

Article An Improved Nordhaus–Gaddum-Type Theorem for 2-Rainbow Independent Domination Number

Enqiang Zhu 匝

Abstract: For a graph *G*, its *k*-rainbow independent domination number, written as $\gamma_{rik}(G)$, is defined as the cardinality of a minimum set consisting of *k* vertex-disjoint independent sets V_1, V_2, \ldots, V_k such that every vertex in $V_0 = V(G) \setminus (\bigcup_{i=1}^k V_i)$ has a neighbor in V_i for all $i \in \{1, 2, \ldots, k\}$. This domination invariant was proposed by Kraner Šumenjak, Rall and Tepeh (in Applied Mathematics and Computation 333(15), 2018: 353–361), which aims to compute the independent domination number of $G \Box K_k$ (the generalized prism) via studying the problem of integer labeling on *G*. They proved a Nordhaus–Gaddum-type theorem: $5 \leq \gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \leq n + 3$ for any *n*-order graph *G* with $n \geq 3$, in which \overline{G} denotes the complement of *G*. This work improves their result and shows that if $G \ncong C_5$, then $5 \leq \gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \leq n + 2$.

Keywords: k-rainbow independent domination; Nordhaus-Gaddum; bounds

1. Introduction

Throughout the paper, only simple graphs are considered. We refer to [1] for undefined notations. For a graph *G*, the *edge set* and *vertex set* of *G* are denoted by E(G) and V(G), respectively. For any $v_1, v_2 \in V(G)$, they are *adjacent* in *G* if v_1 and v_2 are the endpoints of an identical edge of *G*. A vertex $w \in V(G)$ is *adjacent* to a set $W \subseteq V(G)$ in *G* if *W* contains a vertex w' s.t. $ww' \in E(G)$. $N_G(w) = \{v | vw \in E(G)\}$ is called the *open neighborhood* of w and $N_G[w] = N_G(w) \cup \{w\}$ is the *closed neighborhood* of w. $d_G(w) = |N_G(w)|$ denotes the *degree* of w in *G* and $\Delta(G) = \max\{d_G(w) | w \in V(G)\}$. A vertex that has degree ℓ and at least ℓ is called an ℓ -vertex and ℓ^+ -vertex, respectively. For any $W \subseteq V(G)$, let $N_G(W) = \bigcup_{w \in W} N_G(w) \setminus W$ and $N_G[W] = N_G(W) \cup W$. We say that *W dominates* a set W' if $W' \subseteq N_G[W]$. Moreover, we use the notation G - W to denote the subgraph of *G* by deleting vertices in *W* and their incident edges in *G*, and $G[W] = G - (V(G) \setminus W)$ the subgraph of *G* induced by *W*. The ℓ -order complete graph and the ℓ -length cycle are denoted by K_ℓ and C_ℓ , respectively. As usual, for any two natural numbers p, q with p < q, [p, q] represents $\{p, p + 1, \ldots, q\}$.

Given a graph *G* and a subset $W \subseteq V(G)$, we call *W* a *dominating set* (abbreviated as DS) of *G* if *W* dominates V(G). An *independent set* (abbreviated as IS) of a graph is a set of vertices, no two of which are adjacent in the graph. If a DS *W* of *G* is an IS, then *W* is called an *independent dominating set* (IDS for short) of *G*. The *independent domination number* of *G*, denoted by i(G), is the cardinality of a minimum IDS of *G*. Domination and independent domination in graphs have always attracted extensive attention [2,3] and many variants of domination [4] have been introduced increasingly, for the applications in diverse fields, such as electrical networks, computational biology, and land surveying. Recent studies on these variations include (total) roman domination [5,6], strong roman domination [7], semitotal domination [8,9], relating domination [10], just to name a few.

Let $G \Box H$ be the Cartesian product of *G* and *H*. In order to reduce the problem of determining $i(G \Box K_k)$ into the problem of integer labeling on *G*, Kraner Šumenjak et al. [11] proposed a new variation of domination, called *k*-rainbow independent dominating function of a graph *G* (*k*RiDF for short), which is a function *f* from V(G) to [0, k], s.t., for each

Citation: Zhu, E. An Improved Nordhaus–Gaddum-Type Theorem for 2-Rainbow Independent Domination Number. *Mathematics* 2021, 9, 402. https://doi.org/ 10.3390/math9040402

Academic Editor: Ismael Gonzalez Yero

Received: 20 January 2021 Accepted: 16 February 2021 Published: 18 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

 $i \in [1, k]$, V_i is an IS and every vertex v with f(v) = 0 is adjacent to a vertex u with f(u) = i. Alternatively, a *k*RiDF f of G may be viewed as an ordered partition (V_0, V_1, \ldots, V_k) such that for each $i \in [1, k]$, V_i is an IS and $N_G(x) \cap V_i \neq \emptyset$ for every $x \in V_0$, where V_j , $j \in [0, k]$, denotes the set of vertices assigned value j under f. The *weight* w(f) of a *k*RiDF f is defined as the number of nonzero vertices, i.e., $w(f) = |V(G)| - |V_0|$. The *k*-rainbow independent domination number of G, denoted by $\gamma_{\text{rik}}(G)$, is the minimum weight of a *k*RiDF of G. From the definition, we have $\gamma_{ri1}(G) = i(G)$. A $\gamma_{rik}(G)$ -function represents a *k*RiDF of G which has weight $\gamma_{rik}(G)$.

Let *G* be a graph and *H* a subgraph of *G*. Suppose that *g* is a *k*RiDF of *H*. We say that a *k*RiDF *f* of *G* is *extended* from *g* if f(v) = g(v) for every $v \in V(H)$. To prove that a graph *G* has a *k*RiDF, we will first find a *k*'RiDF *g* of a subgraph *G*' of *G*, $k' \leq k$, and then extend *g* to a *k*RiDF *f* of *G*. By using this approach, we describe the structure characterization of graphs *G* with $\gamma_{ri2}(G) = |V(G)| - 1$ (Section 2), and then obtain an improved Nordhaus–Gaddum-type theorem with regard to γ_{ri2} (Section 3).

2. Structure Characterization of Graphs *G* s.t., $\gamma_{ri2}(G) = |V(G)| - 1$

To get the improved Nordhaus–Gaddum-type theorem in terms of γ_{ri2} , we have to characterize the graphs *G* s.t., $\gamma_{ri2}(G) = |V(G)| - 1$. For this, we need the following special graphs.

A star S_n , $n \ge 1$, is a complete bipartite graph G[X, Y] with |X|=1 and |Y| = n, where the vertex in X is called the *center* of S_n and the vertices in Y are *leaves* of S_n . Let S_n^+ be the graph obtained from S_n by adding a single edge connecting an arbitrary pair of leaves of S_n [11]. A *double star* [12] is defined as the union of two vertex-disjoint stars with an edge connecting their centers. Specifically, for two integers n, m such that $n \ge m \ge 0$ the *double star*, denoted by S(n,m), is the graph with vertex set $\{u_0, u_1, \ldots, u_n, v_0, v_1, \ldots, v_m\}$ and edge set $\{u_0v_0, u_0u_i, v_0v_j | i \in [1, n], j \in [1, m]\}$, where u_0v_0 is called the *bridge* of S(n, m)and the subgraphs induced by $\{u_i | i \in [0, n]\}$ and $\{v_j | j \in [0, m]\}$ are called the *n*-*star at* u_0 and *m*-*star at* v_0 , respectively. Observe that S(n, m) is defined on the premise of $n \ge m$. For mathematical convenience, we denote a double star S(n, m) as a vertex-sequence $v_m v_{m-1} \ldots v_0 u_0 u_1 \ldots u_n$.

We start with a known result, which characterizes graphs *G* with $\gamma_{ri2}(G) = n$. For a fixed graph *G*, its *complement* is written as \overline{G} .

Lemma 1 ([11]). Let G be a graph of order n. Then, $\gamma_{ri2}(G) = n$ iff G only contains components isomorphic to K_1 or K_2 . And, if $\gamma_{ri2}(G) = n$, then $\gamma_{ri2}(\overline{G}) = 2$.

The following conclusion is simple but will be used throughout this paper.

Lemma 2. Let *H* be a subgraph of a fixed graph *G* and $g = (V_0, V_1, ..., V_k)$ be a $\gamma_{rik}(H)$ -function. Then *g* can be extended to a kRiDF of *G* with weight at most $|V(G)| - |V_0|$.

Proof. Let $V(G) \setminus V(H) = \{x_1, ..., x_\ell\}$. We will deal with these vertices in the order of $x_1, ..., x_\ell$ by the following rule: for each $x_i, i \in [1, \ell]$, let $j \in [1, k]$ be the smallest one such that x_i is not adjacent to V_j in G. If such j does not exist, we update V_0 by $V_0 \cup \{x_i\}$; otherwise we update V_j by $V_j \cup \{x_i\}$. After the last one, i.e., x_ℓ is handled, we obtain a *k*RiDF of G. Obviously, the weight of the resulting *k*RiDF of G is not more than $|V(G)| - |V_0|$. \Box

The following theorem clarifies the structure of connected graphs *G* with $\gamma_{ri2}(G) = |V(G)| - 1$.

Theorem 1. Let G be a connected graph with order $n \ge 3$. Then, $\gamma_{ri2}(G) = n - 1$ iff G is isomorphic to one among S_{n-1} , S_{n-1}^+ , S(n-3,1) $(n \ge 4)$ and C_5 .

Proof. Let $f = (V_0, V_1, V_2)$ be an arbitrary $\gamma_{ri2}(G)$ -function. Observe that V_0 does not contain any 1-vertex; one can readily derive that $\gamma_{ri2}(G) = n - 1$ when *G* is isomorphic

to one of S_{n-1} , S_{n-1}^+ , S(n-3, 1) and C_5 . Conversely, suppose that $\gamma_{ri2}(G) = n-1$, that is, $|V_0| = 1$. By Lemma 2, *G* contains no subgraph *H* that has a 2RiDF of weight at most |V(H)| - 2. Since $\gamma_{ri2}(C_4) = 2 = |V(C_4)| - 2$ and each C_k for $k \ge 6$ contains a subgraph isomorphic to a 6-order path P_6 with $\gamma_{ri2}(P_6) = 4 = |V(P_6)| - 2$, *G* does not contain any subgraph isomorphic to C_4 or C_k for $k \ge 6$. This also shows that every two vertices of *G* share at most one neighbor in *G*.

Observation 1. If *G* contains a 3⁺-vertex *x*, then every 2⁺-vertex of *G* belongs to $N_G(x)$. Suppose to the contrary that *G* contains a 2⁺-vertex *y* such that $y \notin N_G(x)$. Let $\{x_1, x_2, x_3\} \subseteq N_G(x)$ and $\{y_1, y_2\} \subseteq N_G(y)$. Observe that $|\{x_1, x_2, x_3\} \cap \{y_1, y_2\}| \leq 1$ and $|N_G(y_i) \cap \{x_1, x_2, x_3\}| \leq 1$ for $i \in [1, 2]$; we WLOG assume that $y_2 \notin \{x_1, x_2, x_3\}, y_{2x_2} \notin E(G)$ and $y_2x_3 \notin E(G)$. Let *f* be: $f(x) = f(y) = 0, f(x_2) = 1, f(x_3) = 2$. Notice that either $y_1 = x_j$ or $y_1x_j \notin E(G)$ for some $j \in [2, 3]$; we further let $f(y_1) = f(x_j)$ and $f(y_2) = [1, 2] \setminus \{f(y_1)\}$. Clearly, *f* is a 2RiDF of $G[\{x, x_2, x_3, y, y_1, y_2\}]$ of weight $|\{x, x_2, x_3, y, y_1, y_2\}| - 2$, a contradiction.

Observation 2. *G* contains at most one 3^+ -vertex. Suppose that *G* has two distinct 3^+ -vertices, say *x* and *y*. By Observation 1, $xy \in E(G)$. Let $\{y, x_1, x_2\} \subseteq N_G(x)$ and $\{x, y_1, y_2\} \subseteq N_G(y)$. Since *G* contains no subgraph isomorphic to C_4 , $|\{x_1, x_2\} \cap \{y_1, y_2\}| \leq 1$ and there are no edges between $\{x_1, x_2\}$ and $\{y_1, y_2\}$. Assume that $x_2 \notin \{y_1, y_2\}$ and $y_2 \notin \{x_1, x_2\}$. Then, the function *f*: $\{x, x_1, x_2, y, y_1, y_2\} \rightarrow \{0, 1, 2\}$ such that f(x) = f(y) = 0, $f(x_2) = f(y_2) = 2$ and $f(x_1) = f(y_1) = 1$, is a 2RiDF of $G[\{x, y, x_1, x_2, y_1, y_2\}]$ of weight $|\{x, y, x_1, x_2, y_1, y_2\}| - 2$, a contradiction.

Observation 3. If *G* contains a 3⁺-vertex *x*, $N_G(x)$ has not more than two 2-vertices; in particular, when $N_G(x)$ contains two 2-vertices, in *G* these two 2-vertices are adjacent. If not, suppose that $N_G(x)$ contains three 2-vertices, say x_1, x_2, x_3 . We WLOG assume that $x_3 \notin N_G(\{x_1, x_2\})$ and let $N_G(x_3) = \{x, y_3\}$. Let $N_G(x_1) = \{x, y_1\}$ (possibly $y_1 = x_2$, but $y_1 \neq y_3$). By Observation 1, $d_G(y_3) = 1$, i.e., $y_1y_3 \notin E(G)$. Let *f* be: $f(x) = 1, f(x_1) =$ $f(x_3) = 0, f(y_1) = f(y_3) = 2$. Obviously, *f* is a 2RiDF of $G[\{x, x_1, y_1, x_3, y_3\}]$ of weight $|\{x, x_1, y_1, x_3, y_3\}| - 2$, a contradiction. Now, suppose that $N_G(x)$ contains two 2-vertices, say x_1, x_2 . If $x_1x_2 \notin E(G)$, let $N_G(x_i) = \{x, y_i\}, i \in [1, 2]$. Clearly, $y_1 \neq y_2$ and $y_1y_2 \notin E(G)$. Let *f* be: $f(x) = 1, f(x_1) = f(x_2) = 0, f(y_1) = f(y_2) = 2$. Then, *f* is a 2RiDF of $G[\{x, x_1, y_1, x_2, y_2\}]$ of weight $|\{x, x_1, x_2, y_1, y_2\}| - 2$, a contradiction.

By the above three observations and the assumption that *G* is connected, we see that if *G* contains a 3⁺-vertex *x*, then $V(G) \setminus \{x\}$ contains either only 1-vertices ($G \cong S_{n-1}$), or one 2-vertex and n-2 1-vertices ($G \cong S(n-3,1)$), or two adjacent 2-vertices and n-3 1-vertices ($G \cong S_{n-1}^+$); if $\Delta(G) = 2$, then *G* is isomorphic to one of S_2^+ , S_2 , S(1,1) and C_5 . \Box

The theorem below follows from Theorem 1, Lemma 1, and $\gamma_{ri2}(G) = \sum_{i=1}^{k} \gamma_{ri2}(G_i)$, where G_1, \ldots, G_k are the components of G.

Theorem 2. Given a graph G with order $n \ge 3$, $\gamma_{ri2}(G) = n - 1$ iff G has one component G_1 isomorphic to one among S_{n_1-1} $(n_1 \ge 3)$, $S_{n_1-1}^+$ $(n_1 \ge 3)$, $S(n_1-3,1)$ $(n_1 \ge 4)$ and C_5 , and other components are isomorphic to K_1 or K_2 , where $n_1 = |V(G_1)|$.

3. An Improved Nordhaus–Gaddum Type Theorem for $\gamma_{ri2}(G)$

This section is devoted to achieve an improved Nordhaus–Gaddum type theorem by showing that $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \le n + 2$ for every graph $G \not\cong C_5$ of order $n \ge 2$, which improves a result obtained by Kraner Šumenjak et al., et al [11]. We first present some fundamental lemmas.

Lemma 3. For an *n*-order graph G with $n \ge 3$, if G is S_{n-1}, S_{n-1}^+ or S(n-3, 1), then $\gamma_{ri2}(\overline{G}) \le 3$.

Proof. If $G \cong S_{n-1}$ or $G \cong S_{n-1}^+$, let $V(G) = \{v_0, v_1, \dots, v_{n-1}\}$ where v_0 is the center and $v_1v_2 \in E(G)$ when $G \cong S_{n-1}^+$. Define a function f such that $f(v_1) = 1$, $f(v_0) = f(v_2) = 2$

and f(v) = 0 for every $v \in V(\overline{G}) \setminus \{v_0, v_1, v_2\}$. Since every vertex in $V(\overline{G}) \setminus \{v_0, v_1, v_2\}$ is a neighbor of v_1 and also v_2 in \overline{G} , it follows that f is a 2RiDF of \overline{G} of weight 3.

If $G \cong S(n-3,1)$, then $n \ge 4$. Let $V(G) = \{v_1, v_0, u_0, u_1, \dots, u_{n-3}\}$, where v_0u_0 is the bridge of G and $E(G) = \{v_0v_1, v_0u_0, u_0u_i | i \in [1, n-3]\}$. If n = 4, then both G and \overline{G} are isomorphic to P_4 , the path of length 3, and the conclusion holds. If $n \ge 5$, then the function f from $V(\overline{G})$ to [0, 2] such that $f(u_2) = 2$, $f(u_1) = f(u_0) = 1$, and f(v) = 0 for every $v \in V(\overline{G}) \setminus \{u_0, u_1, u_2\}$ is a 2RiDF of \overline{G} with weight 3. \Box

Lemma 4. For a graph *n*-order *G*, if $G \not\cong C_5$ and $\gamma_{ri2}(G) = 4$, then $\gamma_{ri2}(\overline{G}) \leq n-2$.

Proof. Clearly, $n \ge 4$. When n = 4, $\gamma_{ri2}(\overline{G}) = 4$ implies that $\gamma_{ri2}(\overline{G}) = 2 = n - 2$ by Lemma 1. Therefore, we assume that $n \ge 5$. Suppose that $\gamma_{ri2}(\overline{G}) \ge n - 1$. If $\gamma_{ri2}(\overline{G}) = n$, by Lemma 1 we have $\gamma_{ri2}(G) = 2$, a contradiction. Therefore, $\gamma_{ri2}(\overline{G}) = n - 1$. By Theorem 2 \overline{G} has one component isomorphic to $S_{n_1}, S_{n_1}^+, S(n_2, 1)$ or C_5 where $n_1 \ge 2, n_2 \ge 1$, and all of the other components of \overline{G} are isomorphic to K_1 or K_2 .

If \overline{G} contains two vertices u and v s.t. $N_{\overline{G}}(\{u,v\}) = \emptyset$, then in G both u and v are adjacent to every vertex in $V(G) \setminus \{u,v\}$. We can obtain a 2RiDF of G by assigning 1 to u, 2 to v, and 0 to the remained vertices of G. This indicates that $\gamma_{ri2}(G) \leq 2$ and a contradiction. Therefore, \overline{G} contains no K_2 components and contains at most one K_1 component, implying that \overline{G} contains at most two components. If \overline{G} contains only one component, it follows that \overline{G} is S_{n-1}, S_{n-1}^+ or S(n-3,1) (since $G \not\cong C_5$). By Lemma 3 $\gamma_{ri2}(G) \leq 3$ and a contradiction. Therefore, \overline{G} has two components, denoted by G_1 and G_2 , where $G_1 \cong K_1$ and G_2 is isomorphic to $S_{n-2}, S_{n-2}^+, S(n-4,1)$ or C_5 . Let $V(G_1) = \{u\}$ and define a function f as follows: let f(u) = 1; $f(v_0) = f(v') = 2$ when $G_2 \cong S_{n-2}$ or $G_2 \cong S_{n-2}^+$ (where v_0 is the center of G_2 and v' is a 1-vertex of G_2 by the assumption of $n \geq 5$), $f(v_0) = f(u_0) = 2$ when $G_2 \cong S(n-4,1)$ (where v_0u_0 is the bridge of G_2), or $f(u_1) = f(u_2) = 2$ when $G_2 \cong C_5$ (where $C_5 = u_1u_2u_3u_4u_5u_1$); and all of the other remained vertices are assigned value 0. Clearly, all vertices with value 0 are adjacent to u and a vertex with value 2. Hence, f is a 2RiDF of G, which has weight 3, a contradiction.

Lemma 5. Suppose that G is an n-order graph satisfying that $\gamma_{ri2}(G) \ge 4$ and $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) = n + 3$. Let $f = (V_0, V_1, V_2)$ be an arbitrary $\gamma_{ri2}(G)$ -function. We have

- (1) If $|V_0| \ge 2$, then for any $u, v \in V_0$, there does not exist u_1, u_2, v_1, v_2 such that $\{u_1, u_2\} \in N_{\overline{G}}(u), \{v_1, v_2\} \in N_{\overline{G}}(v)$ and $u_i v_i \notin E(\overline{G})$ for $i \in [1, 2]$, where $u_1 \neq u_2, v_1 \neq v_2$ but possibly $u_i = v_i$;
- (2) If u, v are two arbitrary different vertices of V_0 , then $|N_{\overline{C}}(\{u, v\})| \ge 3$;
- (3) $|V_i| \ge 2$ for $i \in [0, 2]$.

Proof. For (1), if the conclusion is false, then let *g* be: g(u) = g(v) = 0 and $g(u_i) = g(v_i) = i$, $i \in [1, 2]$. Then, *g* is a 2RiDF of $\overline{G}[\{u, v, u_1, v_1, u_2, v_2\}]$ with weight $|\{u, v, u_1, v_1, u_2, v_2\}| - 2$. Since V_1 and V_2 are cliques in \overline{G} , V_i contains at most two vertices not assigned 0 under every 2RiDF of \overline{G} for $i \in [1, 2]$. Hence, we can extend *g* to a 2RiDF of \overline{G} with weight at most $|V_0| - 2 + 4 = |V_0| + 2$, according to Lemma 2. This shows that $\gamma_{ri2}(\overline{G}) \le |V_0| + 2$ and $\gamma_{ri2}(\overline{G}) \le |V_1| + |V_2| + |V_0| + 2 = n + 2$, a contradiction.

For (2), if $|N_{\overline{G}}(\{u,v\})| \leq 2$, let f be: f(v) = 2, f(u) = 1, and f(x) = 0 for $x \in V(G) \setminus N_{\overline{G}}[\{u,v\}]$. It is clear that f is a 2RiDF of $G[V(G) \setminus N_{\overline{G}}(\{u,v\})]$ with weight 2. According to Lemma 2, we can extend f to a 2RiDF of G with weight at most 4 (since $|N_{\overline{G}}(\{u,v\})| \leq 2$). Thus, $\gamma_{ri2}(G) = 4$ and by Lemma 4 $\gamma_{ri2}(\overline{G}) \leq n - 2$, a contradiction.

For (3), if $|V_0| = 1$, then $\gamma_{ri2}(G) = n - 1$. By an analogous argument as that in Lemma 4, we can derive that $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \le n + 2$, a contradiction. In the following, we prove that $|V_1| \ge 2$ (the proof of $|V_2| \ge 2$ is similar to that of $|V_2| \ge 2$). Suppose that $|V_1| = 1$ and let $V_1 = \{u\}$. Then, every vertex of V_0 is adjacent to u in G, i.e., u is not adjacent to V_0 in \overline{G} . By Lemma 4 we assume that $|V_1| + |V_2| \ge 5$. If V_0 contains a vertex v with two neighbors v_1, v_2 in \overline{G} , then $u \notin \{v_1, v_2\}$. Let g be: $g(v) = 0, g(v_1) = 1, g(v_2) = 2$. Since V_2 is a clique

in \overline{G} , we can extend g to a 2RiDF of \overline{G} with weight at most $|V_0| - 1 + 3 = |V_0| + 2$, according to Lemma 2. This shows that $\gamma_{ri2}(\overline{G}) \leq |V_0| + 2$ and hence $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \leq n + 2$, a contradiction. Therefore, every vertex in V_0 has degree at most 1 in \overline{G} , which implies that $|N_{\overline{G}}(\{x,y\})| \leq 2$ for any two vertices $x \in V_0, y \in V_0$ (observe that $|V_0| \geq 2$). This contradicts (2). \Box

Lemma 6. Let G be an n-order graph, $n \ge 4$. For any $u \in V(G)$, if H = G - u, the resulting graph by deleting u and its incident edges from G, is connected and $\gamma_{ri2}(H) = |V(H)| - 1$, then G has a 2RiDF f satisfying f(u) = 1 and f(v) = 0 for some $v \in V(H)$.

Proof. Clearly, $|V(H)| \ge 3$. If *u* has no neighbor in V(H), then let *f* be: f(v) = g(v) for every $v \in V(H)$, and f(u) = 1, where *g* is a $\gamma_{ri2}(H)$ -function of *H*. Since $\gamma_{ri2}(H) = |V(H)| - 1$, there exists $v \in V(H)$ satisfying f(v) = g(v) = 0. If *u* has a neighbor $u_1 \in V(H)$, there exists a $u_2 \in V(H)$ s.t. $u_1u_2 \in E(H)$ since *H* is connected. Let *f* be: $f(u_1) = 0, f(u) = 1, f(u_2) = 2$. Then, we can extend *f* to a desired 2RiDF of *G* according to Lemma 2. \Box

Now, we turn to the proof of the main result.

Theorem 3. Suppose that G is an n-order graph, $n \ge 2$. If $G \not\cong C_5$, then $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \le n+2$.

Proof. We are sufficient to handle the situation $n \ge 5$ since cases of $n \le 4$ are trivial. Let $f_0 = (V_0, V_1, V_2)$ be a $\gamma_{ri2}(G)$ -function such that $\overline{G}[V_0]$ contains the maximum number of components isomorphic to K_2 . Suppose to the contrary that $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) > n + 2$. Then, $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) = n + 3$ since $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) \le n + 3$ [11], that is,

$$\gamma_{\rm ri2}(\overline{G}) = |V_0| + 3 \tag{1}$$

Formula (1) indicates that every 2RiDF of \overline{G} has weight at least $|V_0| + 3$. We will complete our proof by constructing a 2RiDF of \overline{G} of weight at most $|V_0| + 2$ or a 2RiDF of G of weight less than $|V_1| + |V_2|$.

If $|V_1 \cup V_2| = 2$, then $\gamma_{ri2}(\overline{G}) + \gamma_{ri2}(\overline{G}) \le 2 + n$, a contradiction; if $|V_1 \cup V_2| = 3$, then $\gamma_{ri2}(\overline{G}) = n$ and by Lemma 1 $\gamma_{ri2}(G) = 2$, also a contradiction. Therefore, by Lemma 4,

$$|V_1| + |V_2| \ge 5 \tag{2}$$

Then, by Lemma 5 (3) we have $|V_i| \ge 2$ for $i \in [0, 2]$. In addition, because, by definition, $\overline{G}[V_i]$ is a clique, $i \in [1, 2]$, it follows that for every 2RiDF $g_0 = (V'_0, V'_1, V'_2)$ of \overline{G} ,

$$|(V_1' \cup V_2') \cap V_i| \le 2, i \in [1, 2]$$
(3)

Therefore, by Lemma 2 we can extend every $\gamma_{ri2}(\overline{G}[V_0])$ -function to a 2RiDF of \overline{G} with weight at most $\gamma_{ri2}(\overline{G}[V_0]) + 4$, i.e., $\gamma_{ri2}(\overline{G}[V_0]) \ge |V_0| - 1$ by Formula (1).

Claim 1. Denote by ℓ the number of vertices in $V_1 \cup V_2$, which have degree $|V_1| + |V_2| - 1$ in $\overline{G}[V_1 \cup V_2]$. Then, $\ell \leq 1 - \ell'$ where $\ell' = |V_0| - \gamma_{ri2}(\overline{G}[V_0]) \leq 1$. If not, either ℓ is at least 2 or both ℓ and ℓ' are equal to 1. Suppose that $\ell \geq 2$ and take two vertices $v_1, v_2 \in (V_1 \cup V_2)$ such that they are adjacent to all vertices of $(V_1 \cup V_2) \setminus \{u, v\}$ in \overline{G} . Let g'be: $g'(v_1) = 1, g'(v_2) = 2, g'(x) = 0$ for $x \in V_1 \cup V_2 \setminus \{v_1, v_2\}$. Clearly, g' is a 2RiDF of $\overline{G}[V_1 \cup V_2]$ and by Lemma 2 we can extend g' to a 2RiDF of \overline{G} , which has weight at most $|V_0| + 2$, a contradiction. Now, suppose that $\ell = \ell' = 1$. Then, $\gamma_{ri2}(\overline{G}[V_0]) = |V_0| - 1$, which indicates that $\overline{G}[V_0]$ contains a component H' s.t. $\gamma_{ri2}(H') = |V(H')| - 1$. Since $\ell = 1$, there is a vertex v, say $v \in V_1$, which is adjacent to every vertex of V_2 in \overline{G} . By Lemma 6 $\overline{G}[V(H') \cup \{v\}]$ has a 2RiDF g' s.t. g'(x) = 0 for some $x \in V(H')$ and g'(v) = 1. Observe that in $\overline{G} v$ is adjacent to all vertices of $(V_1 \cup V_2) \setminus \{v\}$; by the rule of Lemma 2 we can extend g' to a 2RiDF g of \overline{G} under which there is at most one vertex in $V_1 \setminus \{v\}$ (and V_2) not assigned value 0. Thus, $w(g) \le |V_0| - 1 + 3 = |V_0| + 2$, a contradiction. This completes the proof of Claim 1.

Now, we WLOG assume $|V_1| \ge |V_2|$. Then, $|V_1| \ge 3$ by Formula (2).

Claim 2. $G[V_0]$ *does not contain any isolated vertex* v *s.t.* $N_{\overline{G}}(v) \cap V_1 = \emptyset$. Otherwise, define f' as: for $x \in V_2$ f'(x) = 2, and f'(v) = 1. By Claim 1, in \overline{G} , V_1 has not more than one vertex adjacent to every vertex in V_2 ; say v' if such a vertex exists. We further let f'(y) = 0 for $y \in V_1 \cup (V_0 \setminus \{v\})$ (or for $y \in (V_1 \setminus \{v'\}) \cup (V_0 \setminus \{v\})$ if v' exists). Since in G every vertex in $V_1 \cup V_0$ (except for v') is adjacent to v and also V_2 , f is a 2RiDF of G of weight at most $|V_2| + 2$, a contradiction. This completes the proof of Claim 2.

We proceed by distinguishing two cases: $\gamma_{ri2}(\overline{G}[V_0]) = |V_0| - 1$ and $\gamma_{ri2}(\overline{G}[V_0]) = |V_0|$. **Case 1.** $\gamma_{ri2}(\overline{G}[V_0]) = |V_0| - 1$. In this case, by Claim 1 each vertex of V_i owns a neighbor belonging to V_j in G where $\{i, j\}$ =[1,2]; by Theorem 2, $\overline{G}[V_0]$ has one component H isomorphic to one of $S_{|V(H)|-1}(|V(H)| \ge 3)$, $S_{|V(H)|-1}^+(|V(H)| \ge 3)$, S(|V(H)| - 3, 1) $(|V(H)| \ge 4)$ and C_5 , and other components of $\overline{G}[V_0]$ are isomorphic to K_1 or K_2 . Let $u_0 \in V(H)$ be a vertex with $d_H(u_0) = \Delta(H)$. Clearly, $d_H(u_0) \ge 2$. Let $u_1 \in N_H(u_0)$ and $u_2 \in N_H(u_0)$ be two vertices such that every vertex in $V(H) \setminus \{u_0, u_1, u_2\}$ has degree in H not exceeding min $\{d_H(u_1), d_H(u_2)\}$. By the structure of H, for $i \in [1, 2]$, we have that $d_H(u_i) \le 2$ and if u_i has a neighbor $u'_i (\notin \{u_0, u_1, u_2\})$ in H, then $u_0u'_i \notin E(H)$. Moreover, by Lemma 5 (1), $(N_{\overline{G}}(u_1) \cap N_{\overline{G}}(u_2)) \setminus \{u_0\} = \emptyset$, which implies that each vertex of $V_1 \cup V_2$ is adjacent to u_1 or u_2 in G.

Claim 3. $|V_0 \setminus V(H)| \leq 1$. Otherwise, let $\{v_1, v_2\} \subseteq (V_0 \setminus V(H))$. Then, $d_{\overline{G}[V_0]}(v_1) \leq 1$ and $d_{\overline{G}[V_0]}(v_2) \leq 1$. Suppose that $d_{\overline{G}[V_0]}(v_1) = 1$ (the case of $d_{\overline{G}[V_0]}(v_2) = 1$ can be similarly discussed). Let $v_1v'_1 \in E(\overline{G}[V_0])$ and clearly $d_{\overline{G}[V_0]}(v'_1) = 1$. By Lemma 5 (2), a vertex $v_0 \in (V_1 \cup V_2)$ is adjacent to $\{v_1, v'_1\}$ in \overline{G} . We WLOG assume that $v_1v_0 \in E(\overline{G})$. According to Lemma 6, $\overline{G}[V(H) \cup \{v_0\}]$ admits a 2RiDF g' satisfying $g'(v_0) = 1$ and g'(x) = 0 for some $x \in V(H)$. Further, let $g'(v_1) = 0$ and $g'(v'_1) = 2$. So g' is a 2RiDF of $\overline{G}[V(H) \cup \{v_0, v_1, v'_1\}]$, and by Lemma 2 and Formula (3) we can extend g' to a 2RiDF of \overline{G} with weight at most $|V_0| - 2 + 4 = |V_0| + 2$ (since $g'(v_1) = g'(x) = 0$), a contradiction. We therefore assume that $d_{\overline{G}[V_0]}(v_1) = d_{\overline{G}[V_0]}(v_2) = 0$. By Lemma 5 (2) we have $|N_{\overline{G}}(\{v_1, v_2\}) \cap (V_1 \cup V_2)| \geq 3$. WLOG, suppose that in \overline{G} , v_1 has two neighbors belonging to $V_1 \cup V_2$, say v_{11} and v_{12} . By Lemma 5 (1), u_i is not adjacent to both v_{11} and v_{12} , and v_{1j} is not adjacent to both u_1 and u_2 in \overline{G} , where $i \in [1, 2]$ and $j \in [1, 2]$. Thus, it follows that $u_1v_{11} \notin E(\overline{G})$ and $u_2v_{12} \notin E(\overline{G})$, or $u_1v_{12} \notin E(\overline{G})$ and $u_2v_{11} \notin E(\overline{G})$, which contradicts to Lemma 5 (1) again. This completes the proof of Claim 3.

By Claim 3, we see that $G[V_0]$ contains no component isomorphic to K_2 and contains at most one K_1 component.

Claim 4. $G[V_0]$ contains a K_1 component. If not, we have $G[V_0] = H$.

Claim 4.1. $(N_{\overline{G}}(u_1) \cup N_{\overline{G}}(u_2)) \cap (V_1 \cup V_2) \neq \emptyset$.

Otherwise, for $i \in [1,2]$, u_i is adjacent to every vertex of $V_1 \cup V_2$ in G, and by Lemma 5 (2) $d_H(u_i) = 2$ and $u_1u_2 \notin E(\overline{G})$. Set $\{u'_i\} = N_H(u_i) \setminus \{u_0\}$, $i \in [1,2]$; then, $u_0u'_i \notin E(\overline{G})$. Let f be: $f(u_1) = f(u'_1) = 1$, $f(u_2) = f(u'_2) = 2$ and f(x) = 0 for any x in $V(G) \setminus \{u_1, u'_1, u_2, u'_2\}$. So, we get a 2RiDF f of G, which has weight 4, a contradiction. So, Claim 4.1 holds.

Claim 4.2. $|V_1| = 3$.

Observe that $|V_1| \ge 3$; it is enough by showing that *G* admits a 2RiDF *f* s.t. $w(f) \le |V_2| + 3$. When $u_1u_2 \in E(\overline{G})$, let *f* be: $f(u_i) = 1$ for $i \in [0,2]$, f(x) = 0 for $x \in (V_1 \cup V_0) \setminus \{u_0, u_1, u_2\}$, and f(y) = 2 for $y \in V_2$. By Lemma 5 (1), in \overline{G} , $V_1 \cup V_0$ contains no vertex adjacent to u_1 and also u_2 . Therefore, *f* is a 2RiDF of *G* of weight $|V_2| + 3$. Now, suppose that $u_1u_2 \notin E(\overline{G})$. By Lemma 5 (1), V_1 contains at most one vertex adjacent to both u_0 and u_1 in \overline{G} ; say *u* if such a vertex exists. Let *f* be: $f(u_0) = f(u_1) = 1$ (or $f(u) = f(u_0) = f(u_1) = 1$ if *u* exists), f(x) = 0 for $x \in (V_1 \cup (V_0 \setminus \{u_0, u_1\}))$ (or $x \in (V_1 \cup V_0) \setminus \{u_0, u_1, u\}$) and f(y) = 2 for $y \in V_2$. Notice that by Claim 1 every vertex of $V_0 \cup V_1$ is adjacent to V_2 in *G*, and by the structure of *H* and the selection of u_1 and

 u_2 , every vertex of $(V_0 \cup V_1) \setminus \{u, u_0, u_1\}$ is adjacent to $\{u_0, u_1\}$ in *G*; *f* is a 2RiDF of *G* of weight at most $|V_2| + 3$. This completes the proof of Claim 4.2.

By Claim 4.2, we have $2 \le |V_2| \le 3$. Let $V_1 = \{w_1, w_2, w_3\}$ in the following.

Claim 4.3. In \overline{G} , for $\{i, j\} = [1, 2]$ every vertex in V_i has not more than one neighbor in V_j .

If not, let $v \in V_2$ be adjacent to two vertices of V_1 in \overline{G} , say w_1, w_2 . By Lemma 5 (1) u_1 or u_2 is not adjacent to v in \overline{G} , say $u_1 v \notin E(\overline{G})$. If $u_2 w_3 \notin E(\overline{G})$, define g' as: $g'(u_i) = i$ for every $i \in [0, 2]$, $g'(w_1) = g'(w_2) = 0$, $g'(w_3) = 2$, g'(v) = 1. If $u_2 w_3 \in E(\overline{G})$, then $u_1 w_3 \notin E(\overline{G})$ and let g' be: $g'(u_1) = g'(w_3) = 1$, $g'(w_1) = g'(w_2) = 0$, g'(v) = 2; further, let $g'(u_2) = 0$ when $u_2 v \in E(\overline{G})$, or let $g'(u_2) = 2$ and $g'(u_0) = 0$ when $u_2 v \notin E(\overline{G})$. According to Lemma 2, in either case the g' defined above can be extended to a 2RiDF g of \overline{G} under which $g(w_1) = g(w_2) = 0$ and $g(u_0) = 0$ or $g(u_2) = 0$. Therefore, by Formula (3) $w(g) \leq |V_0| - 1 + 3 = |V_0| + 2$, a contradiction. With a similar discussion, there is also a contradiction if we assume V_1 contains a vertex that has two neighbors in V_2 in \overline{G} . This completes the proof of Claim 4.3.

Now, we consider $|V_2|$. Suppose that $|V_2| = 3$ and let $V_2 = \{w_4, w_5, w_6\}$. According to Claim 4.1, we WLOG assume that $u_1w_1 \in E(\overline{G})$. This indicates that $u_2w_1 \notin E(\overline{G})$ by Lemma 5 (1). If u_2 has a neighbor in V_2 , say $u_2w_4 \in E(\overline{G})$, then according to Lemma 5 (1), $u_1w_4 \notin E(G)$, $w_1w_4 \in E(G)$, and u_1 (resp. u_2) is not adjacent to $\{w_2, w_3\}$ (resp. $\{w_5, w_6\}$) in \overline{G} (otherwise w_4 or w_1 has two neighbors in V_1 or V_2 in \overline{G} , respectively. This contradicts to Claim 4.3). Let f be: $f(u_1) = f(w_1) = 1$, $f(u_2) = f(w_4) = 2$ and f(x) = 0 for $x \in V(G) \setminus \{u_1, u_2, w_1, w_4\}$. Observe that w_1 (resp. w_4) is not adjacent to $\{w_5, w_6\}$ (resp. $\{w_2, w_3\}$ in \overline{G} and by Lemma 5 (1) $V_0 \setminus \{u_0, u_1, u_2\}$ contains no vertex adjacent to both u_i and w_i for some $i \in [1, 2]$. Hence, f is a 2RiDF of $G[V(G) \setminus \{u_0\}]$ of weight 4 and we are able to extend *f* to a 2RiDF of *G* with weight at most $5 < |V_1| + |V_2|$ according to Lemma 2, a contradiction. Therefore, we may assume that $N_{\overline{G}}(u_2) \cap V_2 = \emptyset$. In this case, when $N_{\overline{G}}(u_2) \cap V_1 = \emptyset$, let f be: $f(u_2) = 2$, $f(u_0) = f(u_1) = 1$. By Lemma 5 (1) $V_1 \cup V_2$ has not more than one vertex w' adjacent to both u_0 and u_1 in \overline{G} and $V_0 \setminus \{u_0\}$ has not more than one vertex u' adjacent to u_2 in \overline{G} ; for $x \in V(G) \setminus \{u_0, u_1, u_2, u', w'\}$ we further let f(x) = 0. Then, f is a 2RiDF of $G[V(G) \setminus \{u', w'\}]$ of weight 3 and according to Lemma 2 we can extend f to a 2RiDF of G of weight at most $5 < |V_1| + |V_2|$, a contradiction. We therefore suppose that u_2 has a neighbor in V_1 in \overline{G} , say $u_2w_2 \in E(\overline{G})$. With the same argument as $N_{\overline{G}}(u_2) \cap V_2 = \emptyset$, we can show that $N_{\overline{G}}(u_1) \cap V_2 = \emptyset$ as well.

Then, if $w_3u_1 \notin E(\overline{G})$ and $w_3u_2 \notin E(\overline{G})$, the function $f: f(u_1) = f(w_1) = 1, f(u_2) = f(w_4) = 2$ and f(x) = 0 for $x \in V(G) \setminus \{u_1, u_2, w_1, w_4, u_0\}$, is a 2RiDF of $G[V(G) \setminus \{u_0\}]$ with weight 4, and according to Lemma 2, we are able to extend f to a 2RiDF of G with weight at most $5 < |V_1| + |V_2|$, a contradiction. Therefore, we suppose that $w_3u_1 \in E(\overline{G})$ by the symmetry. By Lemma 5 (1), it has that $w_3u_2 \notin E(\overline{G})$, and $u_0w_1 \notin E(\overline{G})$ or $u_0w_3 \notin E(\overline{G})$, say $u_0w_1 \notin E(\overline{G})$ by the symmetry. Let f be: $f(u_0) = f(u_1) = 1, f(u_2) = f(w_2) = 2$ and f(x) = 0 for $x \in V(G) \setminus \{u_1, u_2, u_0, w_2, w_3\}$. Since in G every vertex in $V(G) \setminus \{u_1, u_2, u_0, w_2, w_3\}$ has a neighbor in $\{u_0, u_1\}$ and also $\{u_2, w_2\}$, f is a 2RiDF of G is weight at most $5 < |V_1| + |V_2|$, and a contradiction.

A similar line of thought leads to a contradiction if we assume that $|V_2| = 2$, and so Claim 4 holds.

By Claim 4, we see that $\overline{G}[V_0]$ contains one component isomorphic to K_1 . Let s be the vertex of the K_1 component. We first show that $|N_{\overline{G}}(s) \cap (V_1 \cup V_2)| \leq 1$. If not, in \overline{G} we assume that s has two neighbors in $V_1 \cup V_2$, say s_1, s_2 . By Lemma 5 (1) for $i, j \in [1, 2]$, s_i (resp. u_j) can not be adjacent to u_1 and u_2 (resp. s_1 and s_2) simultaneously in \overline{G} . This implies that either $s_i u_i \notin E(\overline{G}), i \in [1, 2]$, or $s_1 u_2 \notin E(\overline{G})$ and $s_2 u_1 \notin E(\overline{G})$, which violates Lemma 5 (1) as well. Thus, by Claim 2 $|N_{\overline{G}}(s) \cap (V_1 \cup V_2)| = 1$ and the vertex s' adjacent to s in \overline{G} belongs to V_1 . Let f be: f(x) = 1 for $x \in V_1$, f(s) = 2, f(y) = 0 for $y \in V_2 \cup V(H)$). Observe that by Claim 1 all vertices in V_2 are adjacent to V_1 in G. Hence, every vertex in $V_2 \cup V(H)$ is adjacent to s and also V_1 in G. Therefore, f is a 2RiDF of G with weight $|V_1| + 1 < |V_1| + |V_2|$ (since $|V_2| \ge 2$), a contradiction. **Case 2.** $\gamma_{ri2}(\overline{G}[V_0]) = |V_0|$. Then by Lemma 1 every component of $\overline{G}[V_0]$ is isomorphic to K_1 or K_2 . Recall that $|V_i| \ge 2$ for $i \in [0, 2]$. Take two vertices u, v in V_0 s.t. $uv \in E(\overline{G})$ if $\overline{G}[V_0]$ contains a K_2 component and u, v are isolated vertices in $\overline{G}[V_0]$ otherwise. By Lemma 5 (1), we have

$$\left| \left(N_{\overline{G}}(u) \cap N_{\overline{G}}(v) \right) \cap \left(V_1 \cup V_2 \right) \right| \le 1 \tag{4}$$

We deal with two subcases in terms of the adjacency property of *u* and *v*.

Case 2.1. $uv \in E(\overline{G})$. Then in \overline{G} , $V_0 \setminus \{u, v\}$ contains no vertex adjacent to $\{u, v\}$.

Claim 5. In $G[V_1 \cup V_2]$, $V_1 \cup V_2$ contains only vertices with degree at most $|V_1| + |V_2| - 2$. Suppose that V_1 contains a vertex w such that $ww' \in E(\overline{G})$ for every $w' \in V_2$. If $uw \in E(\overline{G})$ (or $vw \in E(\overline{G})$), define a 2RiDF g' of $\overline{G}[\{u, v, w\}]$ as: g'(u) = 0 (or g'(v) = 0), g'(w) = 1 and g'(v) = 2 (g'(u) = 2). According to Lemma 2 we can extend g' to a 2RiDF of \overline{G} , under which $(V_1 \cup V_2) \setminus \{w\}$ contains at most two vertices not assigned 0. Thus, $w(g) \leq |V_0| - 1 + 3 = |V_0| + 2$, a contradiction. We therefore assume that $uw \notin E(\overline{G})$ and $vw \notin E(\overline{G})$. By Lemma 5 (2), there are at least three vertices in $(V_1 \cup V_2)$ that are adjacent to u or v. We WLOG assume that $V_1 \cup V_2$ contains a vertex u' s.t. $u'u \in E(\overline{G})$. Construct a 2RiDF g' of $\overline{G}[\{u, v, u', w\}]$ as follows: g'(u) = 0, g'(u') = 2, and g'(v) = g'(w) = 1. Then, by Lemma 2 g' can be extended to a 2RiDF g of \overline{G} , under which $(V_1 \cup V_2) \setminus \{w, u'\}$ contains at most one vertex not assigned value 0. Therefore, $w(g) \leq |V_0| - 1 + 3 = |V_0| + 2$, a contradiction if we assume that V_2 contains a vertex adjacent to every vertex of V_1 . So, Claim 5 holds.

By Claim 5, for $\{i, j\} = [1, 2]$, each vertex of V_i is adjacent to a vertex of V_i in G. If $V_1 \cap$ $(N_{\overline{G}}(u) \cap N_{\overline{G}}(v)) = \emptyset$, then in *G* all vertices of V_1 are adjacent to $\{u, v\}$. Let *f* be: f(x) = 2for $x \in V_2$, f(y) = 0 for $y \in V_1 \cup (V_0 \setminus \{u, v\})$, and f(u) = f(v) = 1. Obviously, f is a 2RiDF of *G* s.t. $w(f) = |V_2| + 2 < |V_1| + |V_2|$, a contradiction. We therefore assume that V_1 contains a vertex s s.t. $su \in E(\overline{G})$ and $sv \in E(\overline{G})$. Then, in \overline{G} , by Lemma 5 (1) no vertex in $V_2 \cup (V_1 \setminus \{s\})$ is adjacent to *u* and *v* simultaneously. Analogously, the function *f*: f(v) = f(u) = 1, f(x) = 2 for $x \in V_1$, and f(y) = 0 for $y \in V_2 \cup (V_0 \setminus \{u, v\})$ (and f(s) = 0f(v) = f(u) = 1, f(x) = 2 for $x \in V_2$, and f(y) = 0 for $y \in (V_1 \setminus \{s\}) \cup (V_0 \setminus \{u, v\})$ is a 2RiDF of *G* with weight $|V_1| + 2$ (and $|V_2| + 3$). This implies that $|V_1| = 3$ and $|V_2| = 2$. Let $V_1 = \{s, s_1, s_2\}$ and $V_2 = \{s_3, s_4\}$. Then, in \overline{G} , neither *u* nor *v* is a neighbor of s_1 and s_2 simultaneously; otherwise, we, by the symmetry, suppose that $us_1 \in E(G)$ and $us_2 \in E(G)$. Let g' be: $g'(v) = g'(s_1) = g'(s_2) = 0$, g'(u) = 1, and g'(s) = 2. Obviously, g' is a 2RiDF of $G[\{u, v, s, s_1, s_2\}]$ with weight 2. According to Lemma 2, we can extend g' to a 2RiDF of \overline{G} with weight at most $|V_0| - 1 + |V_2| + 1 = |V_0| + 2$, a contradiction. In addition, in \overline{G} , s_i , $i \in [1, 2]$, is not adjacent to u and v simultaneously according to Lemma 5 (1). Therefore, we may assume, by the symmetry, that $s_1 v \notin E(\overline{G})$ and $s_2 u \notin E(\overline{G})$.

If no edge between $\{u, v\}$ and V_2 in \overline{G} exists, then by Lemmas 5 (2), $us_1 \in E(\overline{G})$ and $vs_2 \in E(\overline{G})$. Then, the function g' such that $g'(s) = g'(s_1) = g'(v) = 0$, $g'(s_2) = 2$, and g'(u) = 1 is a 2RiDF of $\overline{G}[\{u, v, s, s_1, s_2\}]$ with weight 2. According to Lemma 2, we can extend g' to a 2RiDF of \overline{G} with weight at most $|V_2| + 1 + |V_0| - 1 = |V_0| + 2$, a contradiction. We therefore assume that \overline{G} contains an edge connecting $\{u, v\}$ and V_2 , say $vs_3 \in E(\overline{G})$ by the symmetry.

If $s_4s \in E(\overline{G})$, define g' as: $g'(s_3) = 2$, $g'(s_4) = 0$, g'(s) = 1, g'(v) = 0. Then, g' is a 2RiDF of $\overline{G}[\{s, v, s_3, s_4\}]$ with weight 2. By Lemma 2 and Formula 3, we are able to extend g' to a 2RiDF of \overline{G} of weight at most $|V_0| - 1 + 3 = |V_0| + 2$, a contradiction. Consequently, we have $s_4s \notin E(\overline{G})$. Then, the function g' such that $g'(s_3) = 0$, $g'(s_4) = g'(s) = 2$, g'(v) = 1, g'(u) = 0 is a 2RiDF of $\overline{G}[\{s, u, v, s_3, s_4\}]$ with weight 3, and by Lemma 2 and Formula 3 we can extend g' to a 2RiDF of \overline{G} with weight at most $|V_0| - 1 + 3 = |V_0| + 2$. This contradicts the assumption.

Case 2.2. $uv \notin E(\overline{G})$. Then, by the selection of u, v and $f_0, \overline{G}[V_0]$ contains only isolated vertices and G does not admit a $\gamma_{ri2}(G)$ -function for which the induced subgraph of \overline{G} by vertices with value 0 contains K_2 components.

For every $x \in V_0$, let $U_i^x = N_{\overline{G}}(x) \cap V_i$ for $i \in [1,2]$. Let f' be: f'(x) = 0 for $x \in ((V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)) \cup (V_0 \setminus \{u,v\})$, f'(v) = 2, and f'(u) = 1. Apparently, f' is a 2RiDF of $G - (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v))$ with weight 2. According to Lemma 2, we can extend f' to a 2RiDF of G with weight at most $|(U_1^u \cup U_2^u \cup U_1^v \cup U_2^v))| + 2$. To ensure $|(U_1^u \cup U_2^u \cup U_1^v \cup U_2^v))| + 2 \ge |V_1| + |V_2|$, we have

$$|(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)| \le 2$$

$$(5)$$

Claim 6. $|(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)| = 2$ and the two vertices in $(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)$ are adjacent in \overline{G} . Define a 2RiDF g' of $\overline{G}[V_0]$ as: g'(u) = g'(v) = 1. Suppose that $|(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)| \le 1$. Since V_1 and V_2 are cliques in \overline{G} and every vertex in $U_1^u \cup U_2^u \cup U_1^v \cup U_2^v$ is adjacent to u or v in \overline{G} , by Lemma 2 we are able to extend g' to a 2RiDF g of \overline{G} under which at most one vertex in V_i , $i \in [1, 2]$, is not assigned value 0 (here if $(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)$ contains a vertex, say w, then let g(w) = 2). Clearly, $w(g) = w(g') + 2 \le |V_0| + 2$, a contradiction. Moreover, if $(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)$ contains two nonadjacent vertices in \overline{G} , say w_1, w_2 , then w_1 and w_2 are not in the same set V_i for some $i \in [1, 2]$. Therefore, we can extend g' to a 2RiDF g of \overline{G} via letting g'(x) = 0 when x is in $(V_1 \cup V_2) \setminus \{w_1, w_2\}$ and $g'(w_1) = g'(w_2) = 2$. However, $w(g) = w(g') + 2 \le |V_0| + 2$, a contradiction. This completes the proof of Claim 6.

By Claim 6, $(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^v \cup U_2^v)$ contains two adjacent vertices in \overline{G} , say w_1, w_2 . If there exists a $z \in (V_0 \setminus \{u, v\})$ s.t. $zw_1 \in E(\overline{G})$ (or $zw_2 \in E(\overline{G})$), then set g' as: $g'(z) = g'(u) = g'(v) = 1, g'(w_1) = 0$ (or $g'(w_2) = 0$), $g'(w_2) = 2$ (or $g'(w_1) = 2$). Since in \overline{G} every vertex in $(V_1 \cup V_2) \setminus \{w_2\}$ has a neighbor in $\{z, u, v\}$ and every vertex in $V' \setminus \{w_2\}$ is a neighbor of w_2 , where $w_2 \in V'$ for some $V' \in \{V_1, V_2\}$, we can extend g' to a 2RiDF g of \overline{G} according to Lemma 2. Under g, every vertex in $V' \setminus \{w_2\}$ is assigned value 0 and at most one vertex in $\{V_1, V_2\} \setminus V'$ is not assigned value 0. Therefore, $w(g) \leq |V_0| + 2$, a contradiction. This demonstrates that in \overline{G} no vertex in V_0 is adjacent to $\{w_1, w_2\}$. Furthermore, if there is a $z \in V_0 \setminus \{u, v\}$, then by Claim 6 we have $(V_1 \cup V_2) \setminus (U_1^u \cup U_2^u \cup U_1^z \cup U_2^u) = \{w_1, w_2\}$ and $(V_1 \cup V_2) \setminus (U_1^v \cup U_2^v \cup U_1^z \cup U_2^u) = \{w_1, w_2\}$, which implies that $N_{\overline{G}}(z) = U_1^u \cup U_2^u \cup U_1^v \cup U_2^v$. Set g' as: g'(z) = 1, g'(u) = g'(v) = 2 and g'(x) = 0 for $x \in U_1^u \cup U_2^u \cup U_1^v \cup U_2^v$. Then, g' is a 2RiDF of $\overline{G} - (\{w_1, w_2\} \cup (V_0 \setminus \{u, v, z\}))$ with weight 3, and we can extend g' to a 2RiDF of \overline{G} with weight at most $(|V_0| + 2 - 3) + 3 = |V_0| + 2$ according to Lemma 2, a contradiction. So far, we have shown that $V_0 = \{u, v\}$, that is, $\gamma_{ri2}(G) = n - 2$.

Now, we define a 2RiDF f' of $G[\{u, v, w_1, w_2\}]$ as follows: $f'(w_1) = f'(w_2) = 0$, f'(u) = 1 and f'(v) = 2. According to Lemma 2, we can extend f' to a 2RiDF f of G with weight at most n - 2. To ensure $w(f) \ge \gamma_{ri2}(G) = n - 2$, f must be a $\gamma_{ri2}(G)$ -function (since w(f) = n - 2). However, $\overline{G}[\{w_1w_2\}]$ is isomorphic to K_2 . This contradicts the selection of f_0 . Eventually, the proof of Theorem 3 is finished. \Box

Based on the foregoing analysis, we observed that the upper bound n + 2 can be attained by graphs $S_r(r \ge 2)$, $S_r^+(r \ge 2)$, and S(r, 1) $(r \ge 1)$, while we did not find other graphs that possess this property. So, we propose a problem as follows.

Question 1. Is it enough to determine graphs *G* with $\gamma_{ri2}(G) + \gamma_{ri2}(\overline{G}) = |V(G)| + 2$ by $S_r(r \ge 2)$, $S_r^+(r \ge 2)$, and $S(r, 1)(r \ge 1)$?

Funding: This work was supported in part by the National Natural Science Foundation of China under Grants 61872101, 61876047.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: New York, NY, USA, 2008.
- Goddarda, W.; Henning, M.A. Independent domination in graphs: A survey and recent results. *Discret. Math.* 2013, 313, 839–854. [CrossRef]

- 3. Liu, C. A note on domination number in maximal outerplanar graphs. Discret. Appl. Math. 2021, 293, 90–94. [CrossRef]
- 4. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Dekker: New York, NY, USA, 1998.
- 5. Amjadi, J.; Khoeilar, R.; Chellali, M.; Shao, Z. On the Roman domination subdivision number of a graph. *J. Comb. Optim.* 2020, 40, 501–511. [CrossRef]
- Martínez, A.C.; García, S.C.; García, A.C.; Mira, F.A.H. Total Roman Domination Number of Rooted Product Graphs. *Mathematics* 2020, 8, 1850. [CrossRef]
- 7. Àvarez-Ruiz, T.P.; Mediavilla-Gradolph, T.; Sheikholeslami, S.M.; Valenzuela-Tripodoro, J.C.; Yero, I.G. On the strong roman domination number of graphs. *Discret. Appl. Math.* **2017**, 231, 54–59.
- 8. Zhu, E.; Shao, Z.; Xu, J. Semitotal domination in claw-free cubic graphs. Graphs Comb. 2017, 33, 1119–1130. [CrossRef]
- 9. Zhu, E.; Liu, C. On the semitotal domination number of line graphs. Discret. Appl. Math. 2019, 254, 295–298. [CrossRef]
- 10. Henning, M.A.; Jäger, S.; Rautenbach, D. Relating domination, exponential domination, and porous exponential domination. *Discret. Optim.* **2017**, *23*, 81–92. [CrossRef]
- 11. Kraner Šumenjak, T.; Rall, D.F.; Tepeh, A. On *k*-rainbow independent domination in graphs. *Appl. Math. Comput.* **2018**, 333, 353–361. [CrossRef]
- 12. Grossman, J.W.; Harary, F.; Klawe, M. Generalized ramsey theory for graphs, X: Double stars. *Discret. Math.* **1979**, *28*, 247–254. [CrossRef]