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Abstract: We analyze the economic efficiency of the cryptocurrency market after the launch of Bitcoin
futures by means of the Data Envelopment Analysis and Malmquist Indexes. Our results show that
the introduction of Bitcoin futures did not affect the economic efficiency of the cryptocurrency market.
However, we observe that Bitcoin obtained the highest risk-return trade-off due to its liquidity
compared to the rest of cryptocurrencies. Therefore, our paper underlines the support of investors on
Bitcoin to the detriment of the rest of cryptocurrencies.
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1. Introduction

Bitcoin has been historically characterized by an explosive behavior due to its multiple
bubbles since it was created by Nakamoto [1] in 2008. Some of the most relevant volatile
periods were underlined by Phillips et al. [2], who observed three bubbles during 2011–
2013, and Fry [3], who confirmed the existence of bubbles in Bitcoin during 2015–2018.
However, this behavior is not only found on Bitcoin, since Corbet et al. [4] also observed
bubbles in Ethereum, and Bouri et al. [5] highlighted the co-explosive phenomenon in the
largest cryptocurrencies of the market.

The main drawback of this explosive behavior is the consequent crash that is driven
by the fear of traders. The best example was observed in the last cryptocurrency bubble of
2017, which gave rise to a remarkable decrease in the market capitalization and price of
most of the cryptocurrencies in 2018. This situation generated doubts about the plausible
existence of cryptocurrencies in the long run, since most of them could disappear as a result
of repetitive bubbles and crashes. In fact, the loss of power of Bitcoin, as demonstrated by
Vidal-Tomás et al. [6] and Yi et al. [7] in favor of the other cryptocurrencies, could show
an initial change of the influence of the largest virtual currencies in the cryptocurrency
market given the effect of the explosive periods on their performance. However, despite the
volatile behavior of Bitcoin and other cryptocurrencies, the institutions and investors keep
trusting in these new assets. Proof of it is the introduction of Bitcoin futures in December
2017 by the Chicago Mercantile Exchange (CME) and the Chicago Board Options Exchange
(CBOE), which could improve the performance of Bitcoin and the cryptocurrency market
over time. In this regard, several studies [8–10] have sought to uncover the positive and
negative effects of the introduction of the futures on Bitcoin. On the one hand, Hale et al. [9]
contended that the decline in prices following the launch of futures on the CME is ex-
plained by the optimists’ behavior, since investors bid up the price before derivatives are
available to short the market ([11]), i.e., the introduction of futures gave rise to the crash of
Bitcoin. However, on the other hand, Köechling et al. [10] observed positive consequences
since Bitcoin returns are more efficient after the introduction of the futures. In addition
to Koechling et al. [10] and Hale et al. [9], other scholars have also studied this point.
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For instance, Yaya et al. [12] contended that the cryptocurrency market exhibited higher
volatility persistence, and Kallinterakis and Wang [13], observed that herding behavior
among cryptocurrencies decreases after the introduction of futures in 2017. Although
there are few studies that examine this issue in the cryptocurrency literature, the impact of
futures trading on the underlying asset volatility has been traditionally debated both in
the economic literature and among practitioners, underlining the relevance of our analysis.
For instance, Edwards [14] did not observe a significant increase in the S&P 500 index after
the introduction of futures trading. Bologna and Cavallo [15] showed that the introduc-
tion of stock index futures in the Italian stock market gave rise to a decrease of the stock
market volatility. Nevertheless, it is also possible to find other studies, more focused on
the Asian market, in which the futures trading increases spot portfolio volatility such as
in Chang et al. [16], who focused on the Nikkei 225 index, and Ryoo and Smith [17], who
examined the KOSPI 200 index.

To shed more light on the effects of the introduction of Bitcoin futures on spot prices,
in this research we employ an approach based on the economic efficiency that allows us to
examine not only the effects on Bitcoin but also the impact on the cryptocurrency market as
a whole. More specifically, unlike informational efficiency [18–22], the economic efficiency
of the cryptocurrency market (or any financial market) seeks to measure how efficient the
market is in relation to the risk-return trade-off, which is a key variable in the classic theory
of risky financial asset selection, based on the theory of expected utility [23].

From this perspective, there are two general approaches for assessing economic effi-
ciency: parametric and nonparametric. Parametric methods, such as the Stochastic Frontier
Analysis (SFA), specify a parametric frontier, which accounts for stochastic error but require
specific assumptions about the functional form on the frontier and the inefficiency term
that may be inappropriate or very restrictive (such as half-normal or constant inefficiency
over time). Incorporating a stochastic error, SFA allows for hypothesis testing. However,
the disadvantage of this approach is the need of imposing an explicit functional form and
distributional assumption of the error term. Hence, the SFA suffers from the problem of
misspecification of the functional form, and potential inefficiency and multi-collinearity.

In contrast, the nonparametric model, such as the Data Envelopment Analysis (DEA)
approach, does not impose a functional form on the frontier (the risk-return trade-off, in
our case) and, hence, can accommodate wide-ranging behaviors. This method measures
the efficiency as the quotient of outputs to inputs under the assumption that any economic
agent wants outputs as high as possible and inputs as low as possible, giving rise to an
increase of efficiency. In fact, one of the main advantages of DEA is the ability to deal with
several inputs and outputs without demanding the precise relation between them, thus we
can use a ratio of weighted outputs to weighted inputs. In this line, given that the usual
variables in DEA are such that “more is better for outputs, and less is better for inputs” [24],
the indicators preferred to have a greater value are treated as outputs, and the indicators
with preferably small values are treated as inputs.

Considering these arguments, we employ the DEA technique for estimating the
economic efficiency of a sample of cryptocurrencies and its change after the introduction
of Bitcoin futures through the computation of Malmquist indexes. We follow classical
financial theory to choose the appropriate comparison criteria in which the investors prefer
higher returns and are risk averse [25], thus, variables connected with returns are outputs
and variables connected with financial risk are inputs. In terms of DEA, the most efficient
cryptocurrency will be the one that obtain a greater quotient of weighted outputs (returns)
to weighted inputs (risk) compared to the rest of cryptocurrencies, i.e., the best risk-return
trade-off.

As stated before, given that DEA is a non-parametric technique, it does not allow for
random errors and does not have any statistical foundation, hence making it inadequate for
testing statistical significance of the estimated distance functions. This inability to allow for
random error has induced many authors to label it as deterministic. To solve this problem,
Simar and Wilson [26] defined a statistical model which allows for the determination of
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the statistical properties of the non-parametric estimators in the multi-input and multi-
output case, and hence for constructing confidence intervals for DEA efficiency scores. This
possibility was first introduced by Efron [27] through the bootstrap technique (see also
Efron and Tibshirani [28]), a computer-intensive technique essentially based on the idea
of approximating the unknown statistic’s sampling distribution of interest by extensively
resampling from an original sample, and then using this simulated sampling distribution
to perform inference in complex problems. In a later study, ref [29] demonstrated that the
bootstrap technique can also be employed to estimate confidence intervals for Malmquist
indices and its components. The most important practical implication of their conclusion
is that statistical inference becomes possible for Malmquist indices. Therefore, we can
evaluate whether the cryptocurency market significantly changed (improved) its economic
efficiency after the launch of Bitcoin futures. In other words, it allows us to assess which
cryptocurrencies provide investors with higher returns, given different measures of risk.

This paper makes several contributions to the literature. On the one hand, to the
best of our knowledge, this is the first study that analyzes the economic efficiency in the
cryptocurrency market, by means of the DEA approach, since other studies focused on
different financial areas such as the management of public funds [30,31] or the measurement
of mutual fund performance [32–34]. It is also possible to find different studies focused on
traditional stock markets, such as Ismail et al. [35] (Malaysian stock market), Lim et al. [36]
(Korean stock market) and Lopes et al. [37] (Brazilian stock market), which examined
the effectiveness of DEA model on portfolio selection for investors.) On the other hand,
compared to most of the literature on Bitcoin, which is focused on the informational
efficiency [10,20], our study is based on the concept of economic efficiency. Finally, and
related to Bitcoin futures literature [8,10], we observed that, despite the decrease in Bitcoin
price after December 2017, Bitcoin is still the most robust cryptocurrency in terms of
liquidity regardless of its bubbles and crashes, which could be related to the confidence of
investors and institutions as a consequence of the launch of Bitcoin futures.

The rest of the paper is organized as follows. In Section 2, we describe the data and
the variables considered as inputs and outputs of the model. In Section 3, we explain the
methodology used to measure the economic efficiency of the cryptocurrency market. In Sec-
tion 4, we report the results of our paper. Finally, we summarize the main contributions of
this study in Section 5.

2. Data and Variables

The initial sample of cryptocurrencies (CCs hereafter) was sourced from BraveNew-
Coin database and consisted of 86 digital currencies that were trading from January 1,
2016 to November 30, 2018, i.e., we focused on long-lived cryptocurrencies. For all these
virtual currencies we had daily exchange rates to dollar and the daily dollar volume. In
order to examine whether there is a significant difference in the economic relative efficiency
of the cryptocurrency market as a consequence of the launch of Bitcoin future market in
December 2017, we employed two symmetric periods: a pre-launch period of 11 months
from January 1, 2017 to November 30, 2017; and a post-launch period of 11 months from
January 1, 2018 to November 30, 2018.

Concerning the selection of variables, the classical financial portfolio theory, which
began with the mean-variance model proposed by Markowitz [25], states that the main de-
terminant of asset performance is its level of risk, measured in this context by the variance
of the assets’ return. However, nowadays, due to the properties shown by the distribu-
tion functions of the returns, the use of alternative risk variables, other than variance,
is expanding. Recent findings in risk theory suggest that quantile based measures are
suitable for measuring risk. These measures behave properly for asymmetric distributions
with both skewness and fat tails. Specifically, the Value-at-Risk (VaR) and the Conditional
Value-at-Risk (CVaR), or Expected Shortfall, have increased in importance as risk measures
since Basel II, being used in portfolio management models ([38–40] among others). For a
given confidence level and a specific time horizon, the VaR of an investment is defined
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as the maximal loss expected to incur at the confidence level by holding the asset over a
given time horizon. CVaR, otherwise, is defined as the conditional expectation of losses
above VaR in a set period and at a given confidence level. In contrast to the VaR, which has
shown certain properties that makes it an inconsistent measure of risk [41], the CVaR is
currently presented as a coherent measure of risk.

In this line, there is also an increasing interest in the financial literature on the rela-
tionship between liquidity and asset returns. A great number of studies on asset pricing
focuses on the illiquidity premium of stock returns. Some classic examples of this literature
are Amihud and Mendelson [42] and Brennan and Subrahmanyam [43].

Given the existing literature, we chose four measures to describe the financial risk of
CCs (inputs in DEA terminology), classified according to two types of risk: risk related to
the distribution of returns and risk connected with illiquidity. The former type included
the standard deviation (SD) for return volatility and Expected Shortfall (or CVaR) for
probability of loss. The latter encompassed [44]’s illiquidity ratio (ILLIQ) and the number
of days without trading with respect the total number of days in the time span (Zerovol).
Finally, we measured returns (the output variable in DEA) as gross returns, since DEA
models (and solvers) are developed for nonnegative data.

The gross return on day t for cryptocurrency i was computed as 1 plus the simple net
returns on day t (Ri,t),

1 + Ri,t =
Pi,t

Pi,t−1
, (1)

where Pi,t and Pi,t−1 are the price on day t an t− 1 for cryptocurrency i, respectively. For
each 11-month period under study we employed as output the average daily gross return.

The CVaR for CC i in the sample was computed by generating an empirical distribution
function from the historical return data over each 11-month period under analysis using
bootstrap. This empirical distribution function was derived by considering 2000 random
draws from the 334 daily simple net returns for every period and cryptocurrency. From the
empirical distribution function, the CVaR was calculated as the mean of all those returns
that were not larger than the percentile 5 of the distribution function. CVaR is expressed in
absolute terms.

The Amihud’s illiquidity ratio for CC i (ILLIQi) was computed over each period
as follows,

ILLIQi =
1
D

D

∑
t=1

|Ri,t|
Vi,t

(2)

where Vi,t denotes the dollar volume on day t for cryptocurrency i, and D is the number
of days with observations in each 11-month period. The illiquidity ratio is expressed
multiplied by a scaling factor of 106.

Table 1 reports descriptive statistics for the cross-section of the initial sample of
cryptocurrencies. According to Table 1, our initial sample of virtual currencies showed
extreme values for some of the variables, particularly for those proxies of illiquidity risk
(i.e., ILLIQ and Zerovol). Since the efficiency obtained from DEA is a relative efficiency
score as compared to other DMUs (cryptocurrencies), it is sensitive to sampling variation.
The deterministic nature of DEA models implies that efficiency measured using standard
DEA models can be contaminated by outliers. As discussed by Stolp [45], the existence
of outliers involves a problem for DEA in a similar way than in statistics or econometrics.
In this context, as Table 1 shows extreme values for illiquidity proxies, we performed the
median absolute deviation (MAD) procedure [46] for each of the proxies in order to detect
(and remove) extreme observations.
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Table 1. Descriptive statistics of variables used for the initial sample of 86 cryptocurrencies.

Gross Return SD CVaR ILLIQ Zerovol

Panel A: First sub-period before the launch of Bitcoin futures

Mean 1.0223 0.1799 0.2329 0.0014 0.0066
Median 1.0163 0.1320 0.1966 0.0000 0.0000

Standard Deviation 0.0210 0.1802 0.1062 0.0051 0.0271
Kurtosis 15.1467 27.9163 2.7805 23.8358 24.2520

Asymmetry 3.6192 4.7189 1.7711 4.7080 4.8666
Min 1.0012 0.0450 0.1035 0.0000 0.0000
Max 1.1377 1.4229 0.6027 0.0342 0.1737

Panel B: Second sub-period after the launch of Bitcoin futures

Mean 1.0010 0.1290 0.2120 0.0010 0.0080
Median 0.9970 0.0850 0.1890 0.0000 0.0000

Standard Deviation 0.0190 0.1740 0.0840 0.0060 0.0280
Kurtosis 45.8410 50.2900 8.2490 66.0960 32.2040

Asymmetry 6.2210 6.6460 2.2890 7.8060 5.2880
Min 0.9910 0.0300 0.0500 0.0000 0.0000
Max 1.1480 1.5230 0.6460 0.0500 0.2070

After detecting and removing extreme observations, ILLIQ variable was the one that
caused the greatest number of cryptocurrencies removals. Table 2 reports descriptive
statistics for the cross-section of the final cryptocurrency sample after adjusting the sample
size because of these outliers. Note that all the virtual currencies in the final sample traded
at least 1 day in the periods under study, consequently Zerovol did not show variability.
Therefore, we excluded this variable as an input in the analysis. The cryptocurrency final
sample was made up of 43 currencies. This implies that 50% of the cryptocurrencies in the
initial sample failed to provide enough liquidity, thus they could not be used as means
of exchange.

Table 2. Descriptive statistics of variables used for the cryptocurrency final sample after outlier
detection and removal. The final sample is made up of 43 currencies.

Gross Return SD CVaR ILLIQ Zerovol

Panel A: First sub-period before the launch of Bitcoin futures

Mean 1.0147 0.1107 0.1730 0.0000 0.0000
Median 1.0135 0.1060 0.1735 0.0000 0.0000

Standard Deviation 0.0051 0.0345 0.0265 0.0000 0.0000
Kurtosis 2.3971 10.1619 0.5257 5.0867 –

Asymmetry 1.3718 2.3628 −0.1273 2.3430 –
Min 1.0070 0.0450 0.1035 0.0000 0.0000
Max 1.0313 0.2694 0.2372 0.0000 0.0000

Panel B: Second sub-period after the launch of Bitcoin futures

Mean 0.9959 0.0778 0.1708 0.0000 0.0000
Median 0.9956 0.0778 0.1722 0.0000 0.0000

Standard Deviation 0.0027 0.0151 0.0294 0.0000 0.0000
Kurtosis 0.9023 2.7633 1.2091 6.8919 –

Asymmetry 0.5675 0.8059 −0.0023 2.6496 –
Min 0.9908 0.0422 0.0984 0.0000 0.0000
Max 1.0038 0.1292 0.2580 0.0000 0.0000

3. Methodology
3.1. Measuring Efficiency Changes through the Malmquist Index

The Malmquist index, pioneered by Caves et al. [47] and developed further by
Färe et al. [48] relies on distance functions. In particular, the output orientation Malmquist
indices were used in this study.
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To measure efficiency change between periods t1 and t2, consider a generic Decision
Making Unit (DMU hereafter) that produces y outputs using x inputs over T time periods.
In the DEA approach, a DMU in period t1 employs input xt1 to produce output yt1 , whereas
in period t2 quantities of input and output are xt2 and yt2 , respectively. In our case, DMUs
are the cryptocurrencies, so that in each 11-month period we analyse the return (output)
achieved given a risk level (input) for every CC, that is, the change in CCs risk-return
trade-off frontier.

Accordingly in the DEA method the production-possibilities set at period t is:

St = {(x, y) | x can produce y at period t}, (3)

where x is an input vector, x ∈ Rn
+ and y is an output vector, y ∈ Rm

+ at period t. This can
be described in terms of its sections. For example:

yt2

(
xit1

)
= {y ∈ Rm

+ | (x, y) ∈ St} (4)

is its corresponding output feasibility set. Based on Shephard [49], the output distance
function for a generic CC at period t1 is:

Dt1(xt1 , yt1) = Dt1|t1
= in f {θ ∈ R:(xt1 , yt1 /θ) ∈ St1} =

(
sup
{

θ ∈ R:
(

xt1 , θyt1

)
∈ St1

})−1
, (5)

where (xt1 , yt1) is the vector in Rn+m
+ made up of the generic CC inputs (risk measures) and

outputs (gross return), and the quotient (product) in the vector yt1 /θ
(

θyt1

)
is defined in

relation to all its components. The same applies to Dt2(xt2 , yt2). Equation (5) refers to the
output distance function, being the inverse of the Farrell [50] output-oriented measure of
technical efficiency. Note that Dt(xt, yt) ≤ 1 as long as (xt, yt) ∈ St, which holds for both t1
and t2.

Two additional distance functions are needed to be defined in order to compute the
Malmquist index. Thus, distance in Equation (6) and distance in Equation (7) measure the
maximum proportional change in outputs required to make (xt2 , yt2) feasible in relation to
the technology at t1 and (xt1 , yt1) feasible in relation to the technology at t2, respectively.

Dt1(xt2 , yt2) = Dt1|t2
= in f {θ ∈ R:(xt2 , yt2 /θ) ∈ St1} (6)

Dt2(xt1 , yt1) = Dt2|t1
= in f {θ ∈ R:(xt1 , yt1 /θ) ∈ St2} (7)

Following Caves et al. [47], the Malmquist index between periods t1 and t2 (t1 < t2)
can be defined as:

Mi(t1, t2) =

√√√√(Dit1|t2

Dit1|t1

)(
Dit2|t2

Dit2|t1

)
(8)

which is the geometric mean of the output-based Malmquist indices for periods t1 and
t2. If M > 1, there has been positive total factor change between periods t1 and t2. If M < 1,
there have been negative changes in the total factor. M = 1 indicates no change.

As the possibility set St is never observed (Simar and Wilson [29]) all distances defined
above are unobserved. Hence, the Malmquist index, Equation (8), is estimated with the
nonparametric DEA method that uses linear programming to construct a piecewise frontier
that envelops all data points (Charnes et al. [51]). DEA method avoids misspecification
errors and allows investigating a multi-output, multi-input case simultaneously. Therefore,
we considered the following linear programming model for cryptocurrency i (i = 1,. . . , L):
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[
D̂it1|t1

]−1
= maxθ s.t.

θyimt1 ≤
L

∑
j=1

λjt1 ymjt1 , m = 1, . . ., M

L

∑
j=1

λjt1 xjnt1 ≤ xint1 , n = 1, . . ., N

λit1 ≥ 0, i = 1, . . ., L

(9)

where λt1 =
(
λ1t1 , . . . , λLt1

)′ is a vector of weights, which represent the weighting of each
analyzed cryptocurrency in the composition of the efficient frontier. Linear programming
model, Equation (9), calculates the distances D̂it1|t1

, i.e., D̂it1

(
xit1 , yit1

)
. Substituting t1 with

t2 in Equation (9), D̂it2|t2
is computed.

We estimated the mixed-period cases (Equations (6) and (7)) with two additional
linear programming models. Thus, for each i cryptocurrency we compute the model from
Equation (10).

[
D̂it1|t2

]−1
= maxθ s.t.

θyimt2 ≤
L

∑
j=1

λjt1 ymjt1 , m = 1, . . ., M

L

∑
j=1

λjt1 xjnt1 ≤ xint2 , n = 1, . . ., N

λit1 ≥ 0, i = 1, . . ., L

(10)

Thus, the reference to which
(

xit2 , yit2

)
is evaluated is constructed from observa-

tions in t1. As in the model from Equation (9), D̂it2|t1
is computed reversing t1 and t2 in

Equation (10). In this research we considered the Malmquist index in terms of constant-
returns-to-scale (CRS) distance functions. An interesting feature of CRS is that results are
invariable; the linear programming models are solved under either the input- or output-
oriented approaches.

Finally, in terms of interpretation, D̂it|t = 1 indicates that ith cryptocurrency lies on
the boundary of the virtual currency set of period t and is, therefore, efficient. The other
cryptocurrencies with scores below unity (D̂it|t < 1) will be inefficient, achieving less
output (return) at given input levels (risk).

3.2. Constructing Confidence Intervals for the Malmquist Index

In order to estimate the Malmquist index from the linear programming model for
every cryptocurrency, Equation (10), we computed changes in the economic efficiency of
the cryptocurrency market after the launch of Bitcoin futures, in December 2017. However,
given our main aim, this information was not enough. We needed to know if those changes
(if any) were statistically significant (or not). Therefore, we needed to construct confidence
intervals at desired levels of significance. To do this, we used the bootstrapping method,
which allowed us to resolve one important problem of DEA methodology. In particular,
the shortcoming of DEA is that the results may be affected by sampling variation in
the sense that distances to the frontier are underestimated if the best performers in the
population are not included in the sample. To account for this, Simar and Wilson [26,29]
proposed a bootstrapping method, allowing the construction of confidence intervals for
DEA efficiency scores, which relies on smoothing the empirical distribution. The rationale
behind bootstrapping is to simulate a true sampling distribution by mimicking a data-
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generating process, here the outputs from DEA. The procedure relies on constructing a
pseudo data set and re-estimating the DEA model with this new data set. Repeating the
process many times allows to achieve a good approximation of the true distribution of the
sampling. At any rate, Simar and Wilson [52] highlighted that the biggest problem when
bootstrapping in frontier models is that of consistently mimicking the data-generating
process. The main reason underlying this problem is that distance estimation values are
close to unity. As a result, resampling directly from the original data (naive bootstrap) will
provide an inconsistent bootstrap estimation of the confidence intervals. To overcome this
problem, Simar and Wilson [29,52] proposed a smoothed bootstrap procedure adapted
from a univariate reflection method by Silverman [53]. This method is founded on the idea
of “reflecting” the probability mass lying beyond unity where, in theory, no probability
mass should exist.

Simar and Wilson [29] adapted the procedure to the case of Malmquist index derived
using DEA in order to account for possible temporal correlation arising from the panel
data characteristic. They proposed a consistent method using a bivariate kernel density
estimate that accounts for the temporal correlation via the covariance matrix of data from
adjacent years. The set of bootstrap Malmquist indices provided by this procedure allows
to account for the bias and to construct confidence intervals. On the whole, this process
can be summarized as follows:

1. Calculate the Malmquist index M̂i(t1, t2) for each DMU i = 1, . . . , L, by solving the
DEA programming models.

2. Compute a pseudo data set
{(

x∗it, y∗it
)
; i = 1, . . . , L; t = 1, 2

}
to form the reference

bootstrap technology using bivariate kernel density estimation and the adaptation of
the reflection method proposed by Simar and Wilson [29].

3. Compute the bootstrap estimate of the Malmquist index for each DMU, M̂∗ib(t1, t2),
by applying the original estimators to the pseudo sample obtained in step 2.

4. Repeat steps 2–3 a large number of times (B) in order to provide a set of estimates{
M̂∗i1(t1, t2), . . . , M̂∗iB(t1, t2)

}
. Simar and Wilson [26] recommend a value of B = 2000.

5. Construct the confidence intervals for the Malmquist indices.

With the information provided in step 5, it is possible to observe whether growth (or
decline) measured by the Malmquist index is significant, i.e., it is greater than (or less than)
unity at the desired significance levels.

4. Results

Table 3 shows the results obtained from the 43 optimization programmes (one per
cryptocurrency) in Equation (9), where the distances D̂it1|t1

, i.e., D̂it1

(
xit1 , yit1

)
, correspond

to the pre-launch period and D̂it2|t2
, i.e., D̂it2

(
xit2 , yit2

)
, correspond to the post-launch

period. When all the proxy measures to risk (standard deviation (SD), Expected Shortfall
(CVaR) and Amihud’s illiquidity ratio (ILLIQ)) were employed as inputs, we found that
only 1 out of 43 cryptocurrencies was efficient in the post-launch period, i.e., Bitcoin was
the only cryptocurrency that exhibited an efficiency score equal to 1. Therefore, Bitcoin
formed the best practice frontier since we obtained the highest remuneration (return) given
its level of risk, compared to the rest of cryptocurrencies.

As Bitcoin stood out for being a highly liquid cryptocurrency, we reran the above
estimations but excluding our proxy for the illiquidity (the Amihud’s illiquidity ratio) in
order to remove any possible bias in the results. We observed the same outcome, thus,
Bitcoin forms the best practice frontier.

In the post–launch period, we found that 2 out of 43 cryptocurrencies were efficient re-
gardless of the risk proxies we employed as inputs, since Bitcoin and Unobtanium obtained
efficiency scores equal to 1. This is an interesting result, as both cryptocurrencies exhibited
the highest remuneration to their risk level compared to the other cryptocurrencies in
our sample.



Mathematics 2021, 9, 413 9 of 14

Table 3. DEA output oriented efficiency scores for cryptocurrencies.

All Inputs SD-CVaR Inputs All Inputs SD-CVaR Inputs

Cryptocurrency Pre Post Pre Post Cryptocurrency Pre Post Pre Post

Bitcoin 1 1 1 1 MaidSafeCoin 0.7289 0.6687 0.7289 0.6586
BitShares 0.5423 0.6553 0.5423 0.6371 MonaCoin 0.6675 0.6810 0.6675 0.6448
Blackcoin 0.5846 0.6536 0.5846 0.6186 Monero 0.6276 0.7889 0.6276 0.7627

Burst 0.6222 0.6249 0.6222 0.5995 Nav-Coin 0.6109 0.6731 0.6109 0.6388
Clams 0.5521 0.6654 0.5521 0.6654 NEM 0.6916 0.8059 0.6916 0.7397

CloakCoin 0.4463 0.6080 0.4463 0.5819 Nexus 0.5930 0.6034 0.5930 0.5354
Counterparty 0.5844 0.6101 0.5844 0.6000 Novacoin 0.6370 0.4097 0.6370 0.4097

Dash 0.7853 0.8369 0.7853 0.8086 Nxt 0.6381 0.7595 0.6381 0.7279
DigiByte 0.5783 0.7144 0.5783 0.6696 Omni 0.5709 0.5949 0.5709 0.5949

DogeCoin 0.5424 0.7617 0.5424 0.7059 Peercoin 0.7374 0.5264 0.7374 0.5191
Einsteinium 0.4924 0.6360 0.4924 0.6089 PotCoin 0.6846 0.6028 0.6846 0.6028

Emercoin 0.5993 0.6349 0.5993 0.6051 Primecoin 0.5249 0.5797 0.5249 0.5325
Ethereum 0.8619 0.8694 0.8619 0.8459 Ripples 0.7083 0.7327 0.7083 0.7007
Expanse 0.6175 0.6474 0.6175 0.6276 Siacoin 0.6503 0.6839 0.6503 0.6134
Factom 0.5720 0.5737 0.5720 0.5594 Stellar 0.5321 0.7706 0.5321 0.7124

Feathercoin 0.5260 0.5774 0.5260 0.5694 Synereo 0.6367 0.5740 0.6367 0.5715
FoldingCoin 0.6466 0.5513 0.6466 0.5513 SysCoin 0.5353 0.5967 0.5353 0.5668
GameCredits 0.5984 0.6288 0.5984 0.6190 Unobtanium 0.5277 1 0.5277 1

GoldCoin 0.5859 0.5452 0.5859 0.5452 Vericoin 0.4669 0.5375 0.4669 0.5081
Gridcoin 0.5690 0.5541 0.5690 0.5541 Vertcoin 0.5279 0.6069 0.5279 0.5859
Gulden 0.6818 0.7990 0.6818 0.7807 Viacoin 0.5086 0.6914 0.5086 0.6651
Litecoin 0.7389 0.9513 0.7389 0.8999

In order to shed more light on the efficient (and inefficient) performance of the cryp-
tocurrencies, we computed the market remuneration (return) for unit of risk (measured
through our three proxies) for the pre– and post–launch periods, i.e., the ratio output to
input (see Table 4). On the one hand, we observed that Bitcoin obtained the maximum ratio
in the pre–launch period independent of the risk proxy used. On the other hand, in the
post–launch period, we observed that Unobtanium showed the maximum ratio for CVaR,
while Bitcoin still obtained the maximum remuneration per unit of risk when measuring
by the standard deviation and the Amihud’s illiquidity ratio.

Though revealing, Table 3 just shows a static picture of economic efficiency (that is,
their risk-return trade-off) of our sample of the cryptocurrencies in the pre– and post–launch
periods. Consequently, as the efficiency obtained from DEA is a relative efficiency score
as compared to other cryptocurrencies, the fact that Bitcoin was efficient in the pre– and
post–launch periods did not provide us with much information on the impact of the in-
troduction of the futures market. Given this fact, we computed changes in the economic
efficiency of the cryptocurrency market by estimating the Malmquist index from the linear
programming model for every cryptocurrency, Equation (10). As stated before, the boot-
strap method allowed us to construct confidence intervals at desired levels of significance.

Table 5 exhibits changes in efficiency measured through the Malmquist index and
their statistical significance. Table 6 summarizes the results from Table 5. Around the 80%
of the cryptocurrencies in our sample experienced a significant change in their risk-return
trade-off from 2017 to 2018 regardless of the risk proxies used (34–35 out of 43). According
to Table 6, the market paid a significantly higher return for unit of risk in 2018 compared
to 2017 for 16 out of 43 cryptocurrencies (37%) and a significantly lower return for unit of
risk in 2018 compared to 2017 for 19 out of 43 cryptocurrencies (42%). These results were
quite similar when we excluded the illiquidity risk measure as an input (44% and 37%,
respectively). Therefore, the introduction of the futures on Bitcoin did not seem to have
had a wide effect on the cryptocurrency market.
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Table 4. Ratio Gross Return/input for cryptocurrencies.

Pre-Launch Period Post-Launch Period

Cryptocurrency SD CVaR ILLIQ SD CVaR ILLIQ

Bitcoin 22.41 9.74 1.98 × 1010 23.62 8.81 2.17 × 1011

BitShares 9.05 5.28 1.35 × 107 13.75 5.78 2.57 × 108

Blackcoin 8.94 5.70 2.53 × 106 12.14 5.80 3.19 × 106

Burst 9.70 6.06 1.16 × 106 12.20 5.55 2.90 × 106

Clams 10.55 5.38 1.39 × 106 13.75 6.12 4.83 × 105

CloakCoin 3.83 4.35 6.60 × 104 11.91 5.37 7.59 × 106

Counterparty 8.91 5.69 1.97 × 106 12.73 5.47 1.11 × 106

Dash 12.63 7.65 2.58 × 108 17.12 7.38 2.88 × 109

DigiByte 5.96 5.63 1.78 × 106 13.02 6.30 6.42 × 107

DogeCoin 11.42 5.28 2.23 × 107 13.33 6.71 2.71 × 108

Einsteinium 6.26 4.80 2.72 × 105 12.51 5.61 1.48 × 107

Emercoin 9.09 5.84 2.22 × 106 12.27 5.60 1.37 × 107

Ethereum 13.96 8.40 2.46 × 109 18.29 7.66 5.60 × 1010

Expanse 10.10 6.02 1.54 × 106 12.61 5.83 9.33 × 105

Factom 11.90 5.57 3.05 × 107 12.08 5.07 6.80 × 106

Feathercoin 8.38 5.12 2.62 × 105 12.22 5.17 1.13 × 106

FoldingCoin 9.65 6.30 4.86 × 105 12.45 4.93 2.89 × 105

GameCredits 10.24 5.83 1.08 × 107 13.70 5.56 4.75 × 106

GoldCoin 8.90 5.71 9.17 × 104 10.64 5.12 1.30 × 105

Gridcoin 9.54 5.54 2.22 × 105 12.49 4.95 1.93 × 105

Gulden 9.54 6.64 9.45 × 105 16.56 7.12 2.36 × 106

Litecoin 12.77 7.20 1.24 × 109 17.94 8.38 1.07 × 1010

MaidSafeCoin 14.87 7.10 2.47 × 107 14.76 5.90 3.06 × 107

MonaCoin 7.40 6.50 1.05 × 105 12.87 6.01 3.52 × 107

Monero 12.97 6.12 2.71 × 108 16.18 6.95 9.47 × 108

Nav-Coin 8.11 5.95 2.47 × 106 12.77 5.95 9.76 × 106

NEM 10.93 6.74 1.49 × 107 13.64 7.10 4.33 × 108

Nexus 9.64 5.78 7.82 × 105 9.11 5.32 1.71 × 107

Novacoin 9.00 6.21 4.56 × 105 7.77 3.89 1.09 × 105

Nxt 10.46 6.22 9.30 × 106 15.04 6.70 5.28 × 107

Omni 7.95 5.56 1.57 × 105 12.77 5.40 2.45 × 105

Peercoin 12.48 7.18 4.64 × 106 11.65 4.65 9.82 × 106

PotCoin 11.05 6.67 3.59 × 106 12.95 5.47 6.28 × 105

Primecoin 9.74 5.11 7.58 × 105 9.70 5.14 3.12 × 106

Ripples 7.63 6.90 4.30 × 105 14.40 6.46 1.20 × 1010

Siacoin 9.26 6.34 7.11 × 106 10.71 6.03 1.33 × 108

Stellar 7.34 5.18 1.42 × 107 13.37 6.79 1.56 × 109

Synereo 10.40 6.20 2.54 × 106 12.67 5.14 1.20 × 106

SysCoin 9.40 5.22 3.35 × 106 11.39 5.27 1.46 × 107

Unobtanium 9.01 5.14 7.82 × 104 16.24 10.16 2.32 × 105

Vericoin 7.59 4.55 1.98 × 105 9.91 4.77 2.29 × 106

Vertcoin 7.65 5.14 8.12 × 105 12.33 5.36 1.36 × 107

Viacoin 8.92 4.96 3.79 × 105 13.82 6.11 1.03 × 107



Mathematics 2021, 9, 413 11 of 14

Table 5. Changes in efficiency measured through the Malmquist index: pre vs post futures launch periods. ***/** denotes
significance at the 1%/5%/ level.

Cryptocurrency All Inputs SD-CVaR Inputs Cryptocurrency All Inputs SD-CVaR Inputs

Bitcoin 3.1450 *** 0.9945 ** MaidSafeCoin 0.8664 *** 0.8862 ***
BitShares 1.1126 ** 1.1643 *** MonaCoin 0.9915 0.9647 ***
Blackcoin 1.0186 1.0600 *** Monero 1.1435 *** 1.1573 ***

Burst 0.9200 *** 0.9586 *** Nav-Coin 1.0021 1.0439
Clams 1.1215 *** 1.1591 *** NEM 1.0551 1.0820 ***

CloakCoin 1.3249 *** 1.2963 *** Nexus 0.9329 *** 0.9251 ***
Counterparty 0.9628 *** 1.0202 Novacoin 0.6181 *** 0.6486 ***

Dash 0.9684 *** 1.0168 Nxt 1.0782 ** 1.1227 ***
DigiByte 1.1240 *** 1.1622 *** Omni 1.0283 1.0418

DogeCoin 1.2710 *** 1.2558 *** Peercoin 0.6764 *** 0.7099 ***
Einsteinium 1.2048 *** 1.2286 *** PotCoin 0.8228 *** 0.8755 ***

Emercoin 0.9634 *** 1.0054 Primecoin 1.0138 1.0036 ***
Ethereum 1.7295 *** 0.9782 *** Ripples 0.9616 *** 0.9827 **
Expanse 0.9653 *** 1.0055 Siacoin 0.9530 *** 0.9677 ***
Factom 0.9249 *** 0.9390 *** Stellar 1.3110 *** 1.3527 ***

Feathercoin 1.0488 1.0781 *** Synereo 0.8547 *** 0.9049 ***
FoldingCoin 0.8321 *** 0.8740 *** SysCoin 1.0119 1.0364
GameCredits 0.9865 *** 1.0344 Unobtanium 1.9483 *** 1.9483 ***

GoldCoin 0.9333 *** 0.9333 *** Vericoin 1.0862 *** 1.0835 ***
Gridcoin 0.9684 *** 0.9856 ** Vertcoin 1.0526 1.0986 ***
Gulden 1.0850 *** 1.1378 *** Viacoin 1.2589 *** 1.2724 ***
Litecoin 1.1646 *** 1.1964 ***

Table 6. Summary of efficiency changes measured through the Malmquist index (see Table 5).

All Inputs SD-CVaR Inputs

Sample Size 43 43
Significant Changes 34 35

over sample size 79.07% 81.40%

Significant increases 16 19

over significant changes 47.06% 54.29%
over sample size 37.21% 44.19%

Significant decreases 18 16

over significant changes 52.94% 45.71%
over sample size 41.86% 37.21%

When we focused on Bitcoin, some interesting results arose. Table 5 shows that Bitcoin
obtained the largest and significant increase in its risk-return trade-off if all the risk proxies
were taken into account, giving rise to a Malmquist index value equal to 3.145. Unobtanium
obtained the second highest and most significant increase in our sample with a Malmquist
index value of 1.948. Therefore, it seems that the introduction of the futures market did
have a (significant) strong impact on Bitcoin’s risk-return trade-off, improving it. It is
interesting to highlight that, when we excluded the illiquidity risk measure as an input,
Bitcoin’s Malmquist index value turned from greater than 1 (3.145) to less than 1 (0.9945),
both changes being statistically significant. In other words, instead of a significant increase
in its risk–return trade-off when all the variables were taken into account, we found a
significant decrease in its risk–return trade-off. This result gives support to the notion of a
mix result for the introduction of the futures market in December 2017. On the one hand,
the futures market gave rise to a crashed down of Bitcoin prices, as its value decreased
more than 80% in 2018 (from its peak around $19,800 in December 2017 to a value around
$3,700 at the end of 2018). Therefore, if one exclusively focused on the risk related to
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the distribution of returns, the obvious conclusion seems to be that the market penalized
Bitcoin relative to the rest of cryptocurrencies in our sample. However, our analysis also
showed that, when taking into account liquidity (i.e., the illiquidity risk), the introduction
of Bitcoin’s futures market boosted its risk–return trade-off in relation to the the rest of
cryptocurrencies. This result supports the use of Bitcoin as a mean of exchange, instead of
an asset, since the introduction of futures market brought it closer to the forex market in
terms of liquidity.

5. Conclusions

The introduction of the futures market on Bitcoin in December 2017 put an end to a
year in which its value increased more than 1000 percent until its peak around $19,800.
However, the following year, its value decreased more than 80% (around $3700 at the
end of 2018). In this research, we study the consequences of the introduction of trading
futures on Bitcoin from the perspective of the economic efficiency. Unlike informational
efficiency, with the economic efficiency of the cryptocurrency market we seek to measure
how efficient the market is in relation to the risk-return trade-off, that is, how the market
pays for unit of risk. We employ the Malmquist index using distance measures relative
to Data Envelopment Analysis (DEA) frontiers in order to estimate changes in economic
efficiency and its statistically significance through the bootstrap technique. Our final
sample is made up of 43 currencies after removing the 50% of the cryptocurrencies from
the initial sample as they failed to provide enough liquidity and, thus, they cannot be used
as means of exchange. Our results show that the introduction of the futures on Bitcoin
does not seem to have had a wide effect on our sample of cryptocurrencies as we find
similar percentages of significant increases and decreases of risk-return trade-off changes.
However, when we focus on Bitcoin, our results suggest that the introduction of Bitcoin’s
futures market boosted its risk-return trade-off, relative to the rest of cryptocurrencies,
given its high liquidity. This outcome supports the view of Bitcoin as a mean of exchange
instead of an asset, compared to the rest of the cryptocurrency market.
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