1 (l, p, 0, 1, n1, n2, k2, k3)
Service process without inventory (at

0 ≤ p ≤ q− 1 commencement the epoch of current service)
is ongoing

2 (l, p, n′, 1, n1, n2, k2, k3) Service process with inventory
0 ≤ p ≤ q− 1 is ongoing

The transition rate submatrices amongst the various levels are provided in Tables 3–7.

Table 3. Transition rate submatrices from level 0 to itself.

From To Rate Matrix

(0, p, n′, 0, n1, 0(n2)) (0, p, n′, 0, n1, 0(n2)) T ⊕ (It2 ⊗ D0)
(0, p, L, 0, n1, 0(n2)) (0, p, L, 0, n1, 0(n2)) It2 ⊗ D0
(0, p, 0, 1, n1, n2) (0, p, 0, 1, n1, n2) θS0 ⊕ D0
(0, p, n′, 1, n1, n2) (0, p, n′, 1, n1, n2) S0 ⊕ D0

(0, p, n′, 0, n1, 0(n2)) (0, p, n′ + 1, 0, n1, 0(n2)) T0α⊗ It2m
(0, p, L− 1, 0, n1, 0(n2)) (0, p, L, 0, n1, 0(n2)) T0 ⊗ It2m
(0, p, n′, 0, n1, 0(n2)) (0, p + n′1, n′, 0, n′1, 0(n2)) It1t2 ⊗ pn1n′1

D1

(0, p, 0, 0, n1, 0(n2)) (0, p + n′1 − n2, 0, 1, n′1, n2) e(t1)⊗ It2 ⊗ pn1n′1
D1

(0, p, L, 0, n1, 0(n2)) (0, p + n′1, L, 0, n′1, 0(n2)) It2 ⊗ pn1n′1
D1

(0, p, L, 0, n1, 0(n2)) (0, p + n′1 − n2, L, 1, n′1, n2) It2 ⊗ pn1n′1
D1

(0, p, 0, 1, n1, n2) (0, p + n′1, 0, 1, n′1, n2) It2 ⊗ pn1n′1
D1

(0, p, n′, 1, n1, n2) (0, p + n′1, n′, 1, n1, n2) It2 ⊗ pn1n′1
D1

(0, p, 0, 1, n1, n2) (0, p− n′2, 0, 1, n1, n′2) qn2n′2
θS1 ⊗ Im

(0, p, 0, 1, n1, n2) (0, p, 0, 0, n1, 0(n′2)) α⊗ qn2n′2
θS1 ⊗ Im

(0, p, n′, 1, n1, n2) (0, p− n′2, n′ − 1, 1, n1, n′2) qn2n′2
S1 ⊗ Im

(0, p, n′, 1, n1, n2) (0, p, n′ − 1, 0, n1, 0(n′2)) α⊗ qn2n′2
S1 ⊗ Im
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Table 4. Transition rate submatrices from level 0 to 1.

From To Rate Matrix

(0, p, n′, 0, n1, 0(n2)) (1, p + n′1 − (n2 + q), n′, 1, n′1, n2) e(t1)⊗ It2 ⊗ pn1n′1
D1

(0, p, L, 0, n1, 0(n2)) (1, p + n′1 − (n2 + q), L, 1, n′1, n2) It2 ⊗ pn1n′1
D1

(0, p, n′, 1, n1, n2) (1, p + n′1 − q, n′, 1, n′1, n2) It2 ⊗ pn1n′1
D1

Table 5. Transition rate submatrices from level l ≥ 1 to l − 1.

From To Rate Matrix

(l, p, 0, 1, n1, n2) (l − 1, p + q− n′2, 0, 1, n1, n′2) qn2n′2
θS1 ⊗ Im

(l, p, n′, 1, n1, n2) (l − 1, p + q− n′2, n′ − 1, 1, n1, n′2) qn2n′2
S1 ⊗ Im

Table 6. Transition rate submatrices from level l to itself.

From To Rate Matrix

(l, p, 0, 1, n1, n2) (l, p, 0, 1, n1, n2) θS0 ⊕ D0
(l, p, n′, 1, n1, n2) (l, p, n′, 1, n1, n2) S0 ⊕ D0
(l, p, 0, 1, n1, n2) (l, p + n′1, 0, 1, n′1, n2) It2 ⊗ pn1n′1

D1

(l, p, n′, 1, n1, n2) (l, p + n′1, n′, 1, n′1, n2) It2 ⊗ pn1n′1
D1

(l, p, 0, 1, n1, n2) (l, p− n′2, 0, 1, n1, n′2) qn2n′2
θS1 ⊗ Im

(l, p, n′, 1, n1, n2) (l, p− n′2, n′ − 1, 1, n1, n′2) qn2n′2
S1 ⊗ Im

Table 7. Transition rate submatrices from level l ≥ 1 to l + 1.

From To Rate Matrix

(l, p, 0, 1, n1, n2) (l + 1, p + n′1 − q, 0, 1, n′1, n2) It2 ⊗ pn1n′1
D1

(l, p, n′, 1, n1, n2) (l + 1, p + n′1 − q, n′, 1, n′1, n2) It2 ⊗ pn1n′1
D1

About the transitions:

• (0, p, n′, 0, n1, 0(n2)) → (0, p + n′1, n′, 0, n′1, 0(n2)) denotes the transition associated
with the arrival of n′1 customers to the system. However, the server is still on vacation
as there are not N customers in queue.

• (0, p, 0, 0, n1, 0(n2)) → (0, p + n′1 − n2, 0, 1, n′1, n2) denotes the transition associated
with the arrival of n′1 customers to the system, which activates the service of a batch of
n2 customers without providing inventory.

• (0, p, n′, 1, n1, n2) → (0, p, n′ − 1, 0, n1, 0(n′2)) denotes the transition associated with
service completion of a batch of n2 customers. As there are not n′2 customers specified
by the MC rule, the server goes on vacation.

• (0, p, n′, 0, n1, 0(n2))→ (0, p, n′ + 1, 0, n1, 0(n2)) denotes the transition associated with
processing of a unit item while on vacation.

• (l, p, n′, 1, n1, n2)→ (l− 1, p+ q− n′2, n′− 1, 1, n1, n′2) denotes the transition associated
with service completion of a batch of n2 customers and the initiation of service to a
batch of n′2 customers specified by the MC rule (which decreases the number in queue
from lq + p to (l − 1)q + p + q− n′2 = lq + p− n′2. )

• (l, p, n′, 1, n1, n2) → (l, p, n′, 1, n1, n2) denotes the transition without service comple-
tion or arrival.

3. Steady-State Analysis for Model I

In this section, the queuing inventory system considered in Model I is analyzed in the
steady-state. The condition for ergodicity for such a queuing inventory system is found
and steady-state probability vectors of the system states are derived.
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3.1. Ergodicity Condition

B =


F + Cq + Aq Cq−1 + A1 Cq−2 + A2 · · · C1 + Aq−1
C1 + Aq−1 F + Cq + Aq Cq−1 + A1 · · · C2 + Aq−2

...
...

...
...

Cq−1 + A1 Cq−2 + A2 Cq−3 + A3 · · · F + Cq + Aq

 (10)

Let y = (y0, y1, . . . , yq) denote the steady-state probability vector of generator
B = B0 + B1 + B2. The matrix is block-circulant, and hence, the solution to equations,

yB = 0, ye = 1 (11)

is given by

y =
1
q
(e′(q)⊗ v), (12)

where v is a solution to the equation v(F + Cq + Aq + C1 + Aq−1 + .. + Cq−1 + A1) = 0.
The LIQBD description of the model indicates that the queuing system is stable if and

only if the left drift rate exceeds that of the right drift [20]. That is, yB0e < yB2e.
Therefore, the given system is stable if and only if

v. ∑ q
i=1(iAi.e) < v. ∑ q

i=1(iCi.e). (13)

3.2. Steady-State Probability Vector

Let x be the steady-state probability vector of Q1. We partition this vector as

x = (x0, x1, x2, . . .).

Under the stability condition, we have

xi = x1Ri−1, i ≥ 2 (14)

where the matrix R is the minimal nonnegative solution to the matrix quadratic equation,

R2B2 + RB1 + B0 = 0. (15)

The vectors x0 and x1 are obtained by solving the equations

x0B00 + x1B10 = 0,

x0B01 + x1(B1 + RB2) = 0,
(16)

subject to the normalizing condition:

x0e + x1(I − R)−1e = 1. (17)

4. System Characteristics for Model I

In this section, a few distribution functions governing the system as well as some of
the performance measures are computed. These are of importance as they throw light on
the system performance. For the queuing-inventory model under consideration, a vacation
cycle refers to the time period starting from the instant at which the service process is
frozen due to a lack of quorum to initiate the next batch service as per the MC rule for
service batch sizes (vacation begins) to the instant when the number of customers exceeds
N or the next service is initiated.

4.1. Distribution of Inventory Processing Time in a Vacation Cycle

Once the service process is frozen due to a lack of quorum for initiating the next
batch service (as service batch sizes are specified by the MC with tpm Q), vacation begins.
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The server processes inventory until the number of customers in the system exceeds N or
the inventory level reaches L. Thus, the inventory processing time in a vacation cycle is
the time until the Markov process (N1(t), N2(t), A(t), K1(t), M(t) : t ≥ 0) on state space,
{(n, n′, n1, k1, k3) : 0 ≤ n ≤ N − 1, 0 ≤ n′ ≤ L− 1, 1 ≤ n1 ≤ a, 1 ≤ k1 ≤ t1, 1 ≤ k3 ≤ m} is
absorbed in state {∗1}, indicating that the number of customers in the system exceeds N
or state {∗2}, indicating that the inventory level hits L. The trnsition rate submatrices are
given in Table 8.

The infinitesimal generator for this CTMC is

Q2 =

[
O O1 O2
0 0 0

]
(18)

where

O =


O′ J1 J2 · · · JN−1

O′ J1 · · · JN−2
. . .

...
O′

 (19)

O1 =


e(L)⊗ GN

e(L)⊗ (GN + GN−1)
...

e(L)⊗ (GN + GN−1 + ...G1)

 (20)

O2 =


eL(L)⊗ e(a)⊗ T0 ⊗ e(m)
eL(L)⊗ e(a)⊗ T0 ⊗ e(m)

...
eL(L)⊗ e(a)⊗ T0 ⊗ e(m)

 (21)

O′ =


Ia ⊗ (T ⊕ D0) Ia ⊗ (T0α⊗ Im)

Ia ⊗ (T ⊕ D0) Ia ⊗ (T0α⊗ Im)
. . . . . . Ia ⊗ (T0α⊗ Im)

Ia ⊗ (T ⊕ D0)

 (22)

Ji = IL ⊗ P.Eii(a)⊗ It1 ⊗ D1,

Ji = 0; i > a.
(23)

Gj =


e(t1)⊗ δ1j
e(t1)⊗ δ2j

...
e(t1)⊗ δaj

 (24)

Gj = 0; j > a (25)

and δij is the column vector with entries as the sum of rows of pijD1.
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Table 8. Transition rate submatrices.

From To Rate Matrix

(n, n′, n1) (n + n′1, n′, n′1) It1 ⊗ pn1n′1
D1

(n, n′, n1) (n, n′, n1) T ⊕ D0
(n, n′, n1) (n, n′ + 1, n1) T0α⊗ Im

(n, L− 1, n1) {∗2} T0 ⊗ em
(N − j, n′, n1) {∗1} (∑N

N−j Gj)

The initial probability vector of this infinitesimal generator is β1 =
1
h1
(∑n2,k2

x000010(n2)1k21, ...
∑n2,k2

x0000a0(n2))t1k2m, ... ∑n2,k2
x00L−10a0(n2)t1k2m, ... ∑n2,k2

x0N−1L−1010(n2)1k2m... ∑n2,k2
x0N−1L−10a0(n2)1k2m... ∑n2,k2

x0N−1L−10a0(n2)t1k2m), with h1 = ∑q,n′,n1,n2,k1,k2,k3
x0qn′0n10(n2)k1k2k3

.

Lemma 1. If the inventory level reaches L before the expiry of vacation, the expected inventory
processing time in a vacation cycle is β1(−O)−2O2. Otherwise, the expected inventory processing
time in a vacation cycle is β1(−O)−2O1.

4.2. Distribution of Idle Time in a Vacation Cycle

The idle time of the server is 0 if the number of customers in the system exceeds
N before the inventory level hits L. To study the distribution of idle time in a vacation
cycle (i.e., time until the number of customers in the system exceeds N after L items are
processed), consider the MC, (N1(t), L, A(t), M(t) : t ≥ 0) on state space {(n, L, n1, k3) :
0 ≤ n ≤ N − 1, 1 ≤ n1 ≤ a, 1 ≤ k3 ≤ m} ∪ {∗1}, where {∗1} denotes the absorbing state
and the number of customers in the system exceeds N. The transition rate submatrices are
indicated in Table 9.

The infinitesimal generator of this Markov chain is

Q3 =

[
U U0

0 0

]
(26)

where

U =


Ia ⊗ D0 L1 L2 · · · LN−1

Ia ⊗ D0 L1 · · · LN−2
. . .

...
Ia ⊗ D0

 (27)

U0 =


γN

γN + γN−1
...

γN + γN−1 + ...γ1

 (28)

γj =


δ1j
δ2j
...

δaj

 (29)

Li = P.Eii(a)⊗ D1,

Li = 0; i > a
(30)
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Table 9. Transition rate submatrices.

From To Rate Matrix

(n, L, n1) (n + n′1, L, n′1) pn1n′1
D1

(n, L, n1) (n, L, n1) Ia ⊗ D0
(N − j, L, n1) {∗1} ∑N

N−j γj

The conditional distribution of idle time in a vacation cycle follows PH(β2, U) distri-
bution with initial probability vector β2 = 1

h2
(∑n2,k2

x00L010(n2)k21, ... ∑n2,k2
x00L010(n2)k2m, ...

∑n2,k2
x00L0a0(n2)k2m, ... ∑n2,k2

x0N−1L0a0(n2)k21... ∑n2,k2
x0N−1L0a0(n2)k2m), with h2 =∑q,n1,n2,k2,k3

x0qL0n10(n2)k2k3
.

Lemma 2. The conditional expectation of idle time in a vacation cycle, given the inventory level,
reaches L only after the number of customers in system exceeds N and is β2(−U)−1e. The expected
idle time in a vacation cycle is β2(−U)−1e× (

∫ ∞
0 β1eOtO2dt).

4.3. Distribution of Vacation Cycle Length

The vacation cycle length can be studied as an MC (N1(t), N2(t), A(t), K1(t), M(t) : t ≥ 0)
on state-space {(n, n′, n1, k1, k3) : 0 ≤ n ≤ N − 1, 0 ≤ n′ ≤ L− 1, 1 ≤ n1 ≤ a, 1 ≤ k1 ≤
t1, 1 ≤ k3 ≤ m} ∪ {(n, L, n1, k3) : 0 ≤ n ≤ N − 1, 1 ≤ n1 ≤ a, 1 ≤ k4 ≤ m} ∪ {∗1}, where
{∗1} denotes the absorbing state and the number of customers in the system exceeds N.
The transition rate submatrices are indicated in Table 10.

The infinitesimal generator of this Markov chain is

Q4 =

[
W W0

0 0

]
(31)

where,

W =


H V1 V2 · · · VN−1

H V1 · · · VN−2
. . .

...
H

 (32)

W0 =


WN

WN−1
...

W1

 (33)

Vi =

[
IL ⊗ P.Eii(a)⊗ It1 ⊗ D1 0

0 P.Eii(a)⊗ D1

]
(34)

H =


Ia ⊗ (T ⊕ D0) Ia ⊗ (T0α⊗ Im)

Ia ⊗ (T ⊕ D0) Ia ⊗ (T0α⊗ Im)
. . . . . .

Ia ⊗ (T ⊕ D0) Ia ⊗ (T0 ⊗ Im)
Ia ⊗ D0

 (35)

Wi =

[
e(L)⊗ (GN + GN−1 + ...GN−(i−1))

γN + γN−1 + ...γN−(i−1)

]
(36)
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Table 10. Transition rate submatrices.

From To Rate Matrix

(n, n′, n1) (n + n′1, n′, n′1) It1 ⊗ pn1n′1
D1

(n, n′, n1) (n, n′, n1) T ⊕ D0
(n, n′, n1) (n, n′ + 1, n1) T0α⊗ Im

(n, L− 1, n1) (n, L, n1) T0 ⊗ Im
(n, L, n1) (n + n′1, L, n′1) pn1n′1

D1

(n, L, n1) (n, L, n1) D0
(N − j, n′, n1) {∗1} ∑N

N−j Gj

(N − j, L, n1) {∗1} ∑N
N−j γj

Thus, the distribution of vacation cycle length follows PH(β3, W) distribution with
initial probability vector β3 = 1

h3
(∑n2,k2

x000010(n2)1k21, ... ∑n2,k2
x000010(n2)0(n2)1k2m, .. ∑n2,k2

x000010(n2)t1k2m, ... ∑n2,k2
x0000a0(n2)1k21... ∑n2,k2

x0000a0(n2)0(n3)t1k2m, ... ∑n2,k2
x00L0a0(n2)t1k2m, ..

∑n2,k2
x0N−1L0a0(n2)1k2m... ∑n2,k2

x0N−1L0a0(n2)t1k2m)with, h3 = ∑q,n′,n1,n2,k1,k2,k3
x0qn′0n10(n2)k1k2k3

..

Lemma 3. The expected vacation cycle length is β3(−W)−1e.

4.4. Other Performance Measures

To study the qualitative behavior of the queuing-inventory system considered in this
paper, the formulas for some key performance measures are derived. The usefulness of the
system is analyzed or compared using these measures.

1. Expected queue length:

EQL =
∞

∑
l=0

q−1

∑
p=0

(lq + p)x(l,p)e. (37)

where n = lq + p is the number of customers in the queue and x(l,p) is the probability
that the system is found in super-state n.

2. Expected number of inventory available:

EI =
L−1

∑
n′=1

n′[
q−1

∑
p=0

a

∑
n1=1

N

∑
n2=1

t1

∑
k1=1

t2

∑
k2=1

m

∑
k3=1

x(0,p,n′ ,0,n1,0(n2),k1,k2,k3)
+ ∑

l≥0

q−1

∑
p=0

a

∑
n1=1

N

∑
n2=1

t2

∑
k2=1

m

∑
k3=1

x(l,p,n′ ,1,n1,n2,k2,k3)
]

+L[
q−1

∑
p=0

a

∑
n1=1

N

∑
n2=1

t2

∑
k2=1

m

∑
k3=1

x(0,p,L,0,n1,0(n2),k2,k3)
+ ∑

l≥0

q−1

∑
p=0

a

∑
n1=1

N

∑
n2=1

t2

∑
k2=1

m

∑
k3=1

x(l,p,L,1,n1,n2,k2,k3)
],

(38)

where ∑
q−1
p=0 ∑a

n1=1 ∑N
n2=1 ∑t1

k1=1 ∑t2
k2=1 ∑m

k3=1 x(0,p,n′ ,0,n1,0(n2),k1,k2,k3)
is the probability

that the system is found in a state with n′ items in stock while on vacation and
processing inventory, ∑

q−1
p=0 ∑a

n1=1 ∑N
n2=1 ∑t2

k2=1 ∑m
k3=1 x(0,p,L,0,n1,0(n2),k2,k3)

is the prob-
ability that the system is in a state with inventory L while the server is idle, and

∑l≥0 ∑
q−1
p=0 ∑a

n1=1 ∑N
n2=1 ∑t2

k2=1 ∑m
k3=1 x(l,p,n′ ,1,n1,n2,k2,k3)

is the probability that the sys-
tem is found in a state with inventory n′ while serving customers.

3. Probability that the server is on vacation and processing inventory:

PSVI =
q−1

∑
p=0

L−1

∑
n′=1

a

∑
n1=1

N

∑
n2=1

t1

∑
k1=1

t2

∑
k2=1

m

∑
k3=1

x(0,p,n′ ,0,n1,0(n2),k1,k2,k3)
, (39)

where x(0,p,n′ ,0,n1,0(n2),k1,k2,k3)
is the probability that the system is in a state with p

customers in queue and processing inventory (inventory processing phase k1).
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4. Probability that the server is idle:

PI =
q−1

∑
p=0

a

∑
n1=1

N

∑
n2=1

t2

∑
k2=1

m

∑
k3=1

x(0,p,L,0,n1,0(n2),k2,k3)
, (40)

where x(0,p,L,0,n1,0(n2),k2,k3)
is the probability that the system is in a state with p cus-

tomers in queue and L items in inventory.
5. Probability that the server is on vacation:

PV = PSVI + PI . (41)

6. Fraction of time that the server is busy serving a batch of n2 customers without having
inventory at the commencement of service:

TWn2 =
∞

∑
l=0

q−1

∑
p=0

a

∑
n1=1

t2

∑
k2=1

m

∑
k3=1

x(l,p,0,1,n1,n2,k2,k3)
, (42)

where x(l,p,0,1,n1,n2,k2,k3)
is the probability that the system is in a state with n = lq + p

customers in queue and n2 customers are served without inventory while in service
phase k2.

7. Fraction of time that the server serves without inventory:

TWI =
N

∑
n2=1

TWn2 (43)

8. Fraction of time that the server is busy serving a batch of n2 customers with inventory
available at the beginning of service:

TIn2 =
∞

∑
l=0

q−1

∑
p=0

L

∑
n′=1

a

∑
n1=1

t2

∑
k2=1

m

∑
k3=1

x(l,p,n′ ,1,n1,n2,k2,k3)
, (44)

where x(l,p,n′ ,1,n1,n2,k2,k3)
is the probability that the system is in a state with n = lq + p

customers in queue and n2 customers served (when n′ items are in stock) while in
service phase k2.

9. Fraction of time that the server serves with inventory:

TI =
N

∑
n2=1

TIn2 (45)

5. Numerical Example for Model I

The applicability of the results derived earlier is illustrated using a few examples. In
all these examples, it is assumed that the arrival process is a BMAP with representation
(D0, D1) and maximum arrival batch size a = 2. The successive arrival batch sizes form
a Markov chain with tpm, P. The service process is a BMSP with representation (S0, S1)
and maximum service batch size N = 3. The successive service batch sizes form a Markov
chain with tpm, Q.

P =

[
0.7 0.3
0.8 0.2

]
, Q =

0.1 0.2 0.7
0.3 0.1 0.6
0.4 0.1 0.5

,

The server goes on vacation if there are not enough customers in queue to initiate the
next batch service (for example, suppose only 1 customer is in queue and, if the next service
batch size as per the MC rule is 2, the server goes on vacation). During vacation, it processes
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inventory until L items are processed (finite storehouse capacity). The vacation expires
when N customers accumulate in the queue. The server remains idle once the inventory
level hits L before the number in the queue reaches N until the end of the vacation.

Example 1. Consider a queuing-inventory system where the arrival process is a BMAP with a
mean arrival rate of a batch of customers as 1 and with (D0, D1):

1. BMAP with correlation in successive inter-arrival times (CA):

D0 =

[
−2.2444 0.0673
0.0374 −0.4489

]
, D1 =

[
2.0948 0.0823
0.0374 0.3741

]
2. BMAP with uncorrelated successive inter-arrival times (UA):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
The first arrival process (CA) has correlated inter-arrival times (the correlation coefficient

between successive inter-arrival times is 0.2245). Successive inter-arrival times are independent for
the second arrival process (UA).

Similarly, the service process BMSP is normalized with the mean service rate of a batch of
customers as 1 and (S0, S1):

1. BMSP with correlation in successive service times (CS):

S0 =

[
−2.1738 0.0072
0.0072 −0.4347

]
, S1 =

[
2.1449 0.0217
0.0072 0.4203

]
2. BMSP with uncorrelated successive service times (US):

S0 =

[
−1 0
0 −3.5

]
, S1 =

[
1 0

1.75 1.75

]
The first service process (CS) has correlated successive service times (the correlation coefficient
of successive service times is 0.2792.) For the second process (US), successive service times are
independent.

The inventory processing time follows PH(α, T), α = [0.6, 0.4],

T =

[
−2 2
0 −2

]
The mean inventory processing time is 0.8.
The maximum inventory produced in a vacation cycle is L = 4.
Assume θ = 0.3, i.e., the service rate without any inventory is 0.3 times the service rate with

inventory.
First, the effect of ρ, the traffic intensity or the mean number of arrivals during an average

service time (obtained by varying arrival and service rates) on performance measures,

• expected queue length, EQL;
• expected number of inventory available, EI ;
• probability that the server is on vacation and processing inventory, PSVI ; and
• probability that the server is idle, PI

under four circumstances,

1. correlated arrival and correlated service (CACS),
2. uncorrelated arrival and correlated service (UACS),
3. uncorrelated arrival and uncorrelated service (UAUS), and
4. correlated arrival and uncorrelated service (CAUS)

is studied using graphs.
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The following can be seen from Figure 3:

• As ρ increases, the expected queue length increases (see Figure 3a). Hence, the server
goes on vacation less often (see Figure 3c,d) and the expected inventory available
decreases (see Figure 3b). The server has to start service without inventory and has to
process inventory first before offering services. This slows the service process further
and increases queue length. The server’s idle time decreases with the increase in ρ,
as expected.

• The increase in expected queue length is most remarkable for correlated arrival and
service process (indicated in red). In contrast, if both arrival and service processes are
uncorrelated (indicated in blue), the queue length increases very slowly, and hence,
the server goes on vacation more often and stays idle for a longer time in comparison.

0 0.2 0.4 0.6 0.8
0

10

20

30

40

50

60

70



E
Q

L

3a. Traffic intensity Vs Expected queue length

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4



E
I

3b. Traffic intensity Vs Expected inventory available

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25



P
S

V
I

3c. Traffic intensity Vs Probability the server is processing items

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8



P
I

3d. Traffic intensity Vs Probability the server is idle

 

 

CACS

UACS

UAUS

CAUS

Figure 3. Effect of ρ and traffic intensity on performance measures.

The behavior of the queuing-inventory system considered in this paper depends on
the arrival and service process (in particular, the tpm’s P and Q, respectively). However,
even then, ρ could be effectively used to analyze system behavior, since for varying values
of ρ, the values of performance measures increase or decreases almost identically.
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6. Cost Analysis for Model I

Based on performance measures, a cost function is constructed for the queuing inven-
tory model under consideration:

C = CQL × EQL + CIP × EIP × PSVI + CHPI × EI + CI × PI +
3

∑
j=1

TWj × CWj +
3

∑
j=1

TIj × Cj (46)

where
CQL: holding cost for retaining a customer in queue per unit time
CIP: cost for producing unit inventory per unit time
EIP: expected inventory produced per unit time
CHPI : holding cost per inventoried item per unit time
CI : cost for remaining idle per unit time
CWj: cost per unit time for offering services to a batch of j customers without inventory
(this includes cost for the production of inventory required for service)
Cj: cost per unit time for offering services to a batch of j customers with inventory at a
service commencement epoch.

The objective is to find an L, the maximum number of items that are to be processed
during vacation that minimizes the cost function. With the increase in L, the fraction of
time that the server serves with inventory increases, considerably decreasing the length
of the queue. The increase in L increases the overall cost of processing items as well as
the holding cost of processed items. Consider 3 types of costs for offering service with
or without inventory while fixing CQL = 1, CIP = 2, CHPI = 1, CI = 1. Higher values are
given for CWj, as the server needs to process inventory (which involves a cost) before the
start of service.

1. A linear cost for offering service with or without inventory, (CW1 = 8, CW2 = 16,
CW3 = 24, C1 = 5, C2 = 10, C3 = 15)

2. A linear cost for offering service with inventory and a nonlinear cost for offering services
without inventory, (CW1 = 8, CW2 = 64, CW3 = 512, C1 = 5, C2 = 10, C3 = 15)

3. A nonlinear cost for offering service with or without inventory, (CW1 = 8, CW2 = 64,
CW3 = 512, C1 = 5, C2 = 25, C3 = 125)

For Example 2, the costs are as follows (Table 11).

Table 11. Effect of L on the cost function.

L ↓ Cost 1 Cost 2 Cost 3

2 7.6402 19.8157 24.3381

3 8.2056 18.1748 23.3437

4 8.8102 17.3107 22.9285

5 9.4440 16.8325 22.7956

6 10.1039 16.6005 22.8427

7 10.7883 16.5465 23.0208

8 11.4952 16.6302 23.3009

9 12.2229 16.8246 23.6638

The minimum cost is indicated by bold font. The value of L, in the case of linear costs
for service, is the least. For costs 2 and 3, the value decreases first with the increase in L
value and, on reaching a minimum, starts climbing up with further increase in the value of
L. Of course, these are input-specific.

7. Description and Formulation of Model II

This model differs from the one discussed in Sections 2–6, in the following respects:
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(i) The Markov dependence between two consecutive arriving batch sizes is taken out in
Model II and the Markov dependence between two consecutive service batch sizes. (ii) This
results in service commencement of the next batch immediately after completion of the
current batch service, provided that at least one customer is waiting for service. Otherwise,
the server stays idle/starts processing items for future services. Accommodating Markov
dependence of the successive arrival batch sizes and between successive service batches
introduced enormous complexity in the analysis of Model I. Naturally, the effect of the
Markov dependence in the service batch sizes is the increase in idle time of the server.
This and other distinctions in the performance of the two models are illustrated through
numerical examples.

Now, we give a detailed description of Model II. Consider a single-server queuing-
inventory system with customers arriving according to a batch Markovian arrival process
(BMAP) with maximum arrival batch size a and representation {D0, D1...Da}. The service
time duration is based on whether items are available at a service initiation epoch. The
service process follows batch Markovian service process (BMSP) with representation
{S0, S1, ...SN}. The server goes on vacation when the number of customers in the system is
0. The other assumptions remain the same as in Model I.

The arrival process is defined using matrices {D0, D1, ...Da} of order m. Here, the
entries of D0 denote transition rates of underlying MC of BMAP without arrivals, and
the entries of {Di; i > 0} denote transition rates of underlying MC of BMAP with batch
arrival of size i. The service process is defined using matrices {S0, S1, ...SN} of order t2,
where entries of S0 denote transition rates of underlying MC of BMSP without departures
and {Sj; j > 0} denotes transition rates of underlying MC of BMSP with departures of
size j. In the formulation of Model II, the number of customers in the system is considered
rather than the number in the queue as successive service batch sizes are independent and
there is no need to specify service batch size at a given epoch t.

Let N1(t) be the number of customers in the system at time t. We write N1(t) = n as
(l; p) if n = lq + p; l ≥ 0; 0 ≤ p ≤ q− 1, where q = max{a, N}. Here, we redefined the
level to obtain the LIQBD structure for the generator matrix.

Let N2(t) be the number of processed inventory available at t.
Let J(t) be the status of the server at t.

J(t) =
{

0, i f the server is on vacation
1, i f the server is busy

K1(t) is the phase of inventory processing.
K2(t) is the state of an underlying MC of BMSP.
M(t) is the state of an underlying MC of BMAP.

The above model can be studied using a CTMC, {(N1(t), N2(t), J(t), K1(t), K2(t), M(t)) :
t ≥ 0} on state-space Ω0 ∪l Ωl≥1.

Here, 1 ≤ n′ ≤ L, 1 ≤ k1 ≤ t1, 1 ≤ k2 ≤ t2, 1 ≤ k3 ≤ m. The states in
Table 12 correspond to level 0, i.e., to the states with 0, 1, 2...q− 1 customer(s) in the system.
Table 13 corresponds to level l, i.e., to the states with lq, lq + 1, lq + 2...(l + 1)q − 1 cus-
tomer(s) in the system. The infinitesimal generator of this CTMC is an LIQBD when we
redefine the level as described above:

Q5 =


B′00 B′01
B′10 B′1 B′0

B′2 B′1 B′0
B′2 B′1 B′0

. . . . . . . . .

 (47)
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B′2 =


C′q C′q−1 C′q−2 · · · C′1

C′q C′q−1 · · · C′2
. . .

...
C′q

 (48)

in which, for i = 1, 2, ..q,

C′i =


θSi ⊗ Im ... 0
Si ⊗ Im ... 0

Si ⊗ Im ... 0
. . .

...
Si ⊗ Im 0

 (49)

C′i = 0; i > N; (50)

B′0 =


A′q

A′q−1 A′q
...

...
. . .

A′1 A′2 A′3 · · · A′q

 (51)

For i = 1, 2, ..q,

A′i = IL+1 ⊗ It2 ⊗ Di;

A′i = 0, i > a.
(52)

B′1 =


F′ A′1 A′2 · · · A′q−1
C′1 F′ A′1 · · · A′q−2
...

...
...

...
C′q−1 C′q−2 C′q−3 · · · F′

 (53)

in which

F′ =


(θS0 ⊕ D0)

(S0 ⊕ D0)
. . .

(S0 ⊕ D0)

 (54)

Table 12. States in Ω0 and their descriptions.

Sl. No State Description

1 (0, p, n′, 0, k1, k2, k3)
Service process is frozen with the server

0 ≤ p < N; 0 ≤ n′ ≤ L− 1 on vacation producing
inventory for future use

2 (0, p, L, 0, k2, k3) Server is idle as the maximum inventory level
0 ≤ p < N is reached and the system is on vacation

3 (0, p, 0, 1, k2, k3) Service process without inventory (at the commencement
0 ≤ p ≤ q− 1 epoch of the current service) is ongoing

4 (0, p, n′, 1, k2, k3) Service process with inventory is ongoing
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Table 13. States in Ωl ; l ≥ 1 and their descriptions.

Sl. No State Description

1 (l, p, 0, 1, k2, k3)
Service process without inventory (at the

0 ≤ p ≤ q− 1 commencement epoch of the current service)
is going on

2 (l, p, n′, 1, k2, k3) Service process with inventory
0 ≤ p ≤ q− 1 is ongoing

The transition rate submatrices amongst the various levels are provided in Tables 14–19.

Table 14. Transition rate submatrices from level 0 to itself.

From To Rate Matrix

(0, p, n′, 0)) (0, p, n′, 0) T ⊕ (It2 ⊗ D0)
(0, p, L, 0) (0, p, L, 0) It2 ⊗ D0
(0, p, 0, 1) (0, p, 0, 1) θS0 ⊕ D0
(0, p, n′, 1) (0, p, n′, 1) S0 ⊕ D0
(0, p, n′, 0) (0, p, n′ + 1, 0) T0α⊗ It2m

(0, p, L− 1, 0) (0, p, L, 0) T0 ⊗ It2m
(0, p, n′, 0) (0, p + i, n′, 0) It1t2 ⊗ Di
(0, p, n′, 0) (0, p + i, n′, 1) e(t1)⊗ It2 ⊗ Di
(0, p, L, 0) (0, p + i, L, 0) It2 ⊗ Di
(0, p, L, 0) (0, p + i, L, 1) It2 ⊗ Di
(0, p, n′, 1) (0, p + i, n′, 1) It2 ⊗ Di
(0, p, 0, 1) (0, p− j, 0, 1) θSj ⊗ Im

(0, p, 0, 1) (0, p− j, 0, 0) α⊗∑N
k=j θSk ⊗ Im

(0, p, n′, 1) (0, p− j, n′ − 1, 0) α⊗∑N
k=j Sk ⊗ Im

(0, p, n′, 1) (0, p− j, n′ − 1, 1) Sj ⊗ Im

Table 15. Transition rate submatrices from level 0 to 1.

From To Rate Matrix

(0, p, n′, 0) (1, p + i− q, n′, 1) e(t1)⊗ It2 ⊗ Di
(0, p, L, 0) (1, p + i− q, L, 1) It2 ⊗ Di
(0, p, n′, 1) (1, p + i− q, n′, 1) It2 ⊗ Di

Table 16. Transition rate submatrices from level 1 to 0.

From To Rate Matrix

(1, p, 0, 1) (0, p + q− j, 0, 1) θSj ⊗ Im
(1, p, n′, 1) (0, p + q− j, n′ − 1, 1) Sj ⊗ Im

(1, p, 0, 1) (0, p + q− j, 0, 0) α⊗∑N
k=j θSk ⊗ Im

(1, p, n′, 1) (0, p + q− j, n′ − 1, 0) α⊗∑N
k=j Sk ⊗ Im

Table 17. Transition rate submatrices from level l > 1 to l − 1.

From To Rate Matrix

(l, p, 0, 1) (l − 1, p + q− j, 0, 1) θSj ⊗ Im
(l, p, n′, 1) (l − 1, p + q− j, n′ − 1, 1) Sj ⊗ Im
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Table 18. Transition rate submatrices from level l to itself.

From To Rate Matrix

(l, p, 0, 1) (l, p, 0, 1) θS0 ⊕ D0
(l, p, n′, 1) (l, p, n′, 1) S0 ⊕ D0
(l, p, 0, 1) (l, p + i, 0, 1) It2 ⊗ Di
(l, p, n′, 1) (l, p + i, n′, 1) It2 ⊗ Di
(l, p, 0, 1) (l, p− j, 0, 1) θSj ⊗ Im
(l, p, n′, 1) (l, p− j, n′ − 1, 1) Sj ⊗ Im

Table 19. Transition rate submatrices from level l ≥ 1 to l + 1.

From To Rate Matrix

(l, p, 0, 1) (l + 1, p + i− q, 0, 1) It2 ⊗ Di
(l, p, n′, 1) (l + 1, p + i− q, n′, 1) It2 ⊗ Di

About the transitions:

• (0, p, n′, 0)→ (1, p + i− q, n′, 1) denotes the transition associated with the arrival of i
customers to the system, which activates service.

• (0, p, n′, 1) → (0, p− j, n′ − 1, 1) denotes the transition associated with service com-
pletion of j customers (with inventory at the service commencement epoch).

• (l, p, 0, 1)→ (l, p− j, 0, 1) denotes the transition associated with service completion of
j customers without inventory at the service commencement epoch.

• (0, p, L− 1, 0)→ (0, p, L, 0) denotes the transition associated with processing of a unit
item while on vacation. The server remains idle as the maximum inventory level is
reached.

• (l, p, 0, 1)→ (l, p, 0, 1) denotes the transition associated with no service completion or
arrival.

8. Steady-State Analysis for Model II

In this section, the condition for ergodicity is investigated for the queuing-inventory
system in which successive arrivals as well as service batch sizes are independent (Model II).
The steady-state probability vector of system states is derived for the same.

8.1. Ergodicity Condition

B′ =


F′ + C′q + A′q C′q−1 + A′1 C′q−2 + A′2 · · · C′1 + A′q−1

C′1 + A′q−1 F′ + C′q + A′q C′q−1 + A′1 · · · C′2 + A′q−2
...

...
...

...
C′q−1 + A′1 C′q−2 + A′2 C′q−3 + A′3 · · · F′ + C′q + A′q

 (55)

The steady state probability vector z = (z0, z1, . . . , zq) of the generator B′ = B′0 + B′1 + B′2
satisfies

zB′ = 0, ze = 1 (56)

The matrix B′ is block-circulant, and hence, the solution to the equations is given by

z =
1
q
(e′(q)⊗w) (57)

where w is a solution to the equation

w(F′ + C′q + A′q + C′1 + A′q−1 + .. + C′q−1 + A′1) = 0. (58)
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F ′ + C′q + A′q + C′1 + A′q−1 + .. + C′q−1 + A′1 =


T1 0 0 0 · · · 0
T2 T3 0 0 · · · 0
0 T2 T3 · · · 0

. . . . . .
...

0 0 0 · · · T2 T3

 (59)

w = (w0, w1, w2, ..., wL) satisfy the set of equations:

wLT3 = 0

wL−1T3 + wLT2 = 0

wL−2T3 + wL−1T2 = 0
...

w0T1 + w1T2 = 0

(60)

where the determinants of T2 and T3 are nonzero and that of T1 is zero. Hence, the solution
of is of the form w = (w0, 0, 0, ..., 0) with w0 satisfying

w0T1 = 0, w0e = 1. (61)

The queuing system is stable if and only if the left drift rate exceeds that of the right
drift [20]. That is, zB′0e < zB′2e.

Therefore, the given system is stable if and only if

w. ∑ q
i=1(iA

′
i.e) < w. ∑ q

i=1(iC
′
i .e). (62)

8.2. Steady-State Probability Vector

Let x′ be the steady state probability vector of Q5. We partition this vector as

x′ = (x′0, x′1, x′2 . . .),

where x′1, x′2, . . . are of dimension t′ = q× (L + 1)× t2 ×m. Under the stability condition,
we have

x′i = x′1Ri−1, i ≥ 2 (63)

where the matrix R is the minimal nonnegative solution to the matrix quadratic equation

R2B′2 + RB′1 + B′0 = 0. (64)

The vectors x′0 and x′1 are obtained by solving the equations

x′0B′00 + x′1B′10 = 0,

x′0B′01 + x′1(B′1 + RB′2) = 0,
(65)

subject to the normalizing condition,

x′0e + x′1(I − R)−1e = 1. (66)

9. Performance Measures for Model II

In this section, formulas of key performance measures for Model II are presented to
aid comparison with the main queuing-inventory system considered in this paper.

1. Expected number of customers in the system:

ENS =
∞

∑
l=0

q−1

∑
p=0

(lq + p)x′(l,p)e, (67)
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where n = lq + p is the number of customers in the system and x′(l,p) is the probability
that the system is found in super-state n.

2. Expected number of inventory available:

EI =
L−1

∑
n′=1

n′[
q−1

∑
p=0

t1

∑
k1=1

t2

∑
k2=1

m

∑
k3=1

x′(0,p,n′ ,0,k1,k2,k3)
+ ∑

l≥0

q−1

∑
p=0

t2

∑
k2=1

m

∑
k3=1

x′(l,p,n′ ,1,k2,k3)
]+

L[
q−1

∑
p=0

t2

∑
k2=1

m

∑
k3=1

x′(0,p,L,0,k2,k3)
+ ∑

l≥0

q−1

∑
p=0

t2

∑
k2=1

m

∑
k3=1

x′(l,p,L,1,k2,k3)
],

(68)

where ∑
q−1
p=0 ∑N

n2=1 ∑t1
k1=1 ∑t2

k2=1 ∑m
k3=1 x(0,p,n′ ,0,k1,k2,k3)

is the probability that the system
is found in a state with n′ items in stock while on vacation and processing inven-
tory, ∑

q−1
p=0 ∑t2

k2=1 ∑m
k3=1 x(0,p,L,0,k2,k3)

is the probability that the system is in a state

with inventory L while the server is idle, and ∑l≥0 ∑
q−1
p=0 ∑t2

k2=1 ∑m
k3=1 x(l,p,n′ ,1,k2,k3)

is
the probability that the system is found in a state with inventory n′ while serving
customers.

3. Probability that the server is on vacation and processing inventory:

PSVI =
q−1

∑
p=0

L−1

∑
n′=1

t1

∑
k1=1

t2

∑
k2=1

m

∑
k3=1

x′(0,p,n′ ,0,k1,k2,k3)
, (69)

where x(0,p,n′ ,0,k1,k2,k3)
is the probability that the system is in a state with p customers

and processing inventory (with inventory processing phase being k1).
4. Probability that the server is idle:

PI =
q−1

∑
p=0

t2

∑
k2=1

m

∑
k3=1

x′(0,p,L,0,k2,k3)
, (70)

where x(0,p,L,0,k2,k3)
is the probability that the system is in a state with p customers

and L items in inventory.
5. Probability that the server is on vacation:

PV = PSVI + PI . (71)

6. Fraction of time that the server is busy serving a batch of customers without having
inventory at the commencement of service:

TWI =
∞

∑
l=0

q−1

∑
p=0

t2

∑
k2=1

m

∑
k3=1

x′(l,p,0,1,k2,k3)
, (72)

where x(l,p,0,1,k2,k3)
is the probability that the system is in a state with n = lq + p

customers and n2 customers are served without inventory while the service phase
is k2.

7. Fraction of time that the server is busy serving a batch of customers with inventory
available at the beginning of service:

TI =
∞

∑
l=0

q−1

∑
p=0

L

∑
n′=1

t2

∑
k2=1

m

∑
k3=1

x′(l,p,n′ ,1,k2,k3)
, (73)

where x(l,p,n′ ,1,k2,k3)
is the probability that the system is in a state with n = lq + p

customers, serving customers(when n′ items are in stock).
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10. Comparitive Analysis of Model I with Model II

The effect of increasing parameter values L and θ on the behavior of a queuing-
inventory system with and without Markov-dependent assumptions on successive arrival
as well as service batch sizes are compared in this section.

Example 2. This example studies the effect of L, the maximum number of additional items produced
during a vacation on performance measures,

• expected number in the system, ENS;
• expected number of inventory available, EI ;
• probability that the server is on vacation, processing inventory, PSVI ;
• probability that the server is idle, PI ;
• fraction of time server serves without inventory, TWI ; and
• fraction of time server serves with inventory, TI ,

for two queuing-inventory systems of Models I and II (with more or less the same traffic intensity).
For Model 1, (i.e., with Markov dependence (With MD)) consider two queuing-inventory

systems where the arrival process is BMAP with the mean arrival rate of batches of customers 1
and with (D0, D1):

D0 =

[
−2.2444 0.0673
0.0374 −0.4489

]
, D1 =

[
2.0948 0.0823
0.0374 0.3741

]
Similarly, the service process BMSP is with the mean service rate of a batch of customers 3

and (S0, S1):

S0 =

[
−6.5214 0.0216
0.0216 −1.3041

]
, S1 =

[
6.4347 0.0651
0.0216 1.2609

]
The correlation coefficient between two consecutive inter-arrival times is 0.2245, and the

correlation coefficient between two consecutive inter-batch service times is 0.2792.
The queuing-inventory systems differ in underlying Markov chains for successive arrival as

well as service batch sizes. Based on the underlying Markov chains for arrival and service batch
sizes, they are classified into two classes:

• With MD 1 The probability of choosing the next arrival or service batch size is uniform,
i.e., the successive arrival batch sizes form a Markov chain with tpm, P and the successive
service batch sizes form a Markov chain with tpm, Q:

P =

[
1/2 1/2
1/2 1/2

]
, Q =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


For this process, the traffic intensity ρ = 0.3551 and is indicated in black.

• With MD 2 The successive arrival batch sizes form a Markov chain with tpm, P and the
successive service batch sizes form a Markov chain with tpm, Q:

P =

[
0.7 0.3
0.8 0.2

]
, Q =

0.1 0.2 0.7
0.3 0.1 0.6
0.4 0.1 0.5


For this process, traffic intensity ρ = 0.2649 and is indicated in blue.

Fix θ = 0.7.
The inventory processing time follows PH(α, T), α = [0.6, 0.4],

T =

[
−2 2
0 −2

]
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The mean inventory processing time is 0.8.
For Model II (i.e., without Markov dependence (Without MD)), consider the following

queuing-inventory systems: Here, the mean arrival rate of batches of customers is normalized to 1
and the mean service rate of batches is 3. The correlation coefficient for consecutive inter-arrival
times is 0.2245, and the coefficient for consecutive service times is 0.2792. The transition rates for
different arrival and service batch sizes are constant for the first queuing-inventory system, while
this is not true for the second.

• Without MD 1
BMAP with representation (D0, D1, D2):

D0 =

[
−2.2444 0.0673
0.0374 −0.4489

]
, D1 = D2 = 1/2×

[
2.0948 0.0823
0.0374 0.3741

]
BMSP with representation (S0, S1, S2, S3):

S0 =

[
−6.5214 0.0216
0.0216 −1.3041

]
, S1 = S2 = S3 = 1/3×

[
6.4347 0.0651
0.0216 1.2609

]
For this process, traffic intensity ρ = 0.3551 and is indicated in red.

• Without MD 2
BMAP with representation (D0, D1, D2):

D0 =

[
−2.2444 0.0673
0.0374 −0.4489

]
, D1 = D2 = 1/2×

[
2.0948 0.0823
0.0374 0.3741

]
BMSP with representation (S0, S1, S2, S3):

S0 =

[
−6.5214 0.0216
0.0216 −1.3041

]
S1 = S2 = 1/3×

[
6.4347 0.0651
0.0216 1.2609

]
S3 = 7/3×

[
6.4347 0.0651
0.0216 1.2609

]
For this process, traffic intensity ρ = 0.2663 and is indicated in green.

From Figure 4 on the next page, the following observations could be made (The
numbers of the subfigures from which observations are made are given in brackets.):

Effect of L on performance measures: For both models, the increase in L increases
not only the availability of inventory (Figure 4b) but also the time spent in inventory
processing (Figure 4c). The expected queue length decreases as the service rate is higher
with inventory (Figure 4a) and the server goes on vacation more often, as expected. As L
increases, the fraction of time that the server serves customers with inventory increases
(Figure 4e,f) and the idle time is reduced (Figure 4d).

Results of Comparison of Model I with Model II

• In Model I (the graphs of which are indicated in black and blue), the server goes on
vacation once there are not enough customers to initiate the next batch service as
specified by the Markov chain rule for service batch sizes. This increases the number
of inventory processed as well as the idle time compared to Model II (for almost
the same values of traffic intensity ρ). The server serves with inventory for a higher
fraction of time, which results in a lower number of customers in the system as service
is provided at a faster rate.

• As can be seen from the description, transition rates in Model I (with MD 1) and
Model II (without MD 1) are the same and, hence, they have the same value for ρ
though both models differ as specified in the first bulleted item. The values of the
key performance measures such as the expected number in the system, the expected
inventory available, and the probability that the server is on vacation processing
inventory nearly coincide while the probabilities of the server being idle and of the
server serving with or without inventory differs by a fraction of 5× 10−2 (for the
same value of ρ), as can be seen from the graphs. (The graphs in black and red have
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ρ = 0.35, while the graphs in blue and green have ρ = 0.26). The values of performance
measures for both models are more or less the same when the mean number of arrivals
during an average service time, ρ, coincide.

• For both models, a slight increase in ρ (from 0.26 to 0.35) results in a noticeable increase
in the expected number of customers in the system and reduces the inventory available
and idle time. For all the observations made in the previous example (Example 1,
the effect of increasing ρ on performance measures for Model I remains valid for
Model II also.

• In addition, it is to be noted that, for Model I, it is the transition probability matrices P
and Q that determine the behavior of the queuing-inventory system. However, for
Model II, it is the stochastic matrices associated with the arrival and service processes
that determines the behavior of the system.

Example 3. Consider two queuing-inventory systems with inventory processing as in Example 2.
To study the effects of θ, the factor that slows the service process (without inventory at the service com-
mencement epoch) on various performance measures for both models, consider queuing-inventory
systems with arrivals and service processes for Model I (with MD 2) and Model II (without MD 2),
as in the previous example. We fix L = 3.

As can be seen from Tables 20 and 21 for both models, the increase in θ considerably
decreases the expected number of customers in the system, i.e., a higher service rate without
inventory at the service commencement epoch, and reduces the queue length. In addition,
a higher service rate and a small queue mean that the server goes on vacation frequently,
resulting in an increased duration of time for inventory processing and hence the available
inventory. This leads to an increase in the fraction of time that the server serves with
inventory, which leads to a further reduction in queue length.

Table 20. Effect of θ on performance measures for Model I (with MD 2).

ENS EI PI PSVI PV TW I TI

θ = 0.2 441.5593 0.2933 0.0723 0.0425 0.1148 0.8712 0.0107
θ = 0.3 27.3600 1.2671 0.3082 0.1899 0.4980 0.4494 0.0506
θ = 0.4 8.9726 1.6326 0.3931 0.2475 0.6407 0.2866 0.0703
θ = 0.5 4.7130 1.8172 0.4344 0.2769 0.7113 0.2034 0.0827
θ = 0.6 3.2188 1.9233 0.4573 0.2940 0.7514 0.1548 0.0910
θ = 0.7 2.5500 1.9899 0.4713 0.3052 0.7765 0.1238 0.0969
θ = 0.8 2.1955 2.0346 0.4804 0.3131 0.7935 0.1025 0.1082

Table 21. Effect of θ on performance measures for Model II (Without MD 2).

ENS EI PI PSV I PV TW I TI

θ = 0.2 551.3419 0.2232 0.0545 0.0353 0.0898 0.8920 0.0077
θ = 0.3 35.3123 1.0959 0.2635 0.1869 0.4444 0.5082 0.0412
θ = 0.4 11.4672 1.4583 0.3464 0.2448 0.5912 0.3399 0.0590
θ = 0.5 5.7789 1.6511 0.3887 0.2792 0.6680 0.2487 0.0705
θ = 0.6 3.7503 1.7656 0.4130 0.3002 0.7131 0.1936 0.0782
θ = 0.7 2.8338 1.8389 0.4280 0.3141 0.7421 0.1575 0.0836
θ = 0.8 2.3500 1.8887 0.4379 0.3241 0.7620 0.1323 0.0876
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11. Conclusions

Here the dynamics of a queuing-inventory system that has immense practical
applications—especially for large organizations where both arrival and demand for service
are in batches—are analyzed. The assumption that a single item (inventory) is required
for service of a batch, although seemingly restrictive, is realistic. For example, if during
vacation, the server is engaged in booking activity, before the start of service itself, the
server has prior information regarding the type of service to be offered, and this reduces
the service time. For the queuing system considered in [8], idle time (the period of time
that the server stops service due to a lack of customers, as specified by the service batch
size MC rule) could not be used optimally, but in this model, it can be utilized to reduce
service time further.

The queuing-inventory system was studied as a multi-dimensional Markov chain. The
structure of the generator matrix was not QBD; thus, it was brought to that form by suitably
redefining the level. The steady-state probability vector was computed, and distributions
relating to a vacation cycle were analyzed. Some important performance measures were
computed. The impact of correlation in successive inter-arrival as well as service times on
the behavior of the queuing system was studied in Example 1. The present model was then
compared with a model without the Markov-dependent assumption. Conclusions based
on the results of computations were presented. A cost function was constructed for the
queuing system under study, and an optimal value of L that minimizes the cost was found
for a specific example.

An extension of the present work to the case in which the server provides items to
each customer served in a batch is proposed to be taken up. This will be highly challenging.
Therefore, we propose to relax the service process to a phase-type distributed one. This
assumption could be used in the arrival process as well. Another possibility is to extend
the work to retrial queues with a finite buffer and an infinite capacity orbit.
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Abbreviations
The following notations and abbreviations are used in this manuscript:

MAP Markovian arrival process
BMAP batch Markovian arrival process
BMSP batch Markovian service process
e the column vector of 1s of appropriate order
e(j) the column vector of 1s of order j
e
′

the transpose of e
ei(j) the column vector of order j with 1 in the ith position and 0 elsewhere
0 zero-matrix of appropriate order
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I identity matrix of appropriate order
Ir identity matrix of order r
CTMC continuous-time Markov chain
MC Markov chain
LIQBD level-independent quasi birth and death process
tpm transition probability matrix
LST Laplace–Stieltjes transform
TC tagged customer
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