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Abstract: This paper introduces stringing via Manifold Learning (ML-stringing), an alternative to
the original stringing based on Unidimensional Scaling (UDS). Our proposal is framed within a
wider class of methods that map high-dimensional observations to the infinite space of functions,
allowing the use of Functional Data Analysis (FDA). Stringing handles general high-dimensional
data as scrambled realizations of an unknown stochastic process. Therefore, the essential feature of
the method is a rearrangement of the observed values. Motivated by the linear nature of UDS and
the increasing number of applications to biosciences (e.g., functional modeling of gene expression
arrays and single nucleotide polymorphisms, or the classification of neuroimages) we aim to recover
more complex relations between predictors through ML. In simulation studies, it is shown that ML-
stringing achieves higher-quality orderings and that, in general, this leads to improvements in the
functional representation and modeling of the data. The versatility of our method is also illustrated
with an application to a colon cancer study that deals with high-dimensional gene expression arrays.
This paper shows that ML-stringing is a feasible alternative to the UDS-based version. Also, it opens
a window to new contributions to the field of FDA and the study of high-dimensional data.

Keywords: stringing; Functional Data Analysis; Manifold Learning; Multidimensional Scaling; high-
dimensional data; functional regression

1. Introduction

Recently, a considerable literature has grown up around the topic of high-dimensional
data. In this scenario, classical statistical tools are insufficient to study the data, as the
number of features is generally higher than the sample size. For example, microarrays
measure gene expressions and in most cases can contain up to 105 genes (features or
predictors) for less than one hundred subjects (samples). Typically, it is common to deal
with a huge difference between the sample size n and the number p of features (written as
n� p). Moreover, if the data comes with an associated response (say a category indicating
ill/healthy patient) tasks such as modeling become very difficult.

In this context, stringing is introduced as a class of methods to map general high-
dimensional vectors to functions [1]. Stringing takes advantage of the large p and considers
the sample vectors as realizations of a smooth stochastic process observed with a random
order of its components. This deviation from the multivariate scenario places the study in
the field of FDA, another area with remarkable growth in research—see the books [2,3] or
the review [4]. Through stringing, tools such as functional regression become a feasible
alternative to more common approaches that add sparsity constraints, as the lasso and gen-
eralizations [5,6]. Moreover, linking the high-dimensional data to the infinite-dimensional
space of functions also results in a visual representation of the data as smooth curves in
the plane.
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The key element of stringing is a rearrangement of the predictors (columns of the
design matrix, when there is a response variable). It assumes that the sample vectors are
realizations of a smooth stochastic process observed in a random and unknown order
of the components. The idea is to estimate the true order of the nodes using the scram-
bled observations. Originally, this ordination is based on Multidimensional Scaling (MDS),
a method that reduces the dimension of a vector in Rn to Rl , where l < n. MDS achieves
the reduction by preserving a predefined distance or dissimilarity metric, placing closer in
Rl those vectors that were similar in Rn. In particular, if l = 1 we refer to UDS, which takes
advantage of the intrinsic order in R to rank the predictors. Finally, once the true order is
recovered, the sample vectors are treated as functional data.

Please note that under these assumptions, stringing can be seen as the necessary
data pre-processing step that enables the deployment of the FDA machinery. Further-
more, the strategy is different from the usual understanding of Dimensionality Reduction
methods which aim to project the observation points (the sample vectors of size p) to a
low-dimensional space where the data features are easily revealed (i.e., R, R2, or R3).
Stringing, on the other hand, projects the n-dimensional predictors to R and retrieves their
order. Then, after rearranging the components, the sample vectors are transformed into
functions, increasing p to ∞.

The literature on stringing often relies on Euclidean distances or Pearson correlations
to apply UDS. This means that the estimated order (or the projection in R) only takes into
account the linear relations between the predictors in the higher-dimensional space Rn.
We believe this is a weakness of the method, as more complex relations are very likely
to be present in a high-dimensional space. The present study seeks to remedy this issue
by preserving the nonlinear structure of the p predictors when they are mapped from Rn

into Rl . Our proposal consists of performing stringing via ML, assuming that the true
nodes belong to an underlying l-dimensional smooth manifoldM. In particular, in this
paper, we study the performance of ML-stringing in functional regression models for a
fixed l = 1.

To study the benefits of using ML-stringing instead of the UDS-based version, we fo-
cus mainly on three aspects: (1) the visual representation of the stringed high-dimensional
data achieved by the estimated functional predictors; (2) the interpretability of the esti-
mated coefficient function; and (3) the accuracy of the predictions achieved by the SOF
regressions. In simulation studies, we show the advantages of ML-stringing while dealing
with (1)–(3). Furthermore, we illustrate the versatility of the method with an application
to a colon cancer study regarding the classification of tissues from gene expression arrays.
Our research is motivated by existing research, mainly focused on applications to bio-
sciences. These applications deal with a substantial variety of high-dimensional datasets,
but all of them are processed with UDS-stringing based on Euclidean distance or Pearson
correlation. We believe our proposal could bring further improvements to these studies.
Below, we summarize some of the most relevant.

Chen et al. [1] present an extensive simulation study, comparing the performance of
lasso and functional regression models fitted with the stringed data. Their results show that
stringing-based functional models have higher accuracy than lasso, if the generated data is
not too sparse or if p is large. They also combine stringing with a functional Cox regression
model to predict the survival of patients with diffuse large-B-cell lymphoma (DLBCL).

A previous version of stringing (functional embedding, FEM for short) is introduced by
Wu and Müller [7] for the classification of gene expression profiles. The term “ordination” is
used to describe the procedure of embedding high-dimensional vectors of gene expressions
into a functions space. In this paper, the authors focus on the classification of cancer
patients from gene expression profiles. The FEM algorithm reorders the predictors through
correlation-based UDS and fits a functional logistic regression model with an iterative
nodes selection procedure (equivalent to variable selection in this context).

Stringing is deployed with two scalar-on-function (SOF) regression models by Chen et al. [8].
First, the authors explore the prediction of plasma homocysteine using single-nucleotide
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polymorphism (SNP) data. They transform the sample vectors to functional data and then
fit a functional linear regression model. Next, nodes selection is explored in a functional
Cox regression model, regarding the survival of patients with DLBCL.

Three applications that move away from the SOF regressions are also notorious.
On the one hand, stringing is used to develop a functional test of equality of covariance
matrix with application to mitochondrial calcium concentration data [9]. On the other
hand, the method brings new insights into the study of brain connectivity using func-
tional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data [10,11].
Both works apply stringing to rearrange the signal locations (voxels in fMRI and elec-
trodes in EEG data) while preserving the relative distance between them as much as
possible. Chen and Wang [10] are able to discriminate normal from Alzheimer’s disease
patients using the reordered data. Their alignment also provides a visualization tool for
spatially indexed blood oxygen level-dependent signals. Moon et al. [11] exploit the
brain connectivity information combined with convolutional neural networks in emotional
video classification.

In a recent article, Aguilera-Morillo et al. [12] study the relationship between several
clinical variables and the genotype of patients affected by chronic graft-versus-host disease
after an allogeneic hematopoietic stem-cell transplantation. The high-dimensional genotype
of the patients (SNPs data) is transformed into functional data by means of stringing. Then,
the relationship between the (functional) genotype and the clinical variables is explained
through a function-on-scalar (FOS) regression model.

We remark that, besides considering the reordered data as functional, stringing can
be seen as a seriation (also ordination or sequencing) method for one-mode two-way data.
Seriation methods aim to reveal structural information of the data by arranging it into a
linear order [13,14]. These methods assume that structural information is revealed when
similar objects are placed together. Therefore, the usual input of seriation is a dissimilarity
matrix (“two-way” data). The “one-mode” indicates that dissimilarities are obtained for a
single set of objects. Surprisingly, the concepts of stringing and seriation are rarely related
in the literature (to our knowledge, [15] is the only exception). In this paper, we refer to
several “seriation algorithms” to string data.

The rest of the manuscript is divided in Material and Methods (Section 2), Results
(Section 3), and Discussion (Section 4). In Section 2.1 we introduce our proposal ML-
stringing. Next, we describe the SOF regression problem in Section 2.2, our simulation
studies in Section 2.3, and the real data illustration concerning the prognosis of colon
cancer from gene expression arrays in Section 2.4. The simulation results are divided in two
subsections according to the design: SOF regression with continuous response (Section 3.1)
and SOF regression with binary response (Section 3.2). Finally, the results from the real
data application are summarized in Section 3.3.

2. Materials and Methods
2.1. Stringing via Manifold Learning

Let d = {(xi, yi), i = 1, 2, . . . , n} be the data consisting of n samples xᵀi ∈ Rp with
associated responses yi. The exponent “ᵀ” indicates the transpose. The p predictors Xj ∈ Rn,
j = 1, . . . , p, are n-dimensional vectors that can be arranged in an n× p design matrix:
X =

[
X1, . . . , Xp

]
, with elements (X)ij = xij, i = 1, . . . , n; j = 1, . . . , p. Each xij represents

the observed value of the predictor j for subject i. We consider a high-dimensional scenario
with many predictors and possibly n � p, also known as “wide data” (opposed to “tall
data”). The vector Y = (y1, . . . , yn)

ᵀ ∈ Rn gathers all the responses. In what follows,
bold-upper-case letters will indicate a matrix (e.g., design matrix X) or a column vector
(e.g., the vector of responses Y or the j-th column of X: Xj). Bold-lower-case letters will
indicate row vectors (e.g., the i-th row of X: xi). A tilde over a matrix (X̃) indicates that the
columns are scrambled in a random way.

Following [1], we consider stringing as a class of methods that map the samples (xᵀi )
from Rp to the infinite space of square-integrable functions L2([0, T]) defined over a closed
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interval [0, T] ⊂ R. We consider data as realizations of a hidden smooth stochastic process
(say X(·)), but observed in random order of its components. This means that for each
subject i = 1, . . . , n, we observe p realizations {xij = Xi(sj)}

p
j=1, where sj ∈ [0, T] is an

unknown node to be estimated.
The main goal of stringing is to estimate positions ŝ1, . . . , ŝp to each predictor indexed

by j = 1, . . . , p. In other words, to recover the true order of the nodes generating the
observations, as well as their positions in a closed interval [0, T] ⊂ R. In practice, stringing
addresses the problem by reducing the dimension of the predictors {Xi}

p
i=1 from n to l < n,

while preserving dissimilarities across spaces.
Our proposal, stringing via ML, aims to preserve more complex relations between

predictors, as nonlinearities. Therefore, we assume that the predictors X̃j ∈ Rn, j = 1, . . . , p
(columns of the design matrix X̃) are the result of mapping the coordinates {sj ∈ M}

p
j=1

of an underlying l-dimensional smooth manifoldM. Following [16], and avoiding the
complexities regarding the definition of a topological manifold, we considerM as a space
that locally behaves like Euclidean space. We consider thatM is continuously differentiable
(i.e., smooth), connected, and equipped with a metric dM that determines its structure.
This metric is usually called geodesic distance, as it is the arc-length of the shortest curve
connecting any two points in the manifold.

In this paper, the dimension ofM is fixed to l = 1, which makes ML analogous to
UDS. We focus on six ML and Nonlinear Dimensionality Reduction algorithms: Isometric
Feature Mapping (Isomap) [17], Locally Linear Embedding (LLE) [18], Laplacian Eigenmap
(LaplacianEig) [19], Diffusion Maps (DiffMaps) [20], t-Distributed Stochastic Neighbor Embed-
ding (tSNE) [21], and Kernel Principal Component Analysis (kPCA) [22]. In general, the ML
algorithms start by constructing a weighted graph that considers neighborhood informa-
tion between the sample objects (e.g., the predictors in stringing). Then, the weighted
graph is transformed according to a certain criterion that is particular to each algorithm.
Finally, the data is embedded into a lower-dimensional space, commonly by solving an
eigen equation problem.

Isomap starts by joining neighboring points, defined as the κ-nearest according to
the Euclidean distance in Rn. Then it approximates the geodesic distances {dMij } in the
underlying manifold M by computing the shortest paths that connect any two points
X̃i, X̃j ∈ Rn. The third and final step uses the approximations {d̂Mij } as inputs of an
MDS algorithm.

For any set of dissimilarities {dij : 1 ≤ i, j ≤ p}, MDS estimates the minimizing d∗ij of
the stress:

S2(ŝ) = min{
d∗ij : d∗ij∼dij

} ∑i<j(d∗ij − d̂ij)
2

∑i<j d̂2
ij

, (1)

where d∗ij ∼ dij means monotonically related quantities (dij < duv =⇒ d∗ij ≤ d∗uv, for all

i < j, u < v); and the d̂ij represent point-to-point distances of a configuration ŝ ⊂ M.
Details regarding the estimation of optimal d∗ can be found in [16,23].

On the one hand, Isomap can be seen as an extension of MDS that attempts to preserve
the global geometry ofM. As it estimates all the geodesic distances in the underlying
manifold, it is a global approach to the ML problem.

On the other hand, the LLE algorithm is seen as a local approach because it preserves
local neighborhood information without approximating all the {dMij }. First, for a fixed
number of neighbors κ, it reconstructs each point X̃j through a linear combination of its
κ-nearest neighbors Nκ

j = {X̃m}κ
m=1:

ˆ̃Xj =
κ

∑
m=1

wjmX̃m,
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with weights wjm minimizing the reconstruction error:

p

∑
j=1
‖X̃j − ˆ̃Xj‖2,

subject to: ∑
m

wjm = 1 and wjm = 0 ∀ Xm /∈ Nκ
j .

The coordinates {sj ∈ M}
p
j=1, best reconstructed by the weights {wjm}κ

m=1, are estimated
by minimizing the embedding cost function:

p

∑
j=1
‖sj −

κ

∑
m=1

wjmsm‖2.

Under some constraints that make the objective function invariant under translation,
rotation, and change in scale, the problem is reduced to the estimation of the bottom
l + 1 eigenvectors of the sparse p × p matrix M =

(
Ip − Ŵ

)ᵀ(Ip − Ŵ
)
. The “bottom”

eigenvectors refer to those with the l + 1 smallest eigenvalues, Ip is the identity matrix of
size p× p, and Ŵ is the matrix of optimal weights (ŵjm)1≤j,m≤p.

The Laplacian Eigenmap algorithm is very similar to the previous two. It starts
by defining the κ-neighborhoods Nκ

j of each data point X̃j, j = 1, . . . , p, as in LLE or
Isomap algorithms. Next, a weighted adjacency matrix W = (wij)1≤i,j≤p is constructed,
according to:

wij =

exp
{
− ‖X̃i−X̃j‖2

ε

}
, if X̃j ∈ Nκ

i

0, otherwise
, (2)

with weights determined by the isotropic Gaussian kernel. The parameter ε ∈ R+ can also
take the value infinity (ε = ∞), resulting in the simple-minded version: wij = 1, if X̃j ∈ Nκ

i
and 0, otherwise. This results in a graph G, with connected neighboring points and weights
given by W. Let D = (dij)1≤i,j≤p be the degree matrix, meaning it is a diagonal matrix with
nonzero elements:

dii = ∑
j:X̃j∈Nκ

i

wij, i = 1, . . . , p. (3)

Then, the graph Laplacian of G is the n× n, symmetric, and positive semidefinite matrix
L = D−W. The coordinates {sj ∈ M}

p
j=1 are determined by the solution of the optimiza-

tion problem:
arg min ∑

i
∑

j
wij‖si − sj‖2.

This is simplified to solving the generalized eigen equation Lv = λDv, or, equivalently,
computing the bottom l + 1 eigenvalues and eigenvectors of D−1/2WD−1/2.

Diffusion Maps are a very interesting alternative to ML. They exploit the relationship
between heat diffusion and Markov chains, based on the idea that it is more likely to visit
nearby data-points while taking a random walk through the data. The algorithm departs
from the same weights matrix W, with entries defined in Equation (2), as in Laplacian
Eigenmaps. Using both W and D, the degree matrix with diagonal elements defined
in Equation (3), the algorithm calculates the random walk transition matrix P = D−1W.
The elements of P = (pij)1≤i,j≤p give a sense of connectivity between X̃i and X̃j. By analogy
with random walks, pij represents the probability for a single step taken from i to j.
Moreover, the iterative matrix Pt gives the transition probabilities on the graph after t
time steps. The coordinates of the embedding are obtained by solving the eigen equation
Ptv = λv and retaining the top l + 1 eigenvectors and eigenvalues.

The tSNE algorithm is a variant of the Stochastic Neighbor Embedding (SNE) [24] that
improves the original approach by introducing a Student t-Distribution as a kernel in the
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target low-dimensional space. tSNE first constructs a probability distribution over the
high-dimensional data space:

pj|i =
exp

(
−‖X̃i − X̃j‖2/2σ2

i
)

∑k 6=i exp
(
−‖X̃i − X̃k‖2/2σ2

i
) , i 6= j, (4)

with pi|i = 0 and 1 ≤ i, j ≤ p. One can understand the similarity between data points X̃i, X̃j

as the conditional probability, pj|i, that X̃i would pick X̃j as its neighbor. Next, we define the
the joint probabilities pij in the high-dimensional space to be the symmetrized conditional
probabilities, i.e.:

pij =
pj|i + pi|j

2p
.

The bandwidth σi of the Gaussian kernel defining the probabilities in Equation (4) is set in
such a way that the perplexity of the conditional distribution (i.e., a measurement of how
well the probability distribution predicts the sample) equals a predefined value. Briefly,
σi is adapted to the density of the data, were smaller values are used in denser parts of the
data space. The similarities between the coordinates s1, s2, . . . , sp in the target l-dimensional
manifoldM, are measured using a heavy-tailed Student t-Distribution:

qij =
(1 + ‖si − sj‖2)−1

∑k 6=l(1 + ‖sk − sl‖2)−1 , i 6= j,

with qii = 0 and 1 ≤ i, j ≤ p. The locations are estimated by minimizing the Kullback–Leibler
divergence (KL) of the distribution P from the distribution Q using gradient descent:

KL(P ‖ Q) = ∑
i 6=j

pij log
pij

qij
.

kPCA is a nonlinear version of PCA that applies the well-known kernel trick. It can be seen
as a two-steps process where: (1) each X̃j ∈ Rn is nonlinearly transformed into Φ(X̃j) ∈ H,
where H is an NH-dimensional Hilbert space; and (2) given the {Φ(X̃j)}j=1,...,p ⊂ H with
∑j Φ(X̃j) = 0, solve a linear PCA in feature space H. The feature map Φ : Rn → H is
such that:

Φ(X̃j) =
(
φ1(X̃j), . . . , φNH (X̃j)

)τ ∈ H, j = 1, . . . , p;

with NH > n and nonlinear maps {φi}. The idea behind the method is that any possible
low-dimensional structure of the data can be more easily seen in a much higher-dimensional
space. Also, the feature map does not need to be defined explicitly.

Briefly, solving a linear PCA in feature space mimics a standard PCA. The goal is to
find eigenvalues λ ≥ 0 and nonzero eigenvectors v ∈ H of the covariance matrix:

C =
1
p

p

∑
j=1

Φ(X̃j)Φ(X̃j)
τ ,

of the centered and nonlinearly transformed input vectors. In practice, the eigenvalues
and eigenvectors (λ, v) of C are expressed in terms of the eigenvalues and eigenvectors
(λ̃, α) = (pλ, α) of the matrix K = (Kij) with elements:

Kij = 〈Φ(X̃i), Φ(X̃j)〉H,

= Ker(X̃i, X̃j),

where the inner product 〈·, ·〉H inH is substituted by a feasible kernel Ker(·, ·). The principal
components vk, k = 1, 2, . . . , p are not computed explicitly. Instead, for any point X̃j,
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its nonlinear principal component scores corresponding to Φ are given by the projection of
Φ(X̃j) ∈ H onto the eigenvectors vk ∈ H, using the kernel trick:

〈vk, Φ(X̃j)〉H = λ−1/2
k

p

∑
i=1

αki〈Φ(X̃i), Φ(X̃j)〉H,

= λ−1/2
k

p

∑
i=1

αki Ker(X̃i, X̃j),

for k = 1, . . . , p. Please note that the {λk} are obtained from the ordered eigenvalues of
K: λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃p ≥ 0, with associated eigenvectors α1, . . . , αp, such that
αk = (αk1, αk2, . . . , αkp)

τ .
In any case, the estimated order of the predictors is characterized with a permu-

tation ψp, called the stringing function [1], such that ŝψp(1) < ŝψp(2) < . . . < ŝψp(p).
Also, for each predictor j with rank order ψp(j) and for a fixed T, a regularized position
sjp = [(j− 1)/(p− 1) · T] is computed. The purpose is to normalize the resulting domain
to [0, T], usually for T = 1. It is worth noting that in the original stringing, the order
is estimated by plugging in Equation (1) the Euclidean distances or empirical Pearson
correlations between any two columns X̃i, X̃j ∈ Rn of the matrix X̃:

dij = ‖X̃i − X̃j‖, (Euclidean),

dij =
(
2− 2ρ̂i,j

)2, (Pearson),

where

ρ̂i,j =
1

n− 1

n

∑
k=1

(x̃ki − ¯̃xi)(x̃kj − ¯̃xj)

σ̂iσ̂j
,

¯̃xi =
1
n

n

∑
k=1

x̃ki,

σ̂2
i =

1
n− 1

n

∑
k=1

(x̃ki − ¯̃xi)
2.

To simplify, we write UDS- and ML-stringing to allude the original method and our
proposal, respectively. We also write Isomap-stringing, LLE-stringing, tSNE-stringing, etc.,
to refer to a particular algorithm.

In our applications we take advantage of the packages dimRed and coRanking [25] in R
software [26] to estimate the optimal one-dimensional configuration ŝ1, ŝ2, . . . , ŝp ∈ M ⊂ R.
Please note that we are fixing l = 1, while in most dimensionality reduction methods the
usual is to estimate the best l. Nevertheless, while fixing l = 1 we can still enhance
ML-stringing by tuning the parameters of each algorithm.

In this paper, we estimate the optimal number of neighbors (κmax) that improves
the representation resulting from Isomap, LLE, and Laplacian Eigenmap. In particular,
we choose κmax from a grid of possible κ between 5 and p, according to the optimal Local
Continuity Meta Criterion (LCMC) [27]. Also, we follow the simple-minded version of
Laplacian Eigenmap, meaning ε = ∞ in its Gaussian kernel. Diffusion Maps are set to
compute the coordinates in M after a single time step (t = 1), the parameter ε in its
Gaussian kernel is set to the median distance to the 0.01 · p nearest neighbors, according to
the default specifications from dimRed. The perplexity parameter in tSNE algorithm is set
to 30, dimRed’s default. Roughly speaking, this value is equivalent to neighborhood size.
We perform kPCA only with a Gaussian kernel and a fixed bandwidth σ = 0.1. Whenever
possible, we compare our approach with the resulting configurations from the (UDS-based)
Stringing function available in the R package fdapace [28].
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2.2. Scalar-on-Function Regression

Once the regularized positions {sjp ∈ [0, T] ⊂ R} are estimated, it is possible to
represent the high-dimensional data as functional. Furthermore, it is reasonable to assume
that the measurements are noisy:

xij = Xi(sjp) + εij, (5)

with independent and identically distributed (i.i.d.) errors εij ∼ N(0, σ2). The samples are
assumed to be from the second order stochastic process X = {X(s), s ∈ [0, T]}, continu-
ous in quadratic mean, and with sample paths in the Hilbert space of square integrable
functions L2([0, T]).

In any case (stringing via UDS or ML), we can associate the observed values of
the process {Xi(s), s ∈ [0, T]} with the corresponding response Yi and consider a SOF
generalized linear model. Following the notation from [29], we write:

Yi ∼ EF[µi, θ], (6)

g(µi) = α +
∫
[0,T]

Xi(s)β(s)ds, i = 1, . . . , n;

where EF[µi, θ] denotes an exponential family distribution with mean µi and dispersion
parameter θ. The linear predictor µi = E[Yi] is related to the functional covariate Xi(·)
through a link function g(·). In this paper we focus on Gaussian (continuous response) and
Bernoulli (binary response) distributions, which implies that the link function g(·) is the
identity or the logit transformation:

g(µi) = µi,

g(µi) = log{µi/(1− µi)},

respectively. We also assume that α is a scalar and that the coefficient function β ∈ L2([0, T]).
Of interest are all the parameters of the SOF model in Equation (6) and the estimation

of the process X(·), observed with noise. As the interpretability of the results is bounded
to the shape of both X(·) and β(·), some regularity is needed. Usually, this is achieved by
expanding the coefficient function and the functional predictors in terms of a set of basis
functions. We can identify two main approaches depending on the basis functions [30]:
those using (i) data-driven bases or (ii) a priori fixed bases. Hybrid methods combining
both (i) and (ii) are also possible—e.g., [29,31].

The first approach exploits the Karhunen–Loève expansion of the process X(·) in
terms of its functional principal components (FPC) [2]. Using a small number of such FPC as
basis functions also allows the representation of β(·). Moreover, the functional regression
reduces to a classical regression model in terms of the FPC scores. We noticed that this
approach is more common in the stringing literature, maybe due to the connection of the
authors with the FPC analysis through conditional expectation (PACE) method [32].

The second one is through a basis expansion:

Xi(s) =
KX

∑
k=1

cikBX
k (s), i = 1, . . . , n; (7)

β(s) =

Kβ

∑
k=1

bkBβ
k (s);

where {cik}KX
k=1, {bk}

Kβ

k=1 are parameters to be estimated and {BX
k (s)}

KX
k=1, {Bβ

k (s)}
Kβ

k=1 are the
a-priori-fixed basis functions (often splines, wavelets, or Fourier bases, and not necessarily
the same for the coefficient function and the functional predictors). The numbers KX, Kβ

directly affect the smoothness of the estimations and there are data-driven methods to
select proper values (for example, cross-validation [2]). However, tuning the number of
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basis functions is commonly substituted by adding a roughness penalty (λ), and fixing
Kβ ≤ KX to be a large value. For example, when dealing with a Gaussian distribution (the
outcome is continuous and g(·) is the identity) the estimation of β can be controlled with:

Pλ(α, β) =
n

∑
i=1

{
yi − α−

∫
β(s)Xi(s)dt

}2
+ λ

∫
[(Lβ)(s)]2ds, (8)

where L is a differential operator acting on β(·), usually set to be its second derivative:
(Lβ)(s) = β′′(s). Similarly, a roughness penalty can be added to the estimation of the
{Xi(·)}.

Here, we follow the second approach and expand both the functional predictors and
the coefficient functions using a P-splines formulation [33,34] based on cubic B-splines bases.
We do this in a two-steps process motivated by the penalized functional regression method [29]:
first we estimate the smooth {Xi(·)} and then β(·). In any case, we follow Ruppert’s rule
of thumb [35] and fix Kβ = KX = min(p/4, 40). The roughness penalty of the functional
predictors’ expansion is chosen via generalized cross-validation. The coefficient function
is estimated by fitting the model with the package refund [36] in R, a computationally
efficient algorithm that takes advantage of the connection to mixed models and avoids
cross-validation procedures or manual selection of the penalty.

It is worth noting that the estimated X̂i(·), i = 1, . . . , n, can vary across seriation
algorithms that estimate different orders of the predictors. Roughly speaking, as the
set of basis functions {BX

k (s)}
KX
k=1 is fixed a priori, permuting the observation nodes (the

sjp, j = 1, . . . , p) can change the estimated coefficients {ĉik} of the basis expansion in
Equation (7). Moreover, β̂(·) can also vary as it is estimated through Equation (8), that is,
it depends on the {X̂i(·)}. However, the smoothness introduced by the finite basis ex-
pansion and/or the penalization can result in similar estimated processes and coefficient
functions, even for seriation algorithms with different outputs. An extreme example is that
of (nearly) constant processes: no matter the order of the observed nodes, the estimated
{X̂i(·)} will be essentially the same, with no impact on the estimation of β(·).

Finally, we remark that stringing can be applied to any high-dimensional data, even
when the underlying process X(·) estimated by the method does not have a physical
interpretation. The reader may have noticed that most of the applications reviewed in the
Introduction deal with genetic data (SNPs or gene expression arrays), and in such cases,
there is no physical interpretation of the estimated smooth process that generates the data,
nor is it needed. Stringing simply maps the high-dimensional vectors into L2([0, T]) to get
a visual representation of the data and to study its characteristics from an FDA perspective.
The following sections study the advantages of our proposal and illustrate its versatility in
a real-data application.

2.3. Simulation Studies

Here, we present two simulation studies comparing the performance of UDS- and
ML-stringing in terms of the seriation quality and the accuracy of the fitted SOF regression
models. We generate data from a noisy stochastic process, using as baseline the schemes
from [3,29]. We differentiate these studies according to the nature of the response.

In Simulation 1 (continuous response), we generate the functional predictors:

Xi(t) = Z · t + U + η(t) + ε(t); t ∈ [0, 1]; i = 1, . . . , n; (9)

where the uppercase letters Z and U represent random variables distributed as Z ∼ N(1, 0.22)
and U ∼ U (0, 5), respectively. The function η(t) introduces a noisy component to the func-
tional regressor; it is generated as η(t) ∼ N(0, 1), for every fixed t ∈ [0, 1]. The random
curves ε(t) are generated as:

ε(t) =
10

∑
k=1

1
k
(Z1k sin(2πtk) + Z2k cos(2πtk)),
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where Z1k, Z2k ∼ N(0, 1).
Analogously, when the response is binary (Simulation 2) we generate the functional

predictors:

Xi(t) = Z · t + U(1) + η(t) + ε(t), i is odd;

Xi(t) = Z · t + U(2) + η(t) + ε(t), i is even;

where t ∈ [0, 1] and i = 1, . . . , n. All the terms are generated as in Equation (9), except for
U(1) ∼ U (0, 5) and U(2) ∼ U (−5, 0).

We consider two different coefficient functions β1(·), β2(·), defined over the interval [0, 1]:

β1(t) = sin(2πt), β2(t) = − f1(t) + 3 f2(t) + f3(t),

where f1, f2, and f3 are normal density functions defined by the (µ, σ2)-duplets: (0.2, 0.032),
(0.5, 0.042), and (0.75, 0.052), respectively. Figure 1 depicts both coefficient functions.

Figure 1. Simulations 1–2: True coefficient functions β1(·) and β2(·).

The continuous responses (Simulation 1) are computed through the integration of:

yil =
∫
[0,1]

Xi(t)βl(t)dt + z; i = 1, . . . , n;

for z ∼ N(0, 0.42) and subscript l = 1, 2 indicating which coefficient function is used.
The binary responses (Simulation 2) are computed according to the functional logistic
regression model, i.e.:

yil ∼ Ber(πil),

where πil , i = 1, . . . , n, defines the probability of getting a response 1, given the functional data:

πil = P(Y = 1|Xi(t)) =
exp

{
α +

∫ 1
0 Xi(t) · βl(t)dt

}
1 + exp

{
α +

∫ 1
0 Xi(t) · βl(t)dt

} ; l = 1, 2; (10)

with the scalar α set to 0. Figure 2 represents three of the generated functional predictors
and their associated responses (continuous or binary) for β2(·).
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Figure 2. Simulations 1–2: A sample of 3 functional predictors and their associated responses (left:
continuous, right: binary) when β2(·) is used. Dashed lines illustrate the added noise (solid: no
measurement error).

In practice each curve is evaluated over a fine grid of equally spaced knots {tj} ⊂ [0, 1],
j = 1, . . . , p. Therefore, the realizations {Xi(tj)}, where i = 1, . . . , n and j = 1, . . . , p, can be
arranged in a design matrix Xn×p. Then, following the hypotheses of the stringing method-
ology, we randomly permute its columns to obtain a new matrix X̃n×p. This procedure
mimics the effect of observing the functional samples with an unknown random order
of the nodes. Thus, the goals are to retrieve a good estimation of the true order of the
columns, achieve low prediction errors, and estimate coefficient functions closer to the true
β1(·), β2(·). We evaluate the quality of the stringed order by computing the relative order
error (ROE), introduced by Chen et al. [1]:

ROE =
∑

p
j=1 |o

S
j − oj|

E
(

∑
p
j=1 |oR

j − oj|
) =

∑
p
j=1 |o

S
j − oj|

(p− 1)(p + 1)
3

,

where oj denotes the true order for each predictor indexed by j = 1, . . . , p; oR
j the or-

der of predictor j after the random permutation; and oS
j the order induced by stringing.

The quality of the predictions is evaluated through the test mean square error (MSE) and area
under the receiver operating curve (AUC) for continuous and binary responses, respectively.
The suitability of the estimated β̂1(·), β̂2(·) is measured with the integrated mean square
error (IMSE):

IMSE(β̂l) =

(∫ 1

0

(
βl(t)− β̂l(t)

)2dt
)1/2

, l = 1, 2.

We present the results for 200 simulated data sets that combine three different n/p
ratios (50/101, 100/101, 1000/101). UDS-stringing uses Pearson correlation and Euclidean
distance. ML-stringing deploys Isomap, LLE, Laplacian Eigenmaps, Diffusion Maps, kPCA,
and tSNE algorithms. We also analyze the effect of taking a random order of the compo-
nents. The sample is partitioned into 70/30% subsets for training and testing purposes.

2.4. Case Study: Prognosis of Colon Cancer from Gene Expression Arrays

We apply stringing to a study comparing gene expressions in colon tissues of 40 cancer
patients with 22 controls [37]. The raw data is freely available in the package colonCA [38],
and can be arranged in a 62× 2000 matrix X̃ recording the gene expression data and a
binary vector Y of length 62, recording the sample status (we write Y = 1 to indicate tumor,
Y = 0 normal). Our purpose is to illustrate the versatility of stringing (particularly, via ML)
with a real high-dimensional dataset that has been widely approached from a multivariate
analysis perspective.

Let us assume that a feasible smooth stochastic process can explain the (scrambled
and noisy) observed values. The task is to estimate an order of the elements of X̃ (and
associated positions ŝ ⊂ R), revealing smooth transitions between gene expression levels.
Therefore, we apply stringing (both the UDS and the ML approaches) and estimate the
functional predictors corresponding to the observed gene expressions of the patients. Next,
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we fit a logistic SOF regression as described in Section 2.2. We scale the data (as usual in
machine learning), to obtain zero-mean columns with unit standard deviation. This step
also facilitates the visual representation of the high-dimensional data.

Recall our interest in: (1) the visual representation of gene expressions achieved by the
estimated functional predictors Xi(·); (2) the interpretability of the estimated coefficient
function β̂(·); and (3) the accuracy of the predictions (cancer/control patients) achieved by
the logistic SOF regression.

The first two aspects are strictly related to each other. In terms of interpretability,
we desire smoother transitions between similar gene expression levels and an easy-to-read
β̂(·) (smooth, a few wiggles and sign changes). Coefficient functions act as weights of
the functional predictors. Nodes s∗ ⊂ R such that |β̂(s∗)| ≈ 0 indicate areas with lower
impact on the outcome, while |β̂(s∗)| � 0 indicates the areas that are most predictive of
the outcome. In particular, estimating a β̂(·) with fewer wiggles and sign changes allows
an easy interpretation of the logistic SOF model in terms of odds ratios (OR). Following [39],
we let li be the logit transformation of a specific functional observation (one of our smooth
estimated processes) Xi(s), where i ∈ {1, . . . , 62} and s ∈ [0, 1]. It represents the logarithm
of the odds of response Y = 1:

li = ln
[

πi
1− πi

]
= ln

[
P(Y = 1|Xi(s))
P(Y = 0|Xi(s))

]
,

where πi is defined as in Equation (10). Now, let l∗i be the logit transformation of the func-
tional observation increased by a positive constant A in a specific interval [s0, s0+h] ⊆ [0, 1].
Then, it can be shown that the expression:

exp(l∗i − li) = exp
(

A
∫ s0+h

s0

β(s)ds
)

, (11)

is an OR, so that the odds of response Y = 1 is multiplied by the right-hand side of
Equation (11) when the value of Xi(s) is constantly increased in A units in the fixed interval
[s0, s0+h].

For the third aspect, we randomly split the sample into 70/30% subsets for training
and testing purposes. By doing this a hundred times we obtain the distribution of the
AUC values, similar to the procedure from Simulation 2. We also study the effect of an a
priori reduction of the dimension (p), as in the FEM paper [7]. This is done by selecting
the top genes with the highest Welch’s t-statistic (a similar preselection of features is found
in [40,41]). Thus, three different design matrices of sizes 62× 500, 62× 1000, and 62× 2000
(all the predictors) are considered.

The results motivate a second a priori reduction of p: using as input features the ones
selected by a “rough” lasso. We take advantage of the package glment [42] and feed lasso
with a small penalty λlasso (small enough to select as many features as possible), and all the
available data, without partitioning it. This results in p = 30 relevant genes, which makes
X̃ a 62× 30 design matrix. We note that other a posteriori approaches are also possible, for
example, [7,8] iteratively remove the nodes with a minor effect on the model. In those
two papers, it is shown that reducing the number of stringed predictors improves the
performance of functional models.

3. Results
3.1. Simulation 1: Continuous Response

Figure 3 compares the ROEs under the three n/p ratios. Each boxplot represents the
distribution of values for a different seriation algorithm. The effect of taking a random order
of the components is also represented (coded as none) and, as expected, the corresponding
ROEs are close to 1 with very low variability (i.e., it is very difficult to guess the true order
at random). In general, ML-stringing via LLE, Isomap, and Laplacian Eigenmaps are the
most accurate alternatives to retrieve the true order of the nodes. These three methods
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present the lowest median errors and quartiles for every n/p ratio. It is worth noting that
the lower the n/p, the higher the variability, no matter the seriation algorithm. This is
evident from the larger Interquartile Ranges (IQR, the difference between third and first
quartiles: Q3− Q1) and the minimum and maximum values covering most of the [0, 1]
interval when n = 50 or 100. If n/p is increased, for example to 1000/101, we observe that
the variability is reduced drastically. The exception is tSNE-stringing, which shows similar
behavior for every n/p ratio: median ROE over 0.75 but with a very wide range of values.
Diffusion Maps and UDS based on Euclidean distance show similar results (median ROEs
around 0.5), being the second-best group of seriation algorithms. tSNE and UDS based on
correlations also show similar behavior in terms of median errors, Q1, and Q3, although
tSNE can achieve smaller ROEs. It is also interesting the behavior of kPCA, its median ROE
increases with a higher n/p, particularly, when n = 1000 is equivalent to take a random
order (option none). On the other hand, ML-stringing based on LLE or Isomap results in
almost perfect rearrangements when n = 1000.

We remark that the estimated ROEs are independent of the models and the true
coefficient functions. These results only take into account the matrix of observations X̃n×p.
Also, they support some of our preliminary results from a simpler simulation study [43]
in which our method (based on LLE and Isomap algorithms) exhibited the lowest ROEs
while stringing scrambled realizations of a noisy Ornstein-Uhlenbeck process.

Figure 3. Simulation 1: ROE values for different n/p ratios. The boxplots represent the effect of the
random permutation (none); stringing via UDS (correlation, euclidean); and ML (LLE, Isomap,
LaplacianEig, DiffMaps, tSNE, kPCA).

Next, we analyze the effect on the functional regression models. Table 1 (top) summa-
rizes the median MSEs for the six combinations of n/p ratios and βl(·), l = 1, 2. Median
absolute deviations (MAD, measuring variability) are also reported in brackets. Bold values
correspond to the best algorithm (the lowest median from the same column, then deviations
if there are ties). In terms of MSEs (accuracy of the predicted outcomes) ML-stringing shows
the best performance: tSNE, LLE, Laplacian Eigenmaps, and Isomap (in that order) results
in the lowest median MSEs and MADs across n/p ratios. The worst results are obtained
when stringing is omitted (option none). Once more we observe an interesting behavior of
the tSNE algorithm: the models based on its output generally shows the highest accuracy
(lowest MSEs and MADs), while the ROEs in Figure 3 does not necessarily show the best
performance. UDS-stringing based on correlations works better than the Euclidean-based
version and it is the fifth-best algorithm in terms of median MSEs and variability. Also,
it is as competitive as Isomap when n = 50. Diffusion Maps have the worst performance
for lower n/p ratios, especially when β2(·) is used. The kPCA approach seems to work
better for lower n/p ratios. When n = 1000 the variability is substantially reduced and is
noticeable the superiority of the top four algorithms (tSNE, LLE, Laplacian Eigenmaps,
and Isomap). Moreover, the rest of the algorithms show a performance similar to that of
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a random order; for example, kPCA if β1(·) is used, or UDS based on Euclidean distance
and Diffusion Maps if the model is defined by β2(·).

Table 1 (bottom) summarizes the median IMSEs and the corresponding MADs.
The advantages of our proposal are also evident in the resulting IMSE(β̂l): ML-stringing
via LLE, Laplacian Eigenmaps, Isomap, and tSNE (in that order) shows the lowest median
errors and variability. Moreover, these errors are generally reduced when n increases.
Surprisingly, we observe the opposite behavior for UDS-stringing and the ML version
based on Diffusion Maps and kPCA when β2(·) defines the functional model. These results
indicate that the most competitive algorithms in terms of prediction accuracy are also the
most effective for estimating the true coefficient functions.

Table 1. Simulation 1: Median MSE and IMSE(β̂l), l = 1, 2. Median absolute deviations are also reported (in brackets).
Values in bold represent the lowest median (and lowest deviation if there is a tie) within each column.

β1(·) β2(·)
Algorithm
\n 50 100 1000 50 100 1000

MSE

correlation 0.22 (0.1) 0.2 (0.05) 0.19 (0.03) 2.08 (1.36) 1.81 (1.12) 1.14 (0.38)
DiffMaps 0.26 (0.11) 0.22 (0.07) 0.18 (0.02) 4.15 (4.11) 4.58 (4.03) 2.04 (0.86)
euclidean 0.24 (0.11) 0.21 (0.06) 0.18 (0.03) 2.89 (2.47) 3.07 (2.61) 2.19 (0.86)
Isomap 0.22 (0.1) 0.19 (0.05) 0.17 (0.01) 2.88 (2.64) 1.36 (1.06) 0.69 (0.06)
kPCA 0.2 (0.08) 0.21 (0.06) 0.21 (0.02) 2.52 (1.74) 2.46 (1.23) 1.91 (0.5)

LaplacianEig 0.2 (0.08) 0.18 (0.04) 0.17 (0.01) 1.76 (1.47) 0.98 (0.39) 0.72 (0.05)
LLE 0.2 (0.08) 0.18 (0.04) 0.17 (0.01) 1.38 (0.96) 0.91 (0.31) 0.69 (0.06)
tSNE 0.18 (0.06) 0.17 (0.04) 0.17 (0.01) 0.93 (0.37) 0.84 (0.23) 0.72 (0.07)
none 0.31 (0.12) 0.28 (0.08) 0.21 (0.02) 7.42 (3.84) 5.62 (2.59) 2.01 (0.52)

IMSE(β̂l)

correlation 1 (0.66) 1.04 (0.79) 3.91 (5.12) 11.83 (4.28) 13.35 (5.55) 1.2 ×103 (1.8
×103)

DiffMaps 0.64 (0.26) 0.53 (0.12) 0.49 (0.25) 9.98 (2.72) 13.33 (6.87) 1.0 ×104 (1.4
×104)

euclidean 0.75 (0.44) 0.65 (0.29) 0.49 (0.27) 11.11 (3.72) 14.43 (8.37) 1.4 ×104 (1.8
×104)

Isomap 0.55 (0.14) 0.52 (0.08) 0.12 (0.06) 9.17 (2.4) 8.5 (4.8) 4.47 (0.21)

kPCA 0.8 (0.45) 1.36 (0.85) 12.35 (14.86) 13.88 (5.08) 17.77 (9.86) 1.1 ×104 (1.3
×104)

LaplacianEig 0.52 (0.1) 0.52 (0.05) 0.16 (0.07) 8.46 (2.58) 5.82 (0.84) 4.71 (0.22)
LLE 0.55 (0.12) 0.52 (0.07) 0.12 (0.06) 7.99 (2.91) 5.61 (0.7) 4.45 (0.19)
tSNE 0.78 (0.29) 0.77 (0.29) 0.64 (0.4) 9.53 (2.78) 9.52 (3.25) 10.75 (2.85)

none 2.17 (0.99) 2.57 (1.12) 23.82 (29.42) 22.89 (8.52) 28.79 (16.84) 8.4 ×103 (1.1
×104)

Figure 4 depicts the (top 100 in terms of IMSEs for n/p = 1000/101) estimated
coefficient functions β̂1(·) as gray-dashed lines, compared to the true β1(·) in bold red.
ML-stringing based on Isomap, LLE, and Laplacian Eigenmaps gives the best estimates:
they all resemble the true function with minor differences. Diffusion Maps and UDS
based on Euclidean distance also produce acceptable estimates, even though some of the
curves are straight lines. tSNE does better in this sense with curves closer in shape to β1(·).
The poorest estimates are obtained for kPCA and UDS based on correlations, with curves
that vary in shape and magnitude, similar to taking a random order. Figure 5 shows the
same plots for β2(·). In this case, all methods struggle to reproduce completely the shape
of β2(·). Only Isomap, LLE, and Laplacian Eigenmaps result in reasonable estimates. tSNE
also shows fair estimations, not very accurate in shape but bounded to the lower and
upper limits of β2(s), s ∈ [0, 1], which we believe justifies the high ROEs and small MSEs.
However, the estimated {β̂2(·)} for UDS-stringing and ML based on Diffusion Maps and
kPCA are as extreme as the ones obtained with the random order.
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Figure 4. Simulation 1: Coefficient function β1(·) (red-bold line) and estimations after stringing (gray-
dashed lines). The panels compare UDS-stringing (correlation, euclidean) with ML-stringing
(LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA). The ratio n/p = 1000/101 is the same for all
the plots.

Figure 5. Simulation 1: Coefficient function β2(·) (red-bold line) and estimations after stringing (gray-
dashed lines). The panels compare UDS-stringing (correlation, euclidean) with ML-stringing
(LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA). The ratio n/p = 1000/101 is the same for all
the plots.

3.2. Simulation 2: Binary Response

The estimated ROEs show no differences to the ones obtained in Simulation 1 (Figure 3)
and as the same results hold they are not reported again. Figures 6 and 7 depict the distri-
bution of AUC values when using β1(·) and β2(·), respectively. For β1(·), we observe that
the values are close to the 0.5 horizontal (meaning a random discrimination), while those
for β2(·) are always close to 1 (almost perfect discrimination). This is expected as the
generated {πi1}n

i=1 tend to be centered around 0.5, while the distribution of the {πi2}n
i=1 is

markedly bimodal.
Figure 6 shows that using ML-stringing via Laplacian Eigenmaps, LLE, Isomap,

and tSNE imply higher median AUCs in the models determined by β1(·). Diffusion
Maps and UDS based on Euclidean distance are also feasible alternatives when n = 1000.
Avoiding stringing (option none) returns the lowest median AUCs for every n/p ratio and,
when n = 1000, is as competitive as kPCA and UDS based on correlations. All methods
show an important improvement in terms of variability when n increases, and it is in this
case when the differences across algorithms are more noticeable. Figure 7 shows similar
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results, although only when n = 1000 the differences between methods are visible. Also,
the IQRs are substantially smaller when β2(·) defines the model, despite the higher number
of outliers.

Figure 6. Simulation 2: Distribution of AUC values for β1(·) and the three n/p ratios. The boxplots
compare the performance of a random permutation (none); UDS-stringing (correlation, euclidean);
and ML-stringing (LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA).

Figure 7. Simulation 2: Distribution of AUC values for β2(·) and the three n/p ratios. The boxplots
compare the performance of a random permutation (none); UDS-stringing (correlation, euclidean);
and ML-stringing (LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA).

Figure 8 presents the boxplots of IMSE(β1). In this case, it is more difficult to compare
the algorithms (especially for lower n/p ratios) due to the number of outliers. Nevertheless,
the random order (option none), kPCA, and UDS based on correlations show the worst
results. Also, when n is increased we observe that ML-stringing via Laplacian Eigenmaps,
LLE, and Isomap outperform the rest of the algorithms. Figure 9 shows that it is even harder
to compare the IMSE(β2) across methods, due to the number and magnitude of outlying
integrated errors. Only when n = 1000 we can state that ML-stringing via Laplacian
Eigenmaps, tSNE, LLE, and Isomap have the best performance.
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Figure 8. Simulation 2: Distribution of IMSE(β1) values for the three n/p ratios. The boxplots
compare the performance of a random permutation (none); UDS-stringing (correlation, euclidean);
and ML-stringing (LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA).

Figure 9. Simulation 2: Distribution of IMSE(β2) values for the three n/p ratios. The boxplots
compare the performance of a random permutation (none); UDS-stringing (correlation, euclidean);
and ML-stringing (LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA).

3.3. Case Study: Prognosis of Colon Cancer from Gene Expression Arrays

Figure 10 represents a sample of 3 (out of 62) estimated functional predictors (solid
lines) and corresponding stringed gene expressions (dashed lines). In general, we observe
smooth transitions between gene expressions (the nodes of the functional data).

Figure 11 depicts the estimated coefficient functions with 95% confidence bands.
We observe that ML-stringing based on LLE and Isomap results in smoother estimations,
with fewer wiggles and sign changes. This allows an easy interpretation of the models in
terms of ORs. In this case, Isomap and LLE algorithms use κmax = 5 and 50 neighbors,
respectively.

Therefore, we divide the interval [0, 1] into three subintervals (Ii ⊂ [0, 1], i = 1, 2, 3)
delimited by the sign changes of the coefficients functions estimated with LLE/Isomap-
stringing. Next, we compute the ORs in each subinterval using Equation (11) and fixing
A = 1, see Table 2. On the one hand, LLE introduces an order such that in (0.21, 0.77)
the odds of tumor are multiplied by 12.82 when the value of the functional observation is
constantly increased in A = 1 unit. On the other hand, Isomap implies that the odds of
tumor in [0, 0.34) and (0.85, 1] are multiplied by 3.86 and 1.36, respectively when the value
of the functional observation is increased in one unit. We remark that this interpretation
is considering the set of genes that are mapped to each of the Ii by stringing, and that the
expression levels are scaled.
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Figure 10. Case study: A sample of 3 functional predictors and associated classes (red: Y = 0,
blue: Y = 1). The stringed gene expressions are represented by dashed lines. The solid curves are the
smooth functional predictors. The panels compare UDS-stringing (correlation, euclidean) with
ML-stringing (LLE, Isomap, LaplacianEig, DiffMaps, tSNE, kPCA).

Figure 11. Case study: Estimated coefficient functions under several seriation algorithms.
The panels compare the effect of UDS-stringing (correlation, euclidean); ML-stringing (LLE,
Isomap, LaplacianEig, DiffMaps, tSNE, kPCA); and omitting the rearrangement of the predic-
tors (none).

Table 2. Case study: ORs computed in three subintervals of Ii ⊂ [0, 1], i = 1, 2, 3, according to the
sign changes of the coefficients functions estimated with Isomap/LLE-stringing.

Isomap LLE

i Ii ORi Ii ORi

1 [0, 0.34) 3.86 [0, 0.21) 0.25
2 (0.34, 0.85) 0.36 (0.21, 0.77) 12.82
3 (0.85, 1] 1.36 (0.77, 1] 0.31

Figure 12 presents the boxplots of the AUC values for stringing (under several se-
riation algorithms). Each panel indicates a different number of features to be stringed.
When p = 2000 (no a priori reduction) all the seriation algorithms exhibit a comparable
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performance, being ML-stringing via tSNE and LLE algorithms the best alternatives (higher
medians, less variability, smaller IQR, and higher Q1, Q3). Doing the a priori reduction
(p ∈ {500, 1000}) by Welch’s t-test favors ML-stringing compared to the UDS-based ver-
sion. However, the reader may have noticed that the overall performance decreases.
These results motivate the second a priori reduction of p based on a rough-lasso selection
(see Section 2.4). In this case, we can reduce X̃ to a 62× 30 matrix. Interestingly, changing
the preselection of features improves the performance of all the seriation algorithms (see
the panel p = 30), but with a clear advantage of our proposal based on ML. The exception
is the tSNE algorithm as a consequence of setting a smaller perplexity parameter due
to the reduction of p. Despite this, the overall improvement is consistent with our sim-
ulation studies in which higher n/p ratios resulted in better predictions, particularly,
with smaller variability.

Figure 12. Case study: AUC values for the classification of colon tissues. Each panel takes into
account a different number of starting features, according to the top genes from a Welch’s t-test
(p ∈ {500, 1000, 2000}) or the rough-lasso selection (p = 30). The boxplots represent the distribution
of AUCs for 100 random splits of the sample and different stringing methods: random permutation
(none); UDS-stringing (correlation, euclidean); and ML-stringing (LLE, Isomap, LaplacianEig,
DiffMaps, tSNE, kPCA).

4. Discussion

In this article we discussed stringing, a class of methods that links high-dimensional
data to the field of FDA according to [1]. During our research, we noticed the connection
with seriation methods, for one-mode two-way data. Also, we realized that stringing based
on UDS rearranged data according to linear relationships between predictors. Motivated
by these findings we introduced ML-stringing, a version of the method that takes into
account a more complex structure of the data, like nonlinearities. Our study gave insights
into the use of different seriation algorithms, the effect on the functional representation of
general high-dimensional data, and the estimation of SOF regression models.

In simulation studies (data are realizations of a smooth stochastic process observed
with a random permutation of the nodes) we observed that ML-stringing achieved the
best accuracy: lower MSEs for continuous response models or higher AUCs in the case
of binary outcomes. In particular, LLE, Isomap, Laplacian Eigenmaps, and tSNE out-
performed all the other seriation algorithms. For these mappings, we also noted that
the estimated coefficient functions were closer to the true functions generating the data,
which is translated into lower IMSEs. However, the differences were more difficult to
observe in the classification problem, due to the number and magnitude of outliers. In
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terms of the quality of the estimated order, we observed the smallest ROEs for LLE, Isomap,
and Laplacian Eigenmaps.

A singular finding was that higher ROEs does not necessarily imply a poorer pre-
diction, for example, tSNE showed a highly variable ROE with a median value around
0.75 and still produced the best accuracy in Simulation 1. In this direction, it would be
interesting (and challenging) to evaluate from a theoretical perspective the effect of each
particular seriation algorithm in functional regression models.

The real data illustration, regarding the prognosis of colon cancer from gene expression
arrays, showed that stringing is a feasible alternative to represent and model general high-
dimensional data. We observed that ML-stringing provided more accurate models (higher
AUC values). In particular, when the number of features was reduced a priori (a practice
commonly encountered in the literature), our method was more consistent than the UDS-
based approach. Also, the estimated coefficient functions for the Isomap/LLE-stringed
data had lower variability and allowed an interpretation in terms of ORs.

It is worth noting that Isomap and LLE algorithms are very easy to tune: we just
need to compute the embeddings for several numbers of neighbors (κ) and then find the
optimal κmax using a quality criterion. We believe this is an advantage over the rest of ML
approaches as it avoids tuning several parameters or the need for an a priori knowledge
of the characteristics of the data to pick the proper kernel. With this in mind, all the ML
algorithms discussed in this paper could be further tuned to improve their outputs, but it
would be counterproductive, especially with simpler and powerful alternatives at hand.

Further research should be undertaken to investigate the impact of stringing via ML
on functional Cox and FOS regressions, as considered in the literature. Another “intriguing
possibility” mentioned by Chen et al. [1] is to consider a higher-dimensional target space Rl ,
where 1 < l � p. This means that instead of ordering the predictors in R we could assign
them to points in R2 or R3 and consider the data as realizations of a stochastic process
with more than one argument. Taking into account our findings, we believe ML could be a
feasible alternative to stringing in such scenarios.

We remark that stringing does not take into consideration the outcome Y. This is clear
from the fact that both UDS and ML are unsupervised learning techniques. We consider this
a key strength for further applications, not necessarily related to regression. Nevertheless,
the link we have established with seriation offers more possibilities to extend stringing.
In this context, two-mode two-way methods would aim to reorder both the columns
and rows of the design matrix (X̃), revealing clusters of relevant features and subjects
(particularly interesting in classification problems). In any case, the richness of FDA
techniques, seriation algorithms, and the increasing availability of high-dimensional data
make stringing a promising research topic.
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