An Improved Nordhaus-Gaddum-Type Theorem for 2-Rainbow Independent Domination Number

Enqiang Zhu (D)

Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China; zhuenqiang@gzhu.edu.cn; Tel.: +86-020-39366413

Abstract

For a graph G, its k-rainbow independent domination number, written as $\gamma_{\text {rik }}(G)$, is defined as the cardinality of a minimum set consisting of k vertex-disjoint independent sets $V_{1}, V_{2}, \ldots, V_{k}$ such that every vertex in $V_{0}=V(G) \backslash\left(\cup_{i=1}^{k} V_{i}\right)$ has a neighbor in V_{i} for all $i \in\{1,2, \ldots, k\}$. This domination invariant was proposed by Kraner Šumenjak, Rall and Tepeh (in Applied Mathematics and Computation 333(15), 2018: 353-361), which aims to compute the independent domination number of $G \square K_{k}$ (the generalized prism) via studying the problem of integer labeling on G. They proved a Nordhaus-Gaddum-type theorem: $5 \leq \gamma_{\text {ri2 }}(G)+\gamma_{\mathrm{ri2}}(\bar{G}) \leq n+3$ for any n-order graph G with $n \geq 3$, in which \bar{G} denotes the complement of G. This work improves their result and shows that if $G \neq C_{5}$, then $5 \leq \gamma_{\text {ri2 }}(G)+\gamma_{\text {ri2 }}(\bar{G}) \leq n+2$.

Keywords: k-rainbow independent domination; Nordhaus-Gaddum; bounds

Citation: Zhu, E. An Improved Nordhaus-Gaddum-Type Theorem for 2-Rainbow Independent Domination Number. Mathematics 2021, 9, 402. https://doi.org/ 10.3390/math9040402

Academic Editor: Ismael Gonzalez Yero

Received: 20 January 2021
Accepted: 16 February 2021
Published: 18 February 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Throughout the paper, only simple graphs are considered. We refer to [1] for undefined notations. For a graph G, the edge set and vertex set of G are denoted by $E(G)$ and $V(G)$, respectively. For any $v_{1}, v_{2} \in V(G)$, they are adjacent in G if v_{1} and v_{2} are the endpoints of an identical edge of G. A vertex $w \in V(G)$ is adjacent to a set $W \subseteq V(G)$ in G if W contains a vertex w^{\prime} s.t. $w w^{\prime} \in E(G) . N_{G}(w)=\{v \mid v w \in E(G)\}$ is called the open neighborhood of w and $N_{G}[w]=N_{G}(w) \cup\{w\}$ is the closed neighborhood of $w . d_{G}(w)=\left|N_{G}(w)\right|$ denotes the degree of w in G and $\Delta(G)=\max \left\{d_{G}(w) \mid w \in V(G)\right\}$. A vertex that has degree ℓ and at least ℓ is called an ℓ-vertex and ℓ^{+}-vertex, respectively. For any $W \subseteq V(G)$, let $N_{G}(W)=\bigcup_{w \in W} N_{G}(w) \backslash W$ and $N_{G}[W]=N_{G}(W) \cup W$. We say that W dominates a set W^{\prime} if $W^{\prime} \subseteq N_{G}[W]$. Moreover, we use the notation $G-W$ to denote the subgraph of G by deleting vertices in W and their incident edges in G, and $G[W]=G-(V(G) \backslash W)$ the subgraph of G induced by W. The ℓ-order complete graph and the ℓ-length cycle are denoted by K_{ℓ} and C_{ℓ}, respectively. As usual, for any two natural numbers p, q with $p<q$, $[p, q]$ represents $\{p, p+1, \ldots, q\}$.

Given a graph G and a subset $W \subseteq V(G)$, we call W a dominating set (abbreviated as DS) of G if W dominates $V(G)$. An independent set (abbreviated as IS) of a graph is a set of vertices, no two of which are adjacent in the graph. If a DS W of G is an IS, then W is called an independent dominating set (IDS for short) of G. The independent domination number of G, denoted by $i(G)$, is the cardinality of a minimum IDS of G. Domination and independent domination in graphs have always attracted extensive attention $[2,3]$ and many variants of domination [4] have been introduced increasingly, for the applications in diverse fields, such as electrical networks, computational biology, and land surveying. Recent studies on these variations include (total) roman domination [5,6], strong roman domination [7], semitotal domination [8,9], relating domination [10], just to name a few.

Let $G \square H$ be the Cartesian product of G and H. In order to reduce the problem of determining $i\left(G \square K_{k}\right)$ into the problem of integer labeling on G, Kraner Šumenjak et al. [11] proposed a new variation of domination, called k-rainbow independent dominating function of a graph G (k RiDF for short), which is a function f from $V(G)$ to $[0, k]$, s.t., for each
$i \in[1, k], V_{i}$ is an IS and every vertex v with $f(v)=0$ is adjacent to a vertex u with $f(u)=i$. Alternatively, a kRiDF f of G may be viewed as an ordered partition $\left(V_{0}, V_{1}, \ldots, V_{k}\right)$ such that for each $i \in[1, k], V_{i}$ is an IS and $N_{G}(x) \cap V_{i} \neq \varnothing$ for every $x \in V_{0}$, where $V_{j}, j \in[0, k]$, denotes the set of vertices assigned value j under f. The weight $w(f)$ of a $k \operatorname{RiDF} f$ is defined as the number of nonzero vertices, i.e., $w(f)=|V(G)|-\left|V_{0}\right|$. The k-rainbow independent domination number of G, denoted by $\gamma_{\text {rik }}(G)$, is the minimum weight of a $k R i D F$ of G. From the definition, we have $\gamma_{r i 1}(G)=i(G)$. A $\gamma_{r i k}(G)$-function represents a $k \operatorname{RiDF}$ of G which has weight $\gamma_{r i k}(G)$.

Let G be a graph and H a subgraph of G. Suppose that g is a $k R i D F$ of H. We say that a $k \operatorname{RiDF} f$ of G is extended from g if $f(v)=g(v)$ for every $v \in V(H)$. To prove that a graph G has a $k \operatorname{RiDF}$, we will first find a $k^{\prime} \operatorname{RiDF} g$ of a subgraph G^{\prime} of $G, k^{\prime} \leq k$, and then extend g to a $k \operatorname{RiDF} f$ of G. By using this approach, we describe the structure characterization of graphs G with $\gamma_{\mathrm{r} 2}(G)=|V(G)|-1$ (Section 2), and then obtain an improved Nordhaus-Gaddum-type theorem with regard to $\gamma_{\text {ri2 }}$ (Section 3).

2. Structure Characterization of Graphs G s.t., $\gamma_{\text {ri2 }}(G)=|V(G)|-1$

To get the improved Nordhaus-Gaddum-type theorem in terms of $\gamma_{\mathrm{ri} 2}$, we have to characterize the graphs G s.t., $\gamma_{\mathrm{ri} 2}(G)=|V(G)|-1$. For this, we need the following special graphs.

A star $S_{n}, n \geq 1$, is a complete bipartite graph $G[X, Y]$ with $|X|=1$ and $|Y|=n$, where the vertex in X is called the center of S_{n} and the vertices in Y are leaves of S_{n}. Let S_{n}^{+}be the graph obtained from S_{n} by adding a single edge connecting an arbitrary pair of leaves of S_{n} [11]. A double star [12] is defined as the union of two vertex-disjoint stars with an edge connecting their centers. Specifically, for two integers n, m such that $n \geq m \geq 0$ the double star, denoted by $S(n, m)$, is the graph with vertex set $\left\{u_{0}, u_{1}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{m}\right\}$ and edge set $\left\{u_{0} v_{0}, u_{0} u_{i}, v_{0} v_{j} \mid i \in[1, n], j \in[1, m]\right\}$, where $u_{0} v_{0}$ is called the bridge of $S(n, m)$ and the subgraphs induced by $\left\{u_{i} \mid i \in[0, n]\right\}$ and $\left\{v_{j} \mid j \in[0, m]\right\}$ are called the n-star at u_{0} and m-star at v_{0}, respectively. Observe that $S(n, m)$ is defined on the premise of $n \geq m$. For mathematical convenience, we denote a double star $S(n, m)$ as a vertex-sequence $v_{m} v_{m-1} \ldots v_{0} u_{0} u_{1} \ldots u_{n}$.

We start with a known result, which characterizes graphs G with $\gamma_{\mathrm{ri2}}(G)=n$. For a fixed graph G, its complement is written as \bar{G}.

Lemma 1 ([11]). Let G be a graph of order n. Then, $\gamma_{\text {ri2 }}(G)=n$ iff G only contains components isomorphic to K_{1} or K_{2}. And, if $\gamma_{\mathrm{ri} 2}(G)=n$, then $\gamma_{\mathrm{ri2}}(\bar{G})=2$.

The following conclusion is simple but will be used throughout this paper.
Lemma 2. Let H be a subgraph of a fixed graph G and $g=\left(V_{0}, V_{1}, \ldots, V_{k}\right)$ be a $\gamma_{\text {rik }}(H)$-function. Then g can be extended to a kRiDF of G with weight at most $|V(G)|-\left|V_{0}\right|$.

Proof. Let $V(G) \backslash V(H)=\left\{x_{1}, \ldots, x_{\ell}\right\}$. We will deal with these vertices in the order of x_{1}, \ldots, x_{ℓ} by the following rule: for each $x_{i}, i \in[1, \ell]$, let $j \in[1, k]$ be the smallest one such that x_{i} is not adjacent to V_{j} in G. If such j does not exist, we update V_{0} by $V_{0} \cup\left\{x_{i}\right\}$; otherwise we update V_{j} by $V_{j} \cup\left\{x_{i}\right\}$. After the last one, i.e., x_{ℓ} is handled, we obtain a k RiDF of G. Obviously, the weight of the resulting $k \operatorname{RiDF}$ of G is not more than $|V(G)|-\left|V_{0}\right|$.

The following theorem clarifies the structure of connected graphs G with $\gamma_{\mathrm{ri} 2}(G)=$ $|V(G)|-1$.

Theorem 1. Let G be a connected graph with order $n \geq 3$. Then, $\gamma_{\mathrm{ri2}}(G)=n-1$ iff G is isomorphic to one among $S_{n-1}, S_{n-1}^{+}, S(n-3,1)(n \geq 4)$ and C_{5}.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an arbitrary $\gamma_{\text {ri2 }}(G)$-function. Observe that V_{0} does not contain any 1-vertex; one can readily derive that $\gamma_{\text {ri2 }}(G)=n-1$ when G is isomorphic
to one of $S_{n-1}, S_{n-1}^{+}, S(n-3,1)$ and C_{5}. Conversely, suppose that $\gamma_{\mathrm{ri} 2}(G)=n-1$, that is, $\left|V_{0}\right|=1$. By Lemma 2, G contains no subgraph H that has a 2RiDF of weight at most $|V(H)|-2$. Since $\gamma_{\mathrm{ri} 2}\left(C_{4}\right)=2=\left|V\left(C_{4}\right)\right|-2$ and each C_{k} for $k \geq 6$ contains a subgraph isomorphic to a 6-order path P_{6} with $\gamma_{\mathrm{ri} 2}\left(P_{6}\right)=4=\left|V\left(P_{6}\right)\right|-2, G$ does not contain any subgraph isomorphic to C_{4} or C_{k} for $k \geq 6$. This also shows that every two vertices of G share at most one neighbor in G.

Observation 1. If G contains a 3^{+}-vertex x, then every 2^{+}-vertex of G belongs to $N_{G}(x)$. Suppose to the contrary that G contains a 2^{+}-vertex y such that $y \notin N_{G}(x)$. Let $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq$ $N_{G}(x)$ and $\left\{y_{1}, y_{2}\right\} \subseteq N_{G}(y)$. Observe that $\left|\left\{x_{1}, x_{2}, x_{3}\right\} \cap\left\{y_{1}, y_{2}\right\}\right| \leq 1$ and $\mid N_{G}\left(y_{i}\right) \cap$ $\left\{x_{1}, x_{2}, x_{3}\right\} \mid \leq 1$ for $i \in[1,2]$; we WLOG assume that $y_{2} \notin\left\{x_{1}, x_{2}, x_{3}\right\}, y_{2} x_{2} \notin E(G)$ and $y_{2} x_{3} \notin E(G)$. Let f be: $f(x)=f(y)=0, f\left(x_{2}\right)=1, f\left(x_{3}\right)=2$. Notice that either $y_{1}=x_{j}$ or $y_{1} x_{j} \notin E(G)$ for some $j \in[2,3]$; we further let $f\left(y_{1}\right)=f\left(x_{j}\right)$ and $f\left(y_{2}\right)=[1,2] \backslash$ $\left\{f\left(y_{1}\right)\right\}$. Clearly, f is a $2 \operatorname{RiDF}$ of $G\left[\left\{x, x_{2}, x_{3}, y, y_{1}, y_{2}\right\}\right]$ of weight $\left|\left\{x, x_{2}, x_{3}, y, y_{1}, y_{2}\right\}\right|-2$, a contradiction.

Observation 2. G contains at most one 3^{+}-vertex. Suppose that G has two distinct $3^{+}{ }^{+}$ vertices, say x and y. By Observation $1, x y \in E(G)$. Let $\left\{y, x_{1}, x_{2}\right\} \subseteq N_{G}(x)$ and $\left\{x, y_{1}, y_{2}\right\} \subseteq$ $N_{G}(y)$. Since G contains no subgraph isomorphic to $C_{4},\left|\left\{x_{1}, x_{2}\right\} \cap\left\{y_{1}, y_{2}\right\}\right| \leq 1$ and there are no edges between $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$. Assume that $x_{2} \notin\left\{y_{1}, y_{2}\right\}$ and $y_{2} \notin\left\{x_{1}, x_{2}\right\}$. Then, the function $f:\left\{x, x_{1}, x_{2}, y, y_{1}, y_{2}\right\} \rightarrow\{0,1,2\}$ such that $f(x)=f(y)=0, f\left(x_{2}\right)=$ $f\left(y_{2}\right)=2$ and $f\left(x_{1}\right)=f\left(y_{1}\right)=1$, is a $2 \operatorname{RiDF}$ of $G\left[\left\{x, y, x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ of weight $\mid\left\{x, y, x_{1}\right.$, $\left.x_{2}, y_{1}, y_{2}\right\} \mid-2$, a contradiction.

Observation 3. If G contains a 3^{+}-vertex $x, N_{G}(x)$ has not more than two 2-vertices; in particular, when $N_{G}(x)$ contains two 2-vertices, in G these two 2-vertices are adjacent. If not, suppose that $N_{G}(x)$ contains three 2 -vertices, say x_{1}, x_{2}, x_{3}. We WLOG assume that $x_{3} \notin N_{G}\left(\left\{x_{1}, x_{2}\right\}\right)$ and let $N_{G}\left(x_{3}\right)=\left\{x, y_{3}\right\}$. Let $N_{G}\left(x_{1}\right)=\left\{x, y_{1}\right\}$ (possibly $y_{1}=x_{2}$, but $\left.y_{1} \neq y_{3}\right)$. By Observation 1, $d_{G}\left(y_{3}\right)=1$, i.e., $y_{1} y_{3} \notin E(G)$. Let f be: $f(x)=1, f\left(x_{1}\right)=$ $f\left(x_{3}\right)=0, f\left(y_{1}\right)=f\left(y_{3}\right)=2$. Obviously, f is a 2RiDF of $G\left[\left\{x, x_{1}, y_{1}, x_{3}, y_{3}\right\}\right]$ of weight $\left|\left\{x, x_{1}, y_{1}, x_{3}, y_{3}\right\}\right|-2$, a contradiction. Now, suppose that $N_{G}(x)$ contains two 2-vertices, say x_{1}, x_{2}. If $x_{1} x_{2} \notin E(G)$, let $N_{G}\left(x_{i}\right)=\left\{x, y_{i}\right\}, i \in[1,2]$. Clearly, $y_{1} \neq y_{2}$ and $y_{1} y_{2} \notin E(G)$. Let f be: $f(x)=1, f\left(x_{1}\right)=f\left(x_{2}\right)=0, f\left(y_{1}\right)=f\left(y_{2}\right)=2$. Then, f is a 2RiDF of $G\left[\left\{x, x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ of weight $\left|\left\{x, x_{1}, x_{2}, y_{1}, y_{2}\right\}\right|-2$, a contradiction.

By the above three observations and the assumption that G is connected, we see that if G contains a 3^{+}-vertex x, then $V(G) \backslash\{x\}$ contains either only 1-vertices ($G \cong S_{n-1}$), or one 2-vertex and $n-21$-vertices ($G \cong S(n-3,1)$), or two adjacent 2-vertices and $n-3$ 1-vertices $\left(G \cong S_{n-1}^{+}\right)$; if $\Delta(G)=2$, then G is isomorphic to one of $S_{2}^{+}, S_{2}, S(1,1)$ and C_{5}.

The theorem below follows from Theorem 1, Lemma 1, and $\gamma_{\mathrm{ri} 2}(G)=\sum_{i=1}^{k} \gamma_{\mathrm{ri} 2}\left(G_{i}\right)$, where G_{1}, \ldots, G_{k} are the components of G.

Theorem 2. Given a graph G with order $n \geq 3, \gamma_{\mathrm{ri} 2}(G)=n-1$ iff G has one component G_{1} isomorphic to one among $S_{n_{1}-1}\left(n_{1} \geq 3\right)$, $S_{n_{1}-1}^{+}\left(n_{1} \geq 3\right), S\left(n_{1}-3,1\right)\left(n_{1} \geq 4\right)$ and C_{5}, and other components are isomorphic to K_{1} or K_{2}, where $n_{1}=\left|V\left(G_{1}\right)\right|$.

3. An Improved Nordhaus-Gaddum Type Theorem for $\gamma_{\mathrm{ri} 2}(G)$

This section is devoted to achieve an improved Nordhaus-Gaddum type theorem by showing that $\gamma_{\mathrm{ri} 2}(G)+\gamma_{\mathrm{ri} 2}(\bar{G}) \leq n+2$ for every graph $G \nsubseteq C_{5}$ of order $n \geq 2$, which improves a result obtained by Kraner Šumenjak et al., et al [11]. We first present some fundamental lemmas.

Lemma 3. For an n-order graph G with $n \geq 3$, if G is S_{n-1}, S_{n-1}^{+}or $S(n-3,1)$, then $\gamma_{\mathrm{ri} 2}(\bar{G}) \leq 3$.
Proof. If $G \cong S_{n-1}$ or $G \cong S_{n-1}^{+}$, let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ where v_{0} is the center and $v_{1} v_{2} \in E(G)$ when $G \cong S_{n-1}^{+}$. Define a function f such that $f\left(v_{1}\right)=1, f\left(v_{0}\right)=f\left(v_{2}\right)=2$
and $f(v)=0$ for every $v \in V(\overline{\bar{G}}) \backslash\left\{v_{0}, v_{1}, v_{2}\right\}$. Since every vertex in $V(\bar{G}) \backslash\left\{v_{0}, v_{1}, v_{2}\right\}$ is a neighbor of v_{1} and also v_{2} in \bar{G}, it follows that f is a 2RiDF of \bar{G} of weight 3 .

If $G \cong S(n-3,1)$, then $n \geq 4$. Let $V(G)=\left\{v_{1}, v_{0}, u_{0}, u_{1}, \ldots, u_{n-3}\right\}$, where $v_{0} u_{0}$ is the bridge of G and $E(G)=\left\{v_{0} v_{1}, v_{0} u_{0}, u_{0} u_{i} \mid i \in[1, n-3]\right\}$. If $n=4$, then both G and \bar{G} are isomorphic to P_{4}, the path of length 3 , and the conclusion holds. If $n \geq 5$, then the function f from $V(\bar{G})$ to $[0,2]$ such that $f\left(u_{2}\right)=2, f\left(u_{1}\right)=f\left(u_{0}\right)=1$, and $f(v)=0$ for every $v \in V(\bar{G}) \backslash\left\{u_{0}, u_{1}, u_{2}\right\}$ is a 2 RiDF of \bar{G} with weight 3 .

Lemma 4. For a graph n-order G, if $G \not \approx C_{5}$ and $\gamma_{\mathrm{ri2}}(G)=4$, then $\gamma_{\mathrm{ri2}}(\bar{G}) \leq n-2$.
Proof. Clearly, $n \geq 4$. When $n=4, \gamma_{\mathrm{ri2}}(G)=4$ implies that $\gamma_{\mathrm{ri} 2}(\bar{G})=2=n-2$ by Lemma 1. Therefore, we assume that $n \geq 5$. Suppose that $\gamma_{\mathrm{ri} 2}(\bar{G}) \geq n-1$. If $\gamma_{\mathrm{ri} 2}(\bar{G})=n$, by Lemma 1 we have $\gamma_{\mathrm{ri} 2}(G)=2$, a contradiction. Therefore, $\gamma_{\mathrm{ri} 2}(\bar{G})=n-1$. By Theorem $2 \bar{G}$ has one component isomorphic to $S_{n_{1}}, S_{n_{1}}^{+}, S\left(n_{2}, 1\right)$ or C_{5} where $n_{1} \geq 2, n_{2} \geq 1$, and all of the other components of \bar{G} are isomorphic to K_{1} or K_{2}.

If \bar{G} contains two vertices u and v s.t. $N_{\bar{G}}(\{u, v\})=\varnothing$, then in G both u and v are adjacent to every vertex in $V(G) \backslash\{u, v\}$. We can obtain a 2RiDF of G by assigning 1 to $u, 2$ to v, and 0 to the remained vertices of G. This indicates that $\gamma_{\mathrm{ri} 2}(G) \leq 2$ and a contradiction. Therefore, \bar{G} contains no K_{2} components and contains at most one K_{1} component, implying that \bar{G} contains at most two components. If \bar{G} contains only one component, it follows that \bar{G} is S_{n-1}, S_{n-1}^{+}or $S(n-3,1)$ (since $G \not \approx C_{5}$). By Lemma 3 $\gamma_{\mathrm{ri} 2}(G) \leq 3$ and a contradiction. Therefore, \bar{G} has two components, denoted by G_{1} and G_{2}, where $G_{1} \cong K_{1}$ and G_{2} is isomorphic to $S_{n-2}, S_{n-2}^{+}, S(n-4,1)$ or C_{5}. Let $V\left(G_{1}\right)=\{u\}$ and define a function f as follows: let $f(u)=1 ; f\left(v_{0}\right)=f\left(v^{\prime}\right)=2$ when $G_{2} \cong S_{n-2}$ or $G_{2} \cong S_{n-2}^{+}$(where v_{0} is the center of G_{2} and v^{\prime} is a 1-vertex of G_{2} by the assumption of $n \geq 5), f\left(v_{0}\right)=f\left(u_{0}\right)=2$ when $G_{2} \cong S(n-4,1)$ (where $v_{0} u_{0}$ is the bridge of G_{2}), or $f\left(u_{1}\right)=f\left(u_{2}\right)=2$ when $G_{2} \cong C_{5}$ (where $C_{5}=u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$); and all of the other remained vertices are assigned value 0 . Clearly, all vertices with value 0 are adjacent to u and a vertex with value 2 . Hence, f is a $2 \operatorname{RiDF}$ of G, which has weight 3 , a contradiction.

Lemma 5. Suppose that G is an n-order graph satisfying that $\gamma_{\mathrm{ri} 2}(G) \geq 4$ and $\gamma_{\mathrm{ri2}}(G)+\gamma_{\mathrm{ri2}}(\bar{G})$ $=n+3$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an arbitrary $\gamma_{\text {ri2 }}(G)$-function. We have
(1) If $\left|V_{0}\right| \geq 2$, then for any $u, v \in V_{0}$, there does not exist $u_{1}, u_{2}, v_{1}, v_{2}$ such that $\left\{u_{1}, u_{2}\right\} \in$ $N_{\bar{G}}(u),\left\{v_{1}, v_{2}\right\} \in N_{\bar{G}}(v)$ and $u_{i} v_{i} \notin E(\bar{G})$ for $i \in[1,2]$, where $u_{1} \neq u_{2}, v_{1} \neq v_{2}$ but possibly $u_{i}=v_{i}$;
(2) If u, v are two arbitrary different vertices of V_{0}, then $\left|N_{\bar{G}}(\{u, v\})\right| \geq 3$;
(3) $\left|V_{i}\right| \geq 2$ for $i \in[0,2]$.

Proof. For (1), if the conclusion is false, then let g be: $g(u)=g(v)=0$ and $g\left(u_{i}\right)=g\left(v_{i}\right)=i$, $i \in[1,2]$. Then, g is a $2 \operatorname{RiDF}$ of $\bar{G}\left[\left\{u, v, u_{1}, v_{1}, u_{2}, v_{2}\right\}\right]$ with weight $\left|\left\{u, v, u_{1}, v_{1}, u_{2}, v_{2}\right\}\right|-2$. Since V_{1} and V_{2} are cliques in \bar{G}, V_{i} contains at most two vertices not assigned 0 under every 2 RiDF of \bar{G} for $i \in[1,2]$. Hence, we can extend g to a 2RiDF of \bar{G} with weight at most $\left|V_{0}\right|-2+4=\left|V_{0}\right|+2$, according to Lemma 2. This shows that $\gamma_{\mathrm{ri2}}(\bar{G}) \leq\left|V_{0}\right|+2$ and $\gamma_{\mathrm{ri} 2}(G)+\gamma_{\mathrm{ri} 2}(\bar{G}) \leq\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{0}\right|+2=n+2$, a contradiction.

For (2), if $\left|N_{\bar{G}}(\{u, v\})\right| \leq 2$, let f be: $f(v)=2, f(u)=1$, and $f(x)=0$ for $x \in$ $V(G) \backslash N_{\bar{G}}[\{u, v\}]$. It is clear that f is a $2 \operatorname{RiDF}$ of $G\left[V(G) \backslash N_{\bar{G}}(\{u, v\})\right]$ with weight 2 . According to Lemma 2, we can extend f to a $2 \operatorname{RiDF}$ of G with weight at most 4 (since $\left.\left|N_{\bar{G}}(\{u, v\})\right| \leq 2\right)$. Thus, $\gamma_{\mathrm{ri2}}(G)=4$ and by Lemma $4 \gamma_{\mathrm{ri2}}(\bar{G}) \leq n-2$, a contradiction.

For (3), if $\left|V_{0}\right|=1$, then $\gamma_{\mathrm{ri2}}(G)=n-1$. By an analogous argument as that in Lemma 4, we can derive that $\gamma_{\mathrm{ri} 2}(G)+\gamma_{\mathrm{ri} 2}(\bar{G}) \leq n+2$, a contradiction. In the following, we prove that $\left|V_{1}\right| \geq 2$ (the proof of $\left|V_{2}\right| \geq 2$ is similar to that of $\left|V_{2}\right| \geq 2$). Suppose that $\left|V_{1}\right|=1$ and let $V_{1}=\{u\}$. Then, every vertex of V_{0} is adjacent to u in G, i.e., u is not adjacent to V_{0} in \bar{G}. By Lemma 4 we assume that $\left|V_{1}\right|+\left|V_{2}\right| \geq 5$. If V_{0} contains a vertex v with two neighbors v_{1}, v_{2} in \bar{G}, then $u \notin\left\{v_{1}, v_{2}\right\}$. Let g be: $g(v)=0, g\left(v_{1}\right)=1, g\left(v_{2}\right)=2$. Since V_{2} is a clique
in \bar{G}, we can extend g to a $2 \operatorname{RiDF}$ of \bar{G} with weight at most $\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$, according to Lemma 2. This shows that $\gamma_{\mathrm{ri2}}(\bar{G}) \leq\left|V_{0}\right|+2$ and hence $\gamma_{\mathrm{ri2}}(G)+\gamma_{\mathrm{ri2}}(\bar{G}) \leq n+2$, a contradiction. Therefore, every vertex in V_{0} has degree at most 1 in \bar{G}, which implies that $\left|N_{\bar{G}}(\{x, y\})\right| \leq 2$ for any two vertices $x \in V_{0}, y \in V_{0}$ (observe that $\left|V_{0}\right| \geq 2$). This contradicts (2).

Lemma 6. Let G be an n-order graph, $n \geq 4$. For any $u \in V(G)$, if $H=G-u$, the resulting graph by deleting u and its incident edges from G, is connected and $\gamma_{\mathrm{ri2}}(H)=|V(H)|-1$, then G has a 2RiDF f satisfying $f(u)=1$ and $f(v)=0$ for some $v \in V(H)$.

Proof. Clearly, $|V(H)| \geq 3$. If u has no neighbor in $V(H)$, then let f be: $f(v)=g(v)$ for every $v \in V(H)$, and $f(u)=1$, where g is a $\gamma_{\mathrm{ri} 2}(H)$-function of H. Since $\gamma_{\mathrm{r} 2}(H)=$ $|V(H)|-1$, there exists $v \in V(H)$ satisfying $f(v)=g(v)=0$. If u has a neighbor $u_{1} \in V(H)$, there exists a $u_{2} \in V(H)$ s.t. $u_{1} u_{2} \in E(H)$ since H is connected. Let f be: $f\left(u_{1}\right)=0, f(u)=1, f\left(u_{2}\right)=2$. Then, we can extend f to a desired 2RiDF of G according to Lemma 2.

Now, we turn to the proof of the main result.
Theorem 3. Suppose that G is an n-order graph, $n \geq 2$. If $G \not \approx C_{5}$, then $\gamma_{\mathrm{ri} 2}(G)+\gamma_{\mathrm{ri2}}(\bar{G}) \leq$ $n+2$.

Proof. We are sufficient to handle the situation $n \geq 5$ since cases of $n \leq 4$ are trivial. Let $f_{0}=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{\mathrm{ri} 2}(G)$-function such that $\bar{G}\left[V_{0}\right]$ contains the maximum number of components isomorphic to K_{2}. Suppose to the contrary that $\gamma_{\mathrm{ri2}}(G)+\gamma_{\mathrm{ri2}}(\bar{G})>n+2$. Then, $\gamma_{\mathrm{ri2}}(G)+\gamma_{\mathrm{ri} 2}(\bar{G})=n+3$ since $\gamma_{\mathrm{ri} 2}(G)+\gamma_{\mathrm{ri2}}(\bar{G}) \leq n+3$ [11], that is,

$$
\begin{equation*}
\gamma_{\mathrm{ri} 2}(\bar{G})=\left|V_{0}\right|+3 \tag{1}
\end{equation*}
$$

Formula (1) indicates that every $2 \operatorname{RiDF}$ of \bar{G} has weight at least $\left|V_{0}\right|+3$. We will complete our proof by constructing a 2 RiDF of \bar{G} of weight at most $\left|V_{0}\right|+2$ or a 2 RiDF of G of weight less than $\left|V_{1}\right|+\left|V_{2}\right|$.

If $\left|V_{1} \cup V_{2}\right|=2$, then $\gamma_{\mathrm{ri2}}(G)+\gamma_{\mathrm{ri2}}(\bar{G}) \leq 2+n$, a contradiction; if $\left|V_{1} \cup V_{2}\right|=3$, then $\gamma_{\mathrm{ri} 2}(\bar{G})=n$ and by Lemma $1 \gamma_{\mathrm{ri2}}(G)=2$, also a contradiction. Therefore, by Lemma 4,

$$
\begin{equation*}
\left|V_{1}\right|+\left|V_{2}\right| \geq 5 \tag{2}
\end{equation*}
$$

Then, by Lemma 5 (3) we have $\left|V_{i}\right| \geq 2$ for $i \in[0,2]$. In addition, because, by definition, $\bar{G}\left[V_{i}\right]$ is a clique, $i \in[1,2]$, it follows that for every $2 \operatorname{RiDF} g_{0}=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ of \bar{G},

$$
\begin{equation*}
\left|\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right) \cap V_{i}\right| \leq 2, i \in[1,2] \tag{3}
\end{equation*}
$$

Therefore, by Lemma 2 we can extend every $\gamma_{\text {ri2 }}\left(\bar{G}\left[V_{0}\right]\right)$-function to a 2 RiDF of \bar{G} with weight at most $\gamma_{\text {ri2 }}\left(\bar{G}\left[V_{0}\right]\right)+4$, i.e., $\gamma_{\text {ri2 }}\left(\bar{G}\left[V_{0}\right]\right) \geq\left|V_{0}\right|-1$ by Formula (1).

Claim 1. Denote by ℓ the number of vertices in $V_{1} \cup V_{2}$, which have degree $\left|V_{1}\right|+\left|V_{2}\right|-1$ in $\bar{G}\left[V_{1} \cup V_{2}\right]$. Then, $\ell \leq 1-\ell^{\prime}$ where $\ell^{\prime}=\left|V_{0}\right|-\gamma_{\text {ri2 }}\left(\bar{G}\left[V_{0}\right]\right) \leq 1$. If not, either ℓ is at least 2 or both ℓ and ℓ^{\prime} are equal to 1 . Suppose that $\ell \geq 2$ and take two vertices v_{1}, v_{2} $\in\left(V_{1} \cup V_{2}\right)$ such that they are adjacent to all vertices of $\left(V_{1} \cup V_{2}\right) \backslash\{u, v\}$ in \bar{G}. Let g^{\prime} be: $g^{\prime}\left(v_{1}\right)=1, g^{\prime}\left(v_{2}\right)=2, g^{\prime}(x)=0$ for $x \in V_{1} \cup V_{2} \backslash\left\{v_{1}, v_{2}\right\}$. Clearly, g^{\prime} is a 2RiDF of $\bar{G}\left[V_{1} \cup V_{2}\right]$ and by Lemma 2 we can extend g^{\prime} to a 2RiDF of \bar{G}, which has weight at most $\left|V_{0}\right|+2$, a contradiction. Now, suppose that $\ell=\ell^{\prime}=1$. Then, $\gamma_{\mathrm{ri2}}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|-1$, which indicates that $\bar{G}\left[V_{0}\right]$ contains a component H^{\prime} s.t. $\gamma_{\mathrm{ri2}}\left(H^{\prime}\right)=\left|V\left(H^{\prime}\right)\right|-1$. Since $\ell=1$, there is a vertex v, say $v \in V_{1}$, which is adjacent to every vertex of V_{2} in \bar{G}. By Lemma $6 \bar{G}\left[V\left(H^{\prime}\right) \cup\{v\}\right]$ has a $2 \operatorname{RiDF} g^{\prime}$ s.t. $g^{\prime}(x)=0$ for some $x \in V\left(H^{\prime}\right)$ and $g^{\prime}(v)=1$. Observe that in $\bar{G} v$ is adjacent to all vertices of $\left(V_{1} \cup V_{2}\right) \backslash\{v\}$; by the rule of Lemma 2 we can extend g^{\prime} to a 2RiDF g of \bar{G} under which there is at most one vertex in $V_{1} \backslash\{v\}$ (and V_{2})
not assigned value 0 . Thus, $w(g) \leq\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$, a contradiction. This completes the proof of Claim 1.

Now, we WLOG assume $\left|V_{1}\right| \geq\left|V_{2}\right|$. Then, $\left|V_{1}\right| \geq 3$ by Formula (2).
Claim 2. $\bar{G}\left[V_{0}\right]$ does not contain any isolated vertex v s.t. $N_{\bar{G}}(v) \cap V_{1}=\varnothing$. Otherwise, define f^{\prime} as: for $x \in V_{2} f^{\prime}(x)=2$, and $f^{\prime}(v)=1$. By Claim 1, in \bar{G}, V_{1} has not more than one vertex adjacent to every vertex in V_{2}; say v^{\prime} if such a vertex exists. We further let $f^{\prime}(y)=0$ for $y \in V_{1} \cup\left(V_{0} \backslash\{v\}\right)$ (or for $y \in\left(V_{1} \backslash\left\{v^{\prime}\right\}\right) \cup\left(V_{0} \backslash\{v\}\right)$ if v^{\prime} exists). Since in G every vertex in $V_{1} \cup V_{0}$ (except for v^{\prime}) is adjacent to v and also V_{2}, f is a 2 RiDF of G of weight at most $\left|V_{2}\right|+2$, a contradiction. This completes the proof of Claim 2.

We proceed by distinguishing two cases: $\gamma_{\mathrm{ri} 2}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|-1$ and $\gamma_{\mathrm{ri2}}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|$.
Case 1. $\gamma_{\text {ri2 }}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|-1$. In this case, by Claim 1 each vertex of V_{i} owns a neighbor belonging to V_{j} in G where $\{i, j\}=[1,2]$; by Theorem $2, \bar{G}\left[V_{0}\right]$ has one component H isomorphic to one of $S_{|V(H)|-1}(|V(H)| \geq 3), S_{|V(H)|-1}^{+}(|V(H)| \geq 3), S(|V(H)|-3,1)$ $(|V(H)| \geq 4)$ and C_{5}, and other components of $\bar{G}\left[V_{0}\right]$ are isomorphic to K_{1} or K_{2}. Let $u_{0} \in V(H)$ be a vertex with $d_{H}\left(u_{0}\right)=\Delta(H)$. Clearly, $d_{H}\left(u_{0}\right) \geq 2$. Let $u_{1} \in N_{H}\left(u_{0}\right)$ and $u_{2} \in N_{H}\left(u_{0}\right)$ be two vertices such that every vertex in $V(H) \backslash\left\{u_{0}, u_{1}, u_{2}\right\}$ has degree in H not exceeding $\min \left\{d_{H}\left(u_{1}\right), d_{H}\left(u_{2}\right)\right\}$. By the structure of H, for $i \in[1,2]$, we have that $d_{H}\left(u_{i}\right) \leq 2$ and if u_{i} has a neighbor $u_{i}^{\prime}\left(\notin\left\{u_{0}, u_{1}, u_{2}\right\}\right)$ in H, then $u_{0} u_{i}^{\prime} \notin E(H)$. Moreover, by Lemma 5 (1), $\left(N_{\bar{G}}\left(u_{1}\right) \cap N_{\bar{G}}\left(u_{2}\right)\right) \backslash\left\{u_{0}\right\}=\varnothing$, which implies that each vertex of $V_{1} \cup V_{2}$ is adjacent to u_{1} or u_{2} in G.

Claim 3. $\left|V_{0} \backslash V(H)\right| \leq 1$. Otherwise, let $\left\{v_{1}, v_{2}\right\} \subseteq\left(V_{0} \backslash V(H)\right)$. Then, $d_{\bar{G}\left[V_{0}\right]}\left(v_{1}\right) \leq 1$ and $d_{\bar{G}\left[V_{0}\right]}\left(v_{2}\right) \leq 1$. Suppose that $d_{\bar{G}\left[V_{0}\right]}\left(v_{1}\right)=1$ (the case of $d_{\bar{G}\left[V_{0}\right]}\left(v_{2}\right)=1$ can be similarly discussed). Let $v_{1} v_{1}^{\prime} \in E\left(\bar{G}\left[V_{0}\right]\right)$ and clearly $d_{\bar{G}\left[V_{0}\right]}\left(v_{1}^{\prime}\right)=1$. By Lemma 5 (2), a vertex $v_{0} \in\left(V_{1} \cup V_{2}\right)$ is adjacent to $\left\{v_{1}, v_{1}^{\prime}\right\}$ in \bar{G}. We WLOG assume that $v_{1} v_{0} \in E(\bar{G})$. According to Lemma $6, \bar{G}\left[V(H) \cup\left\{v_{0}\right\}\right]$ admits a 2RiDF g^{\prime} satisfying $g^{\prime}\left(v_{0}\right)=1$ and $g^{\prime}(x)=0$ for some $x \in V(H)$. Further, let $g^{\prime}\left(v_{1}\right)=0$ and $g^{\prime}\left(v_{1}^{\prime}\right)=2$. So g^{\prime} is a $2 \operatorname{RiDF}$ of $\bar{G}[V(H) \cup$ $\left.\left\{v_{0}, v_{1}, v_{1}^{\prime}\right\}\right]$, and by Lemma 2 and Formula (3) we can extend g^{\prime} to a 2RiDF of \bar{G} with weight at most $\left|V_{0}\right|-2+4=\left|V_{0}\right|+2$ (since $g^{\prime}\left(v_{1}\right)=g^{\prime}(x)=0$), a contradiction. We therefore assume that $d_{\bar{G}\left[V_{0}\right]}\left(v_{1}\right)=d_{\bar{G}\left[V_{0}\right]}\left(v_{2}\right)=0$. By Lemma 5 (2) we have $\mid N_{\bar{G}}\left(\left\{v_{1}, v_{2}\right\}\right) \cap\left(V_{1} \cup\right.$ $\left.V_{2}\right) \mid \geq 3$. WLOG, suppose that in \bar{G}, v_{1} has two neighbors belonging to $V_{1} \cup V_{2}$, say v_{11} and v_{12}. By Lemma $5(1), u_{i}$ is not adjacent to both v_{11} and v_{12}, and $v_{1 j}$ is not adjacent to both u_{1} and u_{2} in \bar{G}, where $i \in[1,2]$ and $j \in[1,2]$. Thus, it follows that $u_{1} v_{11} \notin E(\bar{G})$ and $u_{2} v_{12} \notin E(\bar{G})$, or $u_{1} v_{12} \notin E(\bar{G})$ and $u_{2} v_{11} \notin E(\bar{G})$, which contradicts to Lemma 5 (1) again. This completes the proof of Claim 3.

By Claim 3, we see that $\bar{G}\left[V_{0}\right]$ contains no component isomorphic to K_{2} and contains at most one K_{1} component.

Claim 4. $\bar{G}\left[V_{0}\right]$ contains a K_{1} component. If not, we have $\bar{G}\left[V_{0}\right]=H$.
Claim 4.1. $\left(N_{\bar{G}}\left(u_{1}\right) \cup N_{\bar{G}}\left(u_{2}\right)\right) \cap\left(V_{1} \cup V_{2}\right) \neq \varnothing$.
Otherwise, for $i \in[1,2], u_{i}$ is adjacent to every vertex of $V_{1} \cup V_{2}$ in G, and by Lemma 5 (2) $d_{H}\left(u_{i}\right)=2$ and $u_{1} u_{2} \notin E(\bar{G})$. Set $\left\{u_{i}^{\prime}\right\}=N_{H}\left(u_{i}\right) \backslash\left\{u_{0}\right\}, i \in[1,2]$; then, $u_{0} u_{i}^{\prime} \notin$ $E(\bar{G})$. Let f be: $f\left(u_{1}\right)=f\left(u_{1}^{\prime}\right)=1, f\left(u_{2}\right)=f\left(u_{2}^{\prime}\right)=2$ and $f(x)=0$ for any x in $V(G) \backslash\left\{u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime}\right\}$. So, we get a $2 \operatorname{RiDF} f$ of G, which has weight 4 , a contradiction. So, Claim 4.1 holds.

Claim 4.2. $\left|V_{1}\right|=3$.
Observe that $\left|V_{1}\right| \geq 3$; it is enough by showing that G admits a 2RiDF f s.t. $w(f) \leq$ $\left|V_{2}\right|+3$. When $u_{1} u_{2} \in E(\bar{G})$, let f be: $f\left(u_{i}\right)=1$ for $i \in[0,2], f(x)=0$ for $x \in$ $\left(V_{1} \cup V_{0}\right) \backslash\left\{u_{0}, u_{1}, u_{2}\right\}$, and $f(y)=2$ for $y \in V_{2}$. By Lemma 5 (1), in $\bar{G}, V_{1} \cup V_{0}$ contains no vertex adjacent to u_{1} and also u_{2}. Therefore, f is a 2 RiDF of G of weight $\left|V_{2}\right|+3$. Now, suppose that $u_{1} u_{2} \notin E(\bar{G})$. By Lemma 5 (1), V_{1} contains at most one vertex adjacent to both u_{0} and u_{1} in \bar{G}; say u if such a vertex exists. Let f be: $f\left(u_{0}\right)=f\left(u_{1}\right)=1$ (or $f(u)=f\left(u_{0}\right)=f\left(u_{1}\right)=1$ if u exists), $f(x)=0$ for $x \in\left(V_{1} \cup\left(V_{0} \backslash\left\{u_{0}, u_{1}\right\}\right)\right.$) (or $\left.x \in\left(V_{1} \cup V_{0}\right) \backslash\left\{u_{0}, u_{1}, u\right\}\right)$ and $f(y)=2$ for $y \in V_{2}$. Notice that by Claim 1 every vertex of $V_{0} \cup V_{1}$ is adjacent to V_{2} in G, and by the structure of H and the selection of u_{1} and
u_{2}, every vertex of $\left(V_{0} \cup V_{1}\right) \backslash\left\{u, u_{0}, u_{1}\right\}$ is adjacent to $\left\{u_{0}, u_{1}\right\}$ in G; f is a $2 \operatorname{RiDF}$ of G of weight at most $\left|V_{2}\right|+3$. This completes the proof of Claim 4.2.

By Claim 4.2, we have $2 \leq\left|V_{2}\right| \leq 3$. Let $V_{1}=\left\{w_{1}, w_{2}, w_{3}\right\}$ in the following.
Claim 4.3. In \bar{G}, for $\{i, j\}=[1,2]$ every vertex in V_{i} has not more than one neighbor in V_{j}.
If not, let $v \in V_{2}$ be adjacent to two vertices of V_{1} in \bar{G}, say w_{1}, w_{2}. By Lemma 5 (1) u_{1} or u_{2} is not adjacent to v in \bar{G}, say $u_{1} v \notin E(\bar{G})$. If $u_{2} w_{3} \notin E(\bar{G})$, define g^{\prime} as: $g^{\prime}\left(u_{i}\right)=i$ for every $i \in[0,2], g^{\prime}\left(w_{1}\right)=g^{\prime}\left(w_{2}\right)=0, g^{\prime}\left(w_{3}\right)=2, g^{\prime}(v)=1$. If $u_{2} w_{3} \in E(\bar{G})$, then $u_{1} w_{3} \notin E(\bar{G})$ and let g^{\prime} be: $g^{\prime}\left(u_{1}\right)=g^{\prime}\left(w_{3}\right)=1, g^{\prime}\left(w_{1}\right)=g^{\prime}\left(w_{2}\right)=0, g^{\prime}(v)=2$; further, let $g^{\prime}\left(u_{2}\right)=0$ when $u_{2} v \in E(\bar{G})$, or let $g^{\prime}\left(u_{2}\right)=2$ and $g^{\prime}\left(u_{0}\right)=0$ when $u_{2} v \notin E(\bar{G})$. According to Lemma 2, in either case the g^{\prime} defined above can be extended to a 2RiDF g of \bar{G} under which $g\left(w_{1}\right)=g\left(w_{2}\right)=0$ and $g\left(u_{0}\right)=0$ or $g\left(u_{2}\right)=0$. Therefore, by Formula (3) $w(g) \leq\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$, a contradiction. With a similar discussion, there is also a contradiction if we assume V_{1} contains a vertex that has two neighbors in V_{2} in \bar{G}. This completes the proof of Claim 4.3.

Now, we consider $\left|V_{2}\right|$. Suppose that $\left|V_{2}\right|=3$ and let $V_{2}=\left\{w_{4}, w_{5}, w_{6}\right\}$. According to Claim 4.1, we WLOG assume that $u_{1} w_{1} \in E(\bar{G})$. This indicates that $u_{2} w_{1} \notin E(\bar{G})$ by Lemma 5 (1). If u_{2} has a neighbor in V_{2}, say $u_{2} w_{4} \in E(\bar{G})$, then according to Lemma 5 (1), $u_{1} w_{4} \notin E(\bar{G}), w_{1} w_{4} \in E(\bar{G})$, and u_{1} (resp. u_{2}) is not adjacent to $\left\{w_{2}, w_{3}\right\}$ (resp. $\left\{w_{5}, w_{6}\right\}$) in \bar{G} (otherwise w_{4} or w_{1} has two neighbors in V_{1} or V_{2} in \bar{G}, respectively. This contradicts to Claim 4.3). Let f be: $f\left(u_{1}\right)=f\left(w_{1}\right)=1, f\left(u_{2}\right)=f\left(w_{4}\right)=2$ and $f(x)=0$ for $x \in V(G) \backslash\left\{u_{1}, u_{2}, w_{1}, w_{4}\right\}$. Observe that w_{1} (resp. w_{4}) is not adjacent to $\left\{w_{5}, w_{6}\right\}$ (resp. $\left.\left\{w_{2}, w_{3}\right\}\right)$ in \bar{G} and by Lemma 5 (1) $V_{0} \backslash\left\{u_{0}, u_{1}, u_{2}\right\}$ contains no vertex adjacent to both u_{i} and w_{i} for some $i \in[1,2]$. Hence, f is a $2 \operatorname{RiDF}$ of $G\left[V(G) \backslash\left\{u_{0}\right\}\right]$ of weight 4 and we are able to extend f to a 2RiDF of G with weight at most $5<\left|V_{1}\right|+\left|V_{2}\right|$ according to Lemma 2, a contradiction. Therefore, we may assume that $N_{\bar{G}}\left(u_{2}\right) \cap V_{2}=\varnothing$. In this case, when $N_{\bar{G}}\left(u_{2}\right) \cap V_{1}=\varnothing$, let f be: $f\left(u_{2}\right)=2, f\left(u_{0}\right)=f\left(u_{1}\right)=1$. By Lemma 5 (1) $V_{1} \cup V_{2}$ has not more than one vertex w^{\prime} adjacent to both u_{0} and u_{1} in \bar{G} and $V_{0} \backslash\left\{u_{0}\right\}$ has not more than one vertex u^{\prime} adjacent to u_{2} in \bar{G}; for $x \in V(G) \backslash\left\{u_{0}, u_{1}, u_{2}, u^{\prime}, w^{\prime}\right\}$ we further let $f(x)=0$. Then, f is a $2 \operatorname{RiDF}$ of $G\left[V(G) \backslash\left\{u^{\prime}, w^{\prime}\right\}\right]$ of weight 3 and according to Lemma 2 we can extend f to a 2RiDF of G of weight at most $5<\left|V_{1}\right|+\left|V_{2}\right|$, a contradiction. We therefore suppose that u_{2} has a neighbor in V_{1} in \bar{G}, say $u_{2} w_{2} \in E(\bar{G})$. With the same argument as $N_{\bar{G}}\left(u_{2}\right) \cap V_{2}=\varnothing$, we can show that $N_{\bar{G}}\left(u_{1}\right) \cap V_{2}=\varnothing$ as well.

Then, if $w_{3} u_{1} \notin E(\bar{G})$ and $w_{3} u_{2} \notin E(\bar{G})$, the function $f: f\left(u_{1}\right)=f\left(w_{1}\right)=1, f\left(u_{2}\right)=$ $f\left(w_{4}\right)=2$ and $f(x)=0$ for $x \in V(G) \backslash\left\{u_{1}, u_{2}, w_{1}, w_{4}, u_{0}\right\}$, is a 2RiDF of $G\left[V(G) \backslash\left\{u_{0}\right\}\right]$ with weight 4 , and according to Lemma 2 , we are able to extend f to a 2RiDF of G with weight at most $5<\left|V_{1}\right|+\left|V_{2}\right|$, a contradiction. Therefore, we suppose that $w_{3} u_{1} \in$ $E(\bar{G})$ by the symmetry. By Lemma 5 (1), it has that $w_{3} u_{2} \notin E(\bar{G})$, and $u_{0} w_{1} \notin E(\bar{G})$ or $u_{0} w_{3} \notin E(\bar{G})$, say $u_{0} w_{1} \notin E(\bar{G})$ by the symmetry. Let f be: $f\left(u_{0}\right)=f\left(u_{1}\right)=1, f\left(u_{2}\right)=$ $f\left(w_{2}\right)=2$ and $f(x)=0$ for $x \in V(G) \backslash\left\{u_{1}, u_{2}, u_{0}, w_{2}, w_{3}\right\}$. Since in G every vertex in $V(G) \backslash\left\{u_{1}, u_{2}, u_{0}, w_{2}, w_{3}\right\}$ has a neighbor in $\left\{u_{0}, u_{1}\right\}$ and also $\left\{u_{2}, w_{2}\right\}, f$ is a 2RiDF of $G\left[V(G) \backslash\left\{w_{3}\right\}\right]$ of weight 4 and according to Lemma 2 we can extend f to a 2RiDF of G of weight at most $5<\left|V_{1}\right|+\left|V_{2}\right|$, and a contradiction.

A similar line of thought leads to a contradiction if we assume that $\left|V_{2}\right|=2$, and so Claim 4 holds.

By Claim 4, we see that $\bar{G}\left[V_{0}\right]$ contains one component isomorphic to K_{1}. Let s be the vertex of the K_{1} component. We first show that $\left|N_{\bar{G}}(s) \cap\left(V_{1} \cup V_{2}\right)\right| \leq 1$. If not, in \bar{G} we assume that s has two neighbors in $V_{1} \cup V_{2}$, say s_{1}, s_{2}. By Lemma 5 (1) for $i, j \in[1,2]$, s_{i} (resp. u_{j}) can not be adjacent to u_{1} and u_{2} (resp. s_{1} and s_{2}) simultaneously in \bar{G}. This implies that either $s_{i} u_{i} \notin E(\bar{G}), i \in[1,2]$, or $s_{1} u_{2} \notin E(\bar{G})$ and $s_{2} u_{1} \notin E(\bar{G})$, which violates Lemma 5 (1) as well. Thus, by Claim $2\left|N_{\bar{G}}(s) \cap\left(V_{1} \cup V_{2}\right)\right|=1$ and the vertex s^{\prime} adjacent to s in \bar{G} belongs to V_{1}. Let f be: $f(x)=1$ for $x \in V_{1}, f(s)=2, f(y)=0$ for $\left.y \in V_{2} \cup V(H)\right)$. Observe that by Claim 1 all vertices in V_{2} are adjacent to V_{1} in G. Hence, every vertex in $V_{2} \cup V(H)$ is adjacent to s and also V_{1} in G. Therefore, f is a 2RiDF of G with weight $\left|V_{1}\right|+1<\left|V_{1}\right|+\left|V_{2}\right|$ (since $\left|V_{2}\right| \geq 2$), a contradiction.

The foregoing discussion shows that there exists a contradiction if we assume that $\gamma_{\mathrm{ri2}}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|-1$. In what remains, we handle the case when $\gamma_{\mathrm{ri2}}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|$.

Case 2. $\gamma_{\mathrm{ri} 2}\left(\bar{G}\left[V_{0}\right]\right)=\left|V_{0}\right|$. Then by Lemma 1 every component of $\bar{G}\left[V_{0}\right]$ is isomorphic to K_{1} or K_{2}. Recall that $\left|V_{i}\right| \geq 2$ for $i \in[0,2]$. Take two vertices u, v in V_{0} s.t. $u v \in E(\bar{G})$ if $\bar{G}\left[V_{0}\right]$ contains a K_{2} component and u, v are isolated vertices in $\bar{G}\left[V_{0}\right]$ otherwise. By Lemma 5 (1), we have

$$
\begin{equation*}
\left|\left(N_{\bar{G}}(u) \cap N_{\bar{G}}(v)\right) \cap\left(V_{1} \cup V_{2}\right)\right| \leq 1 \tag{4}
\end{equation*}
$$

We deal with two subcases in terms of the adjacency property of u and v.
Case 2.1. $u v \in E(\bar{G})$. Then in $\bar{G}, V_{0} \backslash\{u, v\}$ contains no vertex adjacent to $\{u, v\}$.
Claim 5. In $\bar{G}\left[V_{1} \cup V_{2}\right], V_{1} \cup V_{2}$ contains only vertices with degree at most $\left|V_{1}\right|+\left|V_{2}\right|-2$. Suppose that V_{1} contains a vertex w such that $w w^{\prime} \in E(\bar{G})$ for every $w^{\prime} \in V_{2}$. If $u w \in E(\bar{G})$ (or $v w \in E(\bar{G})$), define a $2 \operatorname{RiDF} g^{\prime}$ of $\bar{G}[\{u, v, w\}]$ as: $g^{\prime}(u)=0$ (or $\left.g^{\prime}(v)=0\right), g^{\prime}(w)=1$ and $g^{\prime}(v)=2\left(g^{\prime}(u)=2\right)$. According to Lemma 2 we can extend g^{\prime} to a 2RiDF of \bar{G}, under which $\left(V_{1} \cup V_{2}\right) \backslash\{w\}$ contains at most two vertices not assigned 0 . Thus, $w(g) \leq\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$, a contradiction. We therefore assume that $u w \notin E(\bar{G})$ and $v w \notin E(\bar{G})$. By Lemma 5 (2), there are at least three vertices in $\left(V_{1} \cup V_{2}\right)$ that are adjacent to u or v. We WLOG assume that $V_{1} \cup V_{2}$ contains a vertex u^{\prime} s.t. $u^{\prime} u \in E(\bar{G})$. Construct a $2 \operatorname{RiDF} g^{\prime}$ of $\bar{G}\left[\left\{u, v, u^{\prime}, w\right\}\right]$ as follows: $g^{\prime}(u)=0, g^{\prime}\left(u^{\prime}\right)=2$, and $g^{\prime}(v)=g^{\prime}(w)=1$. Then, by Lemma $2 g^{\prime}$ can be extended to a $2 \operatorname{RiDF} g$ of \bar{G}, under which $\left(V_{1} \cup V_{2}\right) \backslash\left\{w, u^{\prime}\right\}$ contains at most one vertex not assigned value 0 . Therefore, $w(g) \leq\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$, a contradiction. Similarly, we can also obtain a contradiction if we assume that V_{2} contains a vertex adjacent to every vertex of V_{1}. So, Claim 5 holds.

By Claim 5, for $\{i, j\}=[1,2]$, each vertex of V_{i} is adjacent to a vertex of V_{j} in G. If $V_{1} \cap$ $\left(N_{\bar{G}}(u) \cap N_{\bar{G}}(v)\right)=\varnothing$, then in G all vertices of V_{1} are adjacent to $\{u, v\}$. Let f be: $f(x)=2$ for $x \in V_{2}, f(y)=0$ for $y \in V_{1} \cup\left(V_{0} \backslash\{u, v\}\right)$, and $f(u)=f(v)=1$. Obviously, f is a 2RiDF of G s.t. $w(f)=\left|V_{2}\right|+2<\left|V_{1}\right|+\left|V_{2}\right|$, a contradiction. We therefore assume that V_{1} contains a vertex s s.t. $s u \in E(\bar{G})$ and $s v \in E(\bar{G})$. Then, in \bar{G}, by Lemma 5 (1) no vertex in $V_{2} \cup\left(V_{1} \backslash\{s\}\right)$ is adjacent to u and v simultaneously. Analogously, the function f : $f(v)=f(u)=1, f(x)=2$ for $x \in V_{1}$, and $f(y)=0$ for $y \in V_{2} \cup\left(V_{0} \backslash\{u, v\}\right)$ (and $f(s)=$ $f(v)=f(u)=1, f(x)=2$ for $x \in V_{2}$, and $f(y)=0$ for $\left.y \in\left(V_{1} \backslash\{s\}\right) \cup\left(V_{0} \backslash\{u, v\}\right)\right)$ is a 2RiDF of G with weight $\left|V_{1}\right|+2$ (and $\left|V_{2}\right|+3$). This implies that $\left|V_{1}\right|=3$ and $\left|V_{2}\right|=2$. Let $V_{1}=\left\{s, s_{1}, s_{2}\right\}$ and $V_{2}=\left\{s_{3}, s_{4}\right\}$. Then, in \bar{G}, neither u nor v is a neighbor of s_{1} and s_{2} simultaneously; otherwise, we, by the symmetry, suppose that $u s_{1} \in E(\bar{G})$ and $u s_{2} \in E(\bar{G})$. Let g^{\prime} be: $g^{\prime}(v)=g^{\prime}\left(s_{1}\right)=g^{\prime}\left(s_{2}\right)=0, g^{\prime}(u)=1$, and $g^{\prime}(s)=2$. Obviously, g^{\prime} is a 2RiDF of $\bar{G}\left[\left\{u, v, s, s_{1}, s_{2}\right\}\right]$ with weight 2 . According to Lemma 2, we can extend g^{\prime} to a 2RiDF of \bar{G} with weight at most $\left|V_{0}\right|-1+\left|V_{2}\right|+1=\left|V_{0}\right|+2$, a contradiction. In addition, in \bar{G}, s_{i}, $i \in[1,2]$, is not adjacent to u and v simultaneously according to Lemma 5 (1). Therefore, we may assume, by the symmetry, that $s_{1} v \notin E(\bar{G})$ and $s_{2} u \notin E(\bar{G})$.

If no edge between $\{u, v\}$ and V_{2} in \bar{G} exists, then by Lemmas 5 (2), $u s_{1} \in E(\bar{G})$ and $v s_{2} \in E(\bar{G})$. Then, the function g^{\prime} such that $g^{\prime}(s)=g^{\prime}\left(s_{1}\right)=g^{\prime}(v)=0, g^{\prime}\left(s_{2}\right)=2$, and $g^{\prime}(u)=1$ is a $2 \operatorname{RiDF}$ of $\bar{G}\left[\left\{u, v, s, s_{1}, s_{2}\right\}\right]$ with weight 2 . According to Lemma 2, we can extend g^{\prime} to a 2RiDF of \bar{G} with weight at most $\left|V_{2}\right|+1+\left|V_{0}\right|-1=\left|V_{0}\right|+2$, a contradiction. We therefore assume that \bar{G} contains an edge connecting $\{u, v\}$ and V_{2}, say $v s_{3} \in E(\bar{G})$ by the symmetry.

If $s_{4} s \in E(\bar{G})$, define g^{\prime} as: $g^{\prime}\left(s_{3}\right)=2, g^{\prime}\left(s_{4}\right)=0, g^{\prime}(s)=1, g^{\prime}(v)=0$. Then, g^{\prime} is a $2 \operatorname{RiDF}$ of $\bar{G}\left[\left\{s, v, s_{3}, s_{4}\right\}\right]$ with weight 2. By Lemma 2 and Formula 3, we are able to extend g^{\prime} to a 2 RiDF of \bar{G} of weight at most $\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$, a contradiction. Consequently, we have $s_{4} s \notin E(\bar{G})$. Then, the function g^{\prime} such that $g^{\prime}\left(s_{3}\right)=0, g^{\prime}\left(s_{4}\right)=g^{\prime}(s)=2, g^{\prime}(v)=1$, $g^{\prime}(u)=0$ is a $2 \operatorname{RiDF}$ of $\bar{G}\left[\left\{s, u, v, s_{3}, s_{4}\right\}\right]$ with weight 3 , and by Lemma 2 and Formula 3 we can extend g^{\prime} to a 2 RiDF of \bar{G} with weight at most $\left|V_{0}\right|-1+3=\left|V_{0}\right|+2$. This contradicts the assumption.

Case 2.2. $u v \notin E(\bar{G})$. Then, by the selection of u, v and $f_{0}, \bar{G}\left[V_{0}\right]$ contains only isolated vertices and G does not admit a $\gamma_{\text {ri2 }}(G)$-function for which the induced subgraph of \bar{G} by vertices with value 0 contains K_{2} components.

For every $x \in V_{0}$, let $U_{i}^{x}=N_{\bar{G}}(x) \cap V_{i}$ for $i \in[1,2]$. Let f^{\prime} be: $f^{\prime}(x)=0$ for $x \in$ $\left(\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right) \cup\left(V_{0} \backslash\{u, v\}\right), f^{\prime}(v)=2$, and $f^{\prime}(u)=1$. Apparently, f^{\prime} is a $2 \operatorname{RiDF}$ of $\left.G-\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right)$ with weight 2. According to Lemma 2, we can extend f^{\prime} to a 2RiDF of G with weight at most $\left.\mid\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right) \mid+2$. To ensure $\left.\mid\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right)\left|+2 \geq\left|V_{1}\right|+\left|V_{2}\right|\right.$, we have

$$
\begin{equation*}
\left|\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right| \leq 2 \tag{5}
\end{equation*}
$$

Claim 6. $\left|\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right|=2$ and the two vertices in $\left(V_{1} \cup V_{2}\right) \backslash$ $\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)$ are adjacent in \bar{G}. Define a $2 \operatorname{RiDF} g^{\prime}$ of $\bar{G}\left[V_{0}\right]$ as: $g^{\prime}(u)=g^{\prime}(v)=1$. Suppose that $\left|\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)\right| \leq 1$. Since V_{1} and V_{2} are cliques in \bar{G} and every vertex in $U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}$ is adjacent to u or v in \bar{G}, by Lemma 2 we are able to extend g^{\prime} to a $2 \operatorname{RiDF} g$ of \bar{G} under which at most one vertex in $V_{i}, i \in[1,2]$, is not assigned value 0 (here if $\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)$ contains a vertex, say w, then let $g(w)=2$). Clearly, $w(g)=w\left(g^{\prime}\right)+2 \leq\left|V_{0}\right|+2$, a contradiction. Moreover, if $\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)$ contains two nonadjacent vertices in \bar{G}, say w_{1}, w_{2}, then w_{1} and w_{2} are not in the same set V_{i} for some $i \in[1,2]$. Therefore, we can extend g^{\prime} to a 2RiDF g of \bar{G} via letting $g^{\prime}(x)=0$ when x is in $\left(V_{1} \cup V_{2}\right) \backslash\left\{w_{1}, w_{2}\right\}$ and $g^{\prime}\left(w_{1}\right)=g^{\prime}\left(w_{2}\right)=2$. However, $w(g)=w\left(g^{\prime}\right)+2 \leq\left|V_{0}\right|+2$, a contradiction. This completes the proof of Claim 6.

By Claim $6,\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}\right)$ contains two adjacent vertices in \bar{G}, say w_{1}, w_{2}. If there exists a $z \in\left(V_{0} \backslash\{u, v\}\right)$ s.t. $z w_{1} \in E(\bar{G})\left(\right.$ or $z w_{2} \in E(\bar{G})$), then set g^{\prime} as: $g^{\prime}(z)=g^{\prime}(u)=g^{\prime}(v)=1, g^{\prime}\left(w_{1}\right)=0$ (or $\left.g^{\prime}\left(w_{2}\right)=0\right), g^{\prime}\left(w_{2}\right)=2$ (or $g^{\prime}\left(w_{1}\right)=2$). Since in \bar{G} every vertex in $\left(V_{1} \cup V_{2}\right) \backslash\left\{w_{2}\right\}$ has a neighbor in $\{z, u, v\}$ and every vertex in $V^{\prime} \backslash\left\{w_{2}\right\}$ is a neighbor of w_{2}, where $w_{2} \in V^{\prime}$ for some $V^{\prime} \in\left\{V_{1}, V_{2}\right\}$, we can extend g^{\prime} to a 2RiDF g of \bar{G} according to Lemma 2. Under g, every vertex in $V^{\prime} \backslash\left\{w_{2}\right\}$ is assigned value 0 and at most one vertex in $\left\{V_{1}, V_{2}\right\} \backslash V^{\prime}$ is not assigned value 0 . Therefore, $w(g) \leq\left|V_{0}\right|+2$, a contradiction. This demonstrates that in \bar{G} no vertex in V_{0} is adjacent to $\left\{w_{1}, w_{2}\right\}$. Furthermore, if there is a $z \in V_{0} \backslash\{u, v\}$, then by Claim 6 we have $\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{u} \cup U_{2}^{u} \cup\right.$ $\left.U_{1}^{z} \cup U_{2}^{z}\right)=\left\{w_{1}, w_{2}\right\}$ and $\left(V_{1} \cup V_{2}\right) \backslash\left(U_{1}^{v} \cup U_{2}^{v} \cup U_{1}^{z} \cup U_{2}^{z}\right)=\left\{w_{1}, w_{2}\right\}$, which implies that $N_{\bar{G}}(z)=U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}$. Set g^{\prime} as: $g^{\prime}(z)=1, g^{\prime}(u)=g^{\prime}(v)=2$ and $g^{\prime}(x)=0$ for $x \in U_{1}^{u} \cup U_{2}^{u} \cup U_{1}^{v} \cup U_{2}^{v}$. Then, g^{\prime} is a $2 \operatorname{RiDF}$ of $\bar{G}-\left(\left\{w_{1}, w_{2}\right\} \cup\left(V_{0} \backslash\{u, v, z\}\right)\right)$ with weight 3 , and we can extend g^{\prime} to a 2 RiDF of \bar{G} with weight at most $\left(\left|V_{0}\right|+2-3\right)+3=\left|V_{0}\right|+2$ according to Lemma 2, a contradiction. So far, we have shown that $V_{0}=\{u, v\}$, that is, $\gamma_{\mathrm{ri} 2}(G)=n-2$.

Now, we define a $2 \operatorname{RiDF} f^{\prime}$ of $G\left[\left\{u, v, w_{1}, w_{2}\right\}\right]$ as follows: $f^{\prime}\left(w_{1}\right)=f^{\prime}\left(w_{2}\right)=0$, $f^{\prime}(u)=1$ and $f^{\prime}(v)=2$. According to Lemma 2, we can extend f^{\prime} to a 2RiDF f of G with weight at most $n-2$. To ensure $w(f) \geq \gamma_{\mathrm{ri} 2}(G)=n-2, f$ must be a $\gamma_{\mathrm{ri} 2}(G)$-function (since $w(f)=n-2$). However, $\bar{G}\left[\left\{w_{1} w_{2}\right\}\right]$ is isomorphic to K_{2}. This contradicts the selection of f_{0}. Eventually, the proof of Theorem 3 is finished.

Based on the foregoing analysis, we observed that the upper bound $n+2$ can be attained by graphs $S_{r}(r \geq 2), S_{r}^{+}(r \geq 2)$, and $S(r, 1)(r \geq 1)$, while we did not find other graphs that possess this property. So, we propose a problem as follows.

Question 1. Is it enough to determine graphs G with $\gamma_{\mathrm{ri2}}(G)+\gamma_{\mathrm{ri2}}(\bar{G})=|V(G)|+2$ by $S_{r}(r \geq 2), S_{r}^{+}(r \geq 2)$, and $S(r, 1)(r \geq 1)$?

Funding: This work was supported in part by the National Natural Science Foundation of China under Grants 61872101, 61876047.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: New York, NY, USA, 2008.
2. Goddarda, W.; Henning, M.A. Independent domination in graphs: A survey and recent results. Discret. Math. 2013, 313, 839-854. [CrossRef]
3. Liu, C. A note on domination number in maximal outerplanar graphs. Discret. Appl. Math. 2021, 293, 90-94. [CrossRef]
4. Haynes, T.W.; Hedetniemi, S.T.; Slater, P.J. Fundamentals of Domination in Graphs; Marcel Dekker: New York, NY, USA, 1998.
5. Amjadi, J.; Khoeilar, R.; Chellali, M.; Shao, Z. On the Roman domination subdivision number of a graph. J. Comb. Optim. 2020, 40,501-511. [CrossRef]
6. Martínez, A.C.; García, S.C.; García, A.C.; Mira, F.A.H. Total Roman Domination Number of Rooted Product Graphs. Mathematics 2020, 8, 1850. [CrossRef]
7. Àvarez-Ruiz, T.P.; Mediavilla-Gradolph, T.; Sheikholeslami, S.M.; Valenzuela-Tripodoro, J.C.; Yero, I.G. On the strong roman domination number of graphs. Discret. Appl. Math. 2017, 231, 54-59.
8. Zhu, E.; Shao, Z.; Xu, J. Semitotal domination in claw-free cubic graphs. Graphs Comb. 2017, 33, 1119-1130. [CrossRef]
9. Zhu, E.; Liu, C. On the semitotal domination number of line graphs. Discret. Appl. Math. 2019, 254, 295-298. [CrossRef]
10. Henning, M.A.; Jäger, S.; Rautenbach, D. Relating domination, exponential domination, and porous exponential domination. Discret. Optim. 2017, 23, 81-92. [CrossRef]
11. Kraner Šumenjak, T.; Rall, D.F.; Tepeh, A. On k-rainbow independent domination in graphs. Appl. Math. Comput. 2018, 333, 353-361. [CrossRef]
12. Grossman, J.W.; Harary, F.; Klawe, M. Generalized ramsey theory for graphs, X: Double stars. Discret. Math. 1979, 28, 247-254. [CrossRef]
