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Abstract

:

For a graph G, its k-rainbow independent domination number, written as    γ rik   ( G )   , is defined as the cardinality of a minimum set consisting of k vertex-disjoint independent sets    V 1  ,  V 2  , … ,  V k    such that every vertex in    V 0  = V  ( G )  \  (  ∪  i = 1  k   V i  )    has a neighbor in   V i   for all   i ∈ { 1 , 2 , … , k }  . This domination invariant was proposed by Kraner Šumenjak, Rall and Tepeh (in Applied Mathematics and Computation 333(15), 2018: 353–361), which aims to compute the independent domination number of   G □  K k    (the generalized prism) via studying the problem of integer labeling on G. They proved a Nordhaus–Gaddum-type theorem:   5 ≤  γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 3   for any n-order graph G with   n ≥ 3  , in which   G ¯   denotes the complement of G. This work improves their result and shows that if   G ≇  C 5   , then   5 ≤  γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 2  .
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1. Introduction


Throughout the paper, only simple graphs are considered. We refer to [1] for undefined notations. For a graph G, the edge set and vertex set of G are denoted by   E ( G )   and   V ( G )  , respectively. For any    v 1  ,  v 2  ∈ V  ( G )   , they are adjacent in G if   v 1   and   v 2   are the endpoints of an identical edge of G. A vertex   w ∈ V ( G )   is adjacent to a set   W ⊆ V ( G )   in G if W contains a vertex   w ′   s.t.   w  w ′  ∈ E  ( G )   .    N G   ( w )    =   { v | v w ∈ E ( G ) }   is called the open neighborhood of w and    N G   [ w ]    =    N G   ( w )  ∪  { w }    is the closed neighborhood of w.    d G   ( w )  =  |  N G   ( w )  |    denotes the degree of w in G and   Δ  ( G )  = max {  d G   ( w )  | w ∈ V  ( G )  }  . A vertex that has degree ℓ and at least ℓ is called an ℓ-vertex and   ℓ +  -vertex, respectively. For any   W ⊆ V ( G )  , let    N G   ( W )    =    ⋃  w ∈ W    N G   ( w )  \ W   and    N G   [ W ]    =    N G   ( W )  ∪ W  . We say that Wdominates a set   W ′   if    W ′  ⊆  N G   [ W ]   . Moreover, we use the notation   G − W   to denote the subgraph of G by deleting vertices in W and their incident edges in G, and   G [ W ] = G − ( V ( G ) \ W )   the subgraph of G induced by W. The ℓ-order complete graph and the ℓ-length cycle are denoted by   K ℓ   and   C ℓ  , respectively. As usual, for any two natural numbers   p , q   with   p < q  ,   [ p , q ]   represents   { p , p + 1 , … , q }  .



Given a graph G and a subset   W ⊆ V ( G )  , we call W a dominating set (abbreviated as DS) of G if W dominates   V ( G )  . An independent set (abbreviated as IS) of a graph is a set of vertices, no two of which are adjacent in the graph. If a DS W of G is an IS, then W is called an independent dominating set (IDS for short) of G. The independent domination number of G, denoted by   i ( G )  , is the cardinality of a minimum IDS of G. Domination and independent domination in graphs have always attracted extensive attention [2,3] and many variants of domination [4] have been introduced increasingly, for the applications in diverse fields, such as electrical networks, computational biology, and land surveying. Recent studies on these variations include (total) roman domination [5,6], strong roman domination [7], semitotal domination [8,9], relating domination [10], just to name a few.



Let   G □ H   be the Cartesian product of G and H. In order to reduce the problem of determining   i ( G □  K k  )   into the problem of integer labeling on G, Kraner Šumenjak et al. [11] proposed a new variation of domination, called k-rainbow independent dominating function of a graph G (kRiDF for short), which is a function f from   V ( G )   to   [ 0 , k ]  , s.t., for each   i ∈ [ 1 , k ]  ,   V i   is an IS and every vertex v with   f ( v ) = 0   is adjacent to a vertex u with   f ( u ) = i  . Alternatively, a kRiDF f of G may be viewed as an ordered partition   (  V 0  ,  V 1  , … ,  V k  )   such that for each   i ∈ [ 1 , k ]  ,   V i   is an IS and    N G   ( x )  ∩  V i  ≠ ∅   for every   x ∈  V 0   , where   V j  ,   j ∈ [ 0 , k ]  , denotes the set of vertices assigned value j under f. The weight   w ( f )   of a kRiDF f is defined as the number of nonzero vertices, i.e.,   w ( f )   =    | V  ( G )  | − |   V 0   |   . The k-rainbow independent domination number of G, denoted by    γ rik   ( G )   , is the minimum weight of a kRiDF of G. From the definition, we have    γ  r i 1    ( G )  = i  ( G )   . A    γ  r i k    ( G )   -function represents a kRiDF of G which has weight    γ  r i k    ( G )   .



Let G be a graph and H a subgraph of G. Suppose that g is a kRiDF of H. We say that a kRiDF f of G is extended from g if   f ( v ) = g ( v )   for every   v ∈ V ( H )  . To prove that a graph G has a kRiDF, we will first find a   k ′  RiDF g of a subgraph   G ′   of G,    k ′  ≤ k  , and then extend g to a kRiDF f of G. By using this approach, we describe the structure characterization of graphs G with    γ  ri 2    ( G )    =   | V ( G ) | − 1   (Section 2), and then obtain an improved Nordhaus–Gaddum-type theorem with regard to   γ  ri 2    (Section 3).




2. Structure Characterization of Graphs  G  s.t.,    γ  ri 2    ( G )    =   | V ( G ) | − 1  


To get the improved Nordhaus–Gaddum-type theorem in terms of   γ  ri 2   , we have to characterize the graphs G s.t.,    γ  ri 2    ( G )    =   | V ( G ) | − 1  . For this, we need the following special graphs.



A star   S n  ,   n ≥ 1  , is a complete bipartite graph   G [ X , Y ]   with   | X |  =1 and   | Y | = n  , where the vertex in X is called the center of   S n   and the vertices in Y are leaves of   S n  . Let   S n +   be the graph obtained from   S n   by adding a single edge connecting an arbitrary pair of leaves of   S n   [11]. A double star [12] is defined as the union of two vertex-disjoint stars with an edge connecting their centers. Specifically, for two integers   n , m   such that   n ≥ m ≥ 0   the double star, denoted by   S ( n , m )  , is the graph with vertex set   {  u 0  ,  u 1  , … ,  u n  ,  v 0  ,  v 1  , … ,  v m  }   and edge set   {  u 0   v 0  ,  u 0   u i  ,  v 0   v j  | i ∈  [ 1 , n ]  , j ∈  [ 1 , m ]  }  , where    u 0   v 0    is called the bridge of   S ( n , m )   and the subgraphs induced by   {  u i  | i ∈  [ 0 , n ]  }   and   {  v j  | j ∈  [ 0 , m ]  }   are called the n-star at   u 0   and m-star at   v 0  , respectively. Observe that   S ( n , m )   is defined on the premise of   n ≥ m  . For mathematical convenience, we denote a double star   S ( n , m )   as a vertex-sequence    v m   v  m − 1   …  v 0   u 0   u 1  …  u n   .



We start with a known result, which characterizes graphs G with    γ  ri 2    ( G )  = n  . For a fixed graph G, its complement is written as   G ¯  .



Lemma 1

([11]). Let G be a graph of order n. Then,    γ  ri 2    ( G )  = n   iff G only contains components isomorphic to   K 1   or   K 2  . And, if    γ  ri 2    ( G )  = n  , then    γ  ri 2    (  G ¯  )  = 2  .





The following conclusion is simple but will be used throughout this paper.



Lemma 2.

Let H be a subgraph of a fixed graph G and   g = (  V 0  ,  V 1  , … ,  V k  )   be a    γ rik   ( H )   -function. Then g can be extended to a kRiDF of G with weight at most    | V  ( G )  | − |   V 0   |   .





Proof. 

Let   V  ( G )  \ V  ( H )  =  {  x 1  , … ,  x ℓ  }   . We will deal with these vertices in the order of    x 1  , … ,  x ℓ    by the following rule: for each   x i  ,   i ∈ [ 1 , ℓ ]  , let   j ∈ [ 1 , k ]   be the smallest one such that   x i   is not adjacent to   V j   in G. If such j does not exist, we update   V 0   by    V 0  ∪  {  x i  }   ; otherwise we update   V j   by    V j  ∪  {  x i  }   . After the last one, i.e.,   x ℓ   is handled, we obtain a kRiDF of G. Obviously, the weight of the resulting kRiDF of G is not more than    | V  ( G )  | − |   V 0   |   . □





The following theorem clarifies the structure of connected graphs G with    γ  ri 2    ( G )   =  | V ( G ) | − 1  .



Theorem 1.

Let G be a connected graph with order   n ≥ 3  . Then,    γ  ri 2    ( G )  = n − 1   iff G is isomorphic to one among   S  n − 1   ,   S  n − 1  +  ,   S ( n − 3 , 1 )   (  n ≥ 4  ) and   C 5  .





Proof. 

Let   f = (  V 0  ,  V 1  ,  V 2  )   be an arbitrary    γ  ri 2    ( G )   -function. Observe that   V 0   does not contain any 1-vertex; one can readily derive that    γ  ri 2    ( G )  = n − 1   when G is isomorphic to one of    S  n − 1   ,  S  n − 1  +   ,   S ( n − 3 , 1 )   and   C 5  . Conversely, suppose that    γ  ri 2    ( G )  = n − 1  , that is,    |   V 0   | = 1   . By Lemma 2, G contains no subgraph H that has a 2RiDF of weight at most   | V ( H ) | − 2  . Since    γ  ri 2    (  C 4  )  = 2 =  | V  (  C 4  )  |  − 2   and each   C k   for   k ≥ 6   contains a subgraph isomorphic to a 6-order path   P 6   with    γ  ri 2    (  P 6  )  = 4 =  | V  (  P 6  )  |  − 2  , G does not contain any subgraph isomorphic to   C 4   or   C k   for   k ≥ 6  . This also shows that every two vertices of G share at most one neighbor in G.



Observation 1.If G contains a   3 +  -vertex x, then every   2 +  -vertex of G belongs to    N G   ( x )   . Suppose to the contrary that G contains a   2 +  -vertex y such that   y ∉  N G   ( x )   . Let    {  x 1  ,  x 2  ,  x 3  }  ⊆  N G   ( x )    and    {  y 1  ,  y 2  }  ⊆  N G   ( y )   . Observe that    |   {  x 1  ,  x 2  ,  x 3  }  ∩  {  y 1  ,  y 2  }   | ≤ 1    and    |   N G   (  y i  )  ∩  {  x 1  ,  x 2  ,  x 3  }   | ≤ 1    for   i ∈ [ 1 , 2 ]  ; we WLOG assume that    y 2  ∉  {  x 1  ,  x 2  ,  x 3  }   ,    y 2   x 2  ∉ E  ( G )    and    y 2   x 3  ∉ E  ( G )   . Let f be:   f  ( x )  = f  ( y )  = 0 , f  (  x 2  )  = 1 , f  (  x 3  )  = 2  . Notice that either    y 1  =  x j    or    y 1   x j  ∉ E  ( G )    for some   j ∈ [ 2 , 3 ]  ; we further let   f  (  y 1  )  = f  (  x j  )    and   f  (  y 2  )  =  [ 1 , 2 ]  \  { f  (  y 1  )  }   . Clearly, f is a 2RiDF of   G [  { x ,  x 2  ,  x 3  , y ,  y 1  ,  y 2  }  ]   of weight   | { x ,  x 2  ,  x 3  , y ,  y 1  ,  y 2  } | − 2  , a contradiction.



Observation 2.G contains at most one   3 +  -vertex. Suppose that G has two distinct   3 +  -vertices, say x and y. By Observation 1,   x y ∈ E ( G )  . Let    { y ,  x 1  ,  x 2  }  ⊆  N G   ( x )    and    { x ,  y 1  ,  y 2  }  ⊆  N G   ( y )   . Since G contains no subgraph isomorphic to   C 4  ,    |   {  x 1  ,  x 2  }  ∩  {  y 1  ,  y 2  }   | ≤ 1    and there are no edges between   {  x 1  ,  x 2  }   and   {  y 1  ,  y 2  }  . Assume that    x 2  ∉  {  y 1  ,  y 2  }    and    y 2  ∉  {  x 1  ,  x 2  }   . Then, the function f:   { x ,  x 1  ,  x 2  , y ,  y 1  ,  y 2  }    → { 0 , 1 , 2 }   such that   f ( x )   =   f ( y )   = 0,   f (  x 2  )   =   f (  y 2  )   = 2 and   f (  x 1  )   =   f (  y 1  )   = 1, is a 2RiDF of   G [  { x , y ,  x 1  ,  x 2  ,  y 1  ,  y 2  }  ]   of weight   | { x , y ,  x 1  ,     x 2  ,  y 1  ,  y 2   } |  − 2  , a contradiction.



Observation 3.If G contains a   3 +  -vertex x,    N G   ( x )    has not more than two 2-vertices; in particular, when    N G   ( x )    contains two 2-vertices, in G these two 2-vertices are adjacent. If not, suppose that    N G   ( x )    contains three 2-vertices, say    x 1  ,  x 2  ,  x 3   . We WLOG assume that    x 3  ∉  N G   (  {  x 1  ,  x 2  }  )    and let    N G   (  x 3  )  =  { x ,  y 3  }   . Let    N G   (  x 1  )  =  { x ,  y 1  }    (possibly    y 1  =  x 2   , but    y 1  ≠  y 3   ). By Observation 1,    d G   (  y 3  )  = 1  , i.e.,    y 1   y 3  ∉ E  ( G )   . Let f be:   f  ( x )  = 1 , f  (  x 1  )  = f  (  x 3  )  = 0 , f  (  y 1  )  = f  (  y 3  )  = 2  . Obviously, f is a 2RiDF of   G [  { x ,  x 1  ,  y 1  ,  x 3  ,  y 3  }  ]   of weight   | { x ,  x 1  ,  y 1  ,  x 3  ,  y 3  } | − 2  , a contradiction. Now, suppose that    N G   ( x )    contains two 2-vertices, say    x 1  ,  x 2   . If    x 1   x 2  ∉ E  ( G )   , let    N G   (  x i  )  =  { x ,  y i  }  ,    i ∈ [ 1 , 2 ]  . Clearly,    y 1  ≠  y 2    and    y 1   y 2  ∉ E  ( G )   . Let f be:   f  ( x )  = 1 , f  (  x 1  )  = f  (  x 2  )  = 0 , f  (  y 1  )  = f  (  y 2  )  = 2  . Then, f is a 2RiDF of   G [  { x ,  x 1  ,  y 1  ,  x 2  ,  y 2  }  ]   of weight   | { x ,  x 1  ,  x 2  ,  y 1  ,  y 2  } | − 2  , a contradiction.



By the above three observations and the assumption that G is connected, we see that if G contains a   3 +  -vertex x, then   V ( G ) \ { x }   contains either only 1-vertices (  G ≅  S  n − 1    ), or one 2-vertex and   n − 2   1-vertices (  G ≅ S ( n − 3 , 1 )  ), or two adjacent 2-vertices and   n − 3   1-vertices (  G ≅  S  n − 1  +   ); if   Δ ( G ) = 2  , then G is isomorphic to one of    S 2 +  ,  S 2  , S  ( 1 , 1 )    and   C 5  . □





The theorem below follows from Theorem 1, Lemma 1, and    γ  ri 2    ( G )    =    ∑  i = 1  k   γ  ri 2    (  G i  )   , where    G 1  , … ,  G k    are the components of G.



Theorem 2.

Given a graph G with order   n ≥ 3  ,    γ  ri 2    ( G )  = n − 1   iff G has one component   G 1   isomorphic to one among   S   n 1  − 1    (   n 1  ≥ 3  ),   S   n 1  − 1  +   (   n 1  ≥ 3  ),   S (  n 1  − 3 , 1 )   (   n 1  ≥ 4  ) and   C 5  , and other components are isomorphic to   K 1   or   K 2  , where    n 1  =  | V  (  G 1  )  |   .






3. An Improved Nordhaus–Gaddum Type Theorem for    γ  ri 2    ( G )   


This section is devoted to achieve an improved Nordhaus–Gaddum type theorem by showing that    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 2   for every graph   G ≇  C 5    of order   n ≥ 2  , which improves a result obtained by Kraner Šumenjak et al., et al [11]. We first present some fundamental lemmas.



Lemma 3.

For an n-order graph G with   n ≥ 3  , if G is    S  n − 1   ,  S  n − 1  +    or   S ( n − 3 , 1 )  , then    γ  ri 2    (  G ¯  )  ≤  3  .





Proof. 

If   G ≅  S  n − 1     or   G ≅  S  n − 1  +   , let   V  ( G )  =  {  v 0  ,  v 1  , … ,  v  n − 1   }    where   v 0   is the center and    v 1   v 2  ∈ E  ( G )    when   G ≅  S  n − 1  +   . Define a function f such that   f  (  v 1  )  = 1 , f  (  v 0  )  = f  (  v 2  )  = 2   and   f ( v ) = 0   for every   v ∈ V  (  G ¯  )  \  {  v 0  ,  v 1  ,  v 2  }   . Since every vertex in   V  (  G ¯  )  \  {  v 0  ,  v 1  ,  v 2  }    is a neighbor of   v 1   and also   v 2   in   G ¯  , it follows that f is a 2RiDF of   G ¯   of weight 3.



If   G ≅ S ( n − 3 , 1 )  , then   n ≥ 4  . Let   V  ( G )  =  {  v 1  ,  v 0  ,  u 0  ,  u 1  , … ,  u  n − 3   }   , where    v 0   u 0    is the bridge of G and   E  ( G )  = {  v 0   v 1  ,  v 0   u 0  ,  u 0   u i  | i ∈  [ 1 , n − 3 ]  }  . If   n = 4  , then both G and   G ¯   are isomorphic to   P 4  , the path of length 3, and the conclusion holds. If   n ≥ 5  , then the function f from   V (  G ¯  )   to   [ 0 , 2 ]   such that   f  (  u 2  )  = 2 , f  (  u 1  )  = f  (  u 0  )  = 1  , and   f ( v ) = 0   for every   v ∈ V  (  G ¯  )  \  {  u 0  ,  u 1  ,  u 2  }    is a 2RiDF of   G ¯   with weight 3. □





Lemma 4.

For a graph n-order G, if   G ≇  C 5    and    γ  ri 2    ( G )  = 4  , then    γ  ri 2    (  G ¯  )  ≤ n − 2  .





Proof. 

Clearly,   n ≥ 4  . When   n = 4  ,    γ  ri 2    ( G )  = 4   implies that    γ  ri 2    (  G ¯  )  = 2 = n − 2   by Lemma 1. Therefore, we assume that   n ≥ 5  . Suppose that    γ  ri 2    (  G ¯  )  ≥ n − 1  . If    γ  ri 2    (  G ¯  )  = n  , by Lemma 1 we have    γ  ri 2    ( G )  = 2  , a contradiction. Therefore,    γ  ri 2    (  G ¯  )  = n − 1  . By Theorem 2   G ¯   has one component isomorphic to    S  n 1   ,  S   n 1   +   ,   S (  n 2  , 1 )   or   C 5   where    n 1  ≥ 2 ,  n 2  ≥ 1  , and all of the other components of   G ¯   are isomorphic to   K 1   or   K 2  .



If   G ¯   contains two vertices u and v s.t.    N  G ¯    (  { u , v }  )  = ∅  , then in G both u and v are adjacent to every vertex in   V ( G ) \ { u , v }  . We can obtain a 2RiDF of G by assigning 1 to u, 2 to v, and 0 to the remained vertices of G. This indicates that    γ  ri 2    ( G )  ≤ 2   and a contradiction. Therefore,   G ¯   contains no   K 2   components and contains at most one   K 1   component, implying that   G ¯   contains at most two components. If   G ¯   contains only one component, it follows that   G ¯   is    S  n − 1   ,  S  n − 1  +    or   S ( n − 3 , 1 )   (since   G ≇  C 5   ). By Lemma 3    γ  ri 2    ( G )  ≤ 3   and a contradiction. Therefore,   G ¯   has two components, denoted by   G 1   and   G 2  , where    G 1  ≅  K 1    and   G 2   is isomorphic to    S  n − 2   ,  S  n − 2  +   ,   S ( n − 4 , 1 )   or   C 5  . Let   V  (  G 1  )  =  { u }    and define a function f as follows: let   f ( u ) = 1  ;   f  (  v 0  )  = f  (  v ′  )  = 2   when    G 2  ≅  S  n − 2     or    G 2  ≅  S  n − 2  +    (where   v 0   is the center of   G 2   and   v ′   is a 1-vertex of   G 2   by the assumption of   n ≥ 5  ),   f  (  v 0  )  = f  (  u 0  )  = 2   when    G 2  ≅ S  ( n − 4 , 1 )    (where    v 0   u 0    is the bridge of   G 2  ), or   f  (  u 1  )  = f  (  u 2  )  = 2   when    G 2  ≅  C 5    (where    C 5  =  u 1   u 2   u 3   u 4   u 5   u 1   ); and all of the other remained vertices are assigned value 0. Clearly, all vertices with value 0 are adjacent to u and a vertex with value 2. Hence, f is a 2RiDF of G, which has weight 3, a contradiction. □





Lemma 5.

Suppose that G is an n-order graph satisfying that    γ  ri 2    ( G )  ≥ 4   and    γ  ri 2    ( G )   +   γ  ri 2    (  G ¯  )    =   n + 3  . Let   f = (  V 0  ,  V 1  ,  V 2  )   be an arbitrary    γ  ri 2    ( G )   -function. We have




	(1)

	
If    |   V 0   | ≥ 2   , then for any   u , v ∈  V 0   , there does not exist    u 1  ,  u 2  ,  v 1  ,  v 2    such that    {  u 1  ,  u 2  }  ∈  N  G ¯    ( u )   ,    {  v 1  ,  v 2  }  ∈  N  G ¯    ( v )    and    u i   v i  ∉ E  (  G ¯  )    for   i ∈ [ 1 , 2 ]  , where    u 1  ≠  u 2  ,  v 1  ≠  v 2    but possibly    u i  =  v i   ;




	(2)

	
If   u , v   are two arbitrary different vertices of   V 0  , then    |   N  G ¯     (  { u , v }  )  | ≥ 3   ;




	(3)

	
   |   V i   | ≥ 2    for   i ∈ [ 0 , 2 ]  .











Proof. 

For (1), if the conclusion is false, then let g be:   g ( u ) = g ( v ) = 0   and   g  (  u i  )  = g  (  v i  )  = i  ,   i ∈ [ 1 , 2 ]  . Then, g is a 2RiDF of    G ¯   [  { u , v ,  u 1  ,  v 1  ,  u 2  ,  v 2  }  ]    with weight   | { u , v ,  u 1  ,  v 1  ,  u 2  ,  v 2  } | − 2  . Since   V 1   and   V 2   are cliques in   G ¯  ,   V i   contains at most two vertices not assigned 0 under every 2RiDF of   G ¯   for   i ∈ [ 1 , 2 ]  . Hence, we can extend g to a 2RiDF of   G ¯   with weight at most    |   V 0   | − 2 + 4 = |   V 0   | + 2   , according to Lemma 2. This shows that    γ  ri 2    (  G ¯  )  ≤  |  V 0  |  + 2   and    γ  ri 2    ( G )   +   γ  ri 2    (  G ¯  )   ≤ |   V 1   | + |   V 2   | + |   V 0   | + 2 = n + 2   , a contradiction.



For (2), if    |   N  G ¯     (  { u , v }  )  | ≤ 2   , let f be:   f ( v ) = 2 , f ( u ) = 1  , and   f ( x ) = 0   for   x ∈ V  ( G )  \  N  G ¯    [  { u , v }  ]   . It is clear that f is a 2RiDF of   G [ V  ( G )  \  N  G ¯    (  { u , v }  )  ]   with weight 2. According to Lemma 2, we can extend f to a 2RiDF of G with weight at most 4 (since    |   N  G ¯     (  { u , v }  )  | ≤ 2   ). Thus,    γ  ri 2    ( G )  = 4   and by Lemma 4    γ  ri 2    (  G ¯  )  ≤ n − 2  , a contradiction.



For (3), if    |   V 0   | = 1   , then    γ  ri 2    ( G )    =   n − 1  . By an analogous argument as that in Lemma 4, we can derive that    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 2  , a contradiction. In the following, we prove that    |   V 1   | ≥ 2    (the proof of    |   V 2   | ≥ 2    is similar to that of    |   V 2   | ≥ 2   ). Suppose that    |   V 1   | = 1    and let    V 1  =  { u }   . Then, every vertex of   V 0   is adjacent to u in G, i.e., u is not adjacent to   V 0   in   G ¯  . By Lemma 4 we assume that    |   V 1   | + |   V 2   | ≥ 5   . If   V 0   contains a vertex v with two neighbors    v 1  ,  v 2    in   G ¯  , then   u ∉ {  v 1  ,  v 2  }  . Let g be:   g  ( v )  = 0 , g  (  v 1  )  = 1 , g  (  v 2  )  = 2  . Since   V 2   is a clique in   G ¯  , we can extend g to a 2RiDF of   G ¯   with weight at most    |   V 0   | − 1 + 3 = |   V 0   | + 2   , according to Lemma 2. This shows that    γ  ri 2    (  G ¯  )  ≤  |  V 0  |  + 2   and hence    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 2  , a contradiction. Therefore, every vertex in   V 0   has degree at most 1 in   G ¯  , which implies that    |   N  G ¯     (  { x , y }  )  | ≤ 2    for any two vertices   x ∈  V 0  , y ∈  V 0    (observe that    |   V 0   | ≥ 2   ). This contradicts (2). □





Lemma 6.

Let G be an n-order graph,   n ≥ 4  . For any   u ∈ V ( G )  , if   H = G − u  , the resulting graph by deleting u and its incident edges from G, is connected and    γ  ri 2    ( H )  =  | V  ( H )  |  − 1  , then G has a 2RiDF f satisfying   f ( u ) = 1   and   f ( v ) = 0   for some   v ∈ V ( H )  .





Proof. 

Clearly,   | V ( H ) | ≥ 3  . If u has no neighbor in   V ( H )  , then let f be:   f ( v ) = g ( v )   for every   v ∈ V ( H )  , and   f ( u ) = 1  , where g is a    γ  ri 2    ( H )   -function of H. Since    γ  ri 2    ( H )  =  | V  ( H )  |  − 1  , there exists   v ∈ V ( H )   satisfying   f ( v ) = g ( v ) = 0  . If u has a neighbor    u 1  ∈ V  ( H )   , there exists a    u 2  ∈ V  ( H )    s.t.    u 1   u 2  ∈ E  ( H )    since H is connected. Let f be:   f  (  u 1  )  = 0 , f  ( u )  = 1 , f  (  u 2  )  = 2  . Then, we can extend f to a desired 2RiDF of G according to Lemma 2. □





Now, we turn to the proof of the main result.



Theorem 3.

Suppose that G is an n-order graph,   n ≥ 2  . If   G ≇  C 5   , then    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 2  .





Proof. 

We are sufficient to handle the situation   n ≥ 5   since cases of   n ≤ 4   are trivial. Let    f 0  =  (  V 0  ,  V 1  ,  V 2  )    be a    γ  ri 2    ( G )   -function such that    G ¯   [  V 0  ]    contains the maximum number of components isomorphic to   K 2  . Suppose to the contrary that    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  > n + 2  . Then,    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  = n + 3   since    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ n + 3   [11], that is,


   γ  ri 2    (  G ¯  )  =  |  V 0  |  + 3  



(1)







Formula (1) indicates that every 2RiDF of   G ¯   has weight at least    |   V 0   | + 3   . We will complete our proof by constructing a 2RiDF of   G ¯   of weight at most    |   V 0   | + 2    or a 2RiDF of G of weight less than    |   V 1   | + |   V 2   |   .



If    |   V 1  ∪  V 2   | = 2   , then    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  ≤ 2 + n  , a contradiction; if    |   V 1  ∪  V 2   | = 3   , then    γ  ri 2    (  G ¯  )  = n   and by Lemma 1    γ  ri 2    ( G )  = 2  , also a contradiction. Therefore, by Lemma 4,


   |   V 1   | + |   V 2   | ≥ 5   



(2)







Then, by Lemma 5 (3) we have    |   V i   | ≥ 2    for   i ∈ [ 0 , 2 ]  . In addition, because, by definition,    G ¯   [  V i  ]    is a clique,   i ∈ [ 1 , 2 ]  , it follows that for every 2RiDF    g 0  =  (  V 0 ′  ,  V 1 ′  ,  V 2 ′  )    of   G ¯  ,


   |   (  V 1 ′  ∪  V 2 ′  )  ∩  V i   | ≤ 2 ,  i ∈ [ 1 , 2 ]    



(3)







Therefore, by Lemma 2 we can extend every    γ  ri 2    (  G ¯   [  V 0  ]  )   -function to a 2RiDF of   G ¯   with weight at most    γ  ri 2    (  G ¯   [  V 0  ]  )  + 4  , i.e.,    γ  ri 2    (  G ¯   [  V 0  ]  )  ≥  |  V 0  |  − 1   by Formula (1).



Claim 1.Denote by ℓ the number of vertices in    V 1  ∪  V 2   , which have degree    |   V 1   | + |   V 2   | − 1    in    G ¯   [  V 1  ∪  V 2  ]   . Then,   ℓ ≤ 1 −  ℓ ′    where    ℓ ′  =  |  V 0  |  −  γ  ri 2    (  G ¯   [  V 0  ]  )     ≤ 1  . If not, either ℓ is at least 2 or both ℓ and   ℓ ′   are equal to 1. Suppose that   ℓ ≥ 2   and take two vertices   v 1  ,  v 2    ∈ (  V 1  ∪  V 2  )   such that they are adjacent to all vertices of    (  V 1  ∪  V 2  )  \  { u , v }    in   G ¯  . Let   g ′   be:    g ′   (  v 1  )  = 1 ,  g ′   (  v 2  )  = 2 ,  g ′   ( x )  = 0   for   x ∈  V 1  ∪  V 2  \  {  v 1  ,  v 2  }   . Clearly,   g ′   is a 2RiDF of    G ¯   [  V 1  ∪  V 2  ]    and by Lemma 2 we can extend   g ′   to a 2RiDF of   G ¯  , which has weight at most    |   V 0   | + 2   , a contradiction. Now, suppose that   ℓ =  ℓ ′  = 1  . Then,    γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |  − 1  , which indicates that    G ¯   [  V 0  ]    contains a component   H ′   s.t.    γ  ri 2    (  H ′  )  =  | V  (  H ′  )  |  − 1  . Since   ℓ = 1  , there is a vertex v, say   v ∈  V 1   , which is adjacent to every vertex of   V 2   in   G ¯  . By Lemma 6    G ¯   [ V  (  H ′  )  ∪  { v }  ]    has a 2RiDF   g ′   s.t.    g ′   ( x )  = 0   for some   x ∈ V (  H ′  )   and    g ′   ( v )  = 1  . Observe that in   G ¯  v is adjacent to all vertices of    (  V 1  ∪  V 2  )  \  { v }   ; by the rule of Lemma 2 we can extend   g ′   to a 2RiDF g of   G ¯   under which there is at most one vertex in    V 1  \  { v }    (and   V 2  ) not assigned value 0. Thus,    w  ( g )  ≤ |   V 0   | − 1 + 3 = |   V 0   | + 2   , a contradiction. This completes the proof of Claim 1.



Now, we WLOG assume    |   V 1   | ≥ |   V 2   |   . Then,    |   V 1   | ≥ 3    by Formula (2).



Claim 2.   G ¯   [  V 0  ]    does not contain any isolated vertex v s.t.    N  G ¯    ( v )  ∩  V 1  = ∅  . Otherwise, define   f ′   as: for   x ∈  V 2      f ′   ( x )  = 2  , and    f ′   ( v )  = 1  . By Claim 1, in   G ¯  ,   V 1   has not more than one vertex adjacent to every vertex in   V 2  ; say   v ′   if such a vertex exists. We further let    f ′   ( y )  = 0   for   y ∈  V 1  ∪  (  V 0  \  { v }  )    (or for   y ∈  (  V 1  \  {  v ′  }  )  ∪  (  V 0  \  { v }  )    if   v ′   exists). Since in G every vertex in    V 1  ∪  V 0    (except for   v ′  ) is adjacent to v and also   V 2  , f is a 2RiDF of G of weight at most    |   V 2   | + 2   , a contradiction. This completes the proof of Claim 2.



We proceed by distinguishing two cases:    γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |  − 1   and    γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |   .



Case 1.   γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |  − 1  . In this case, by Claim 1 each vertex of   V i   owns a neighbor belonging to   V j   in G where   { i , j }  = [1,2]; by Theorem 2,    G ¯   [  V 0  ]    has one component H isomorphic to one of   S  | V ( H ) | − 1    (  | V ( H ) | ≥ 3  ),   S  | V ( H ) | − 1  +   (  | V ( H ) | ≥ 3  ),   S ( | V ( H ) | − 3 , 1 )   (  | V ( H ) | ≥ 4  ) and   C 5  , and other components of    G ¯   [  V 0  ]    are isomorphic to   K 1   or   K 2  . Let    u 0  ∈ V  ( H )    be a vertex with    d H   (  u 0  )  = Δ  ( H )   . Clearly,    d H   (  u 0  )  ≥ 2  . Let    u 1  ∈  N H   (  u 0  )    and    u 2  ∈  N H   (  u 0  )    be two vertices such that every vertex in   V  ( H )  \  {  u 0  ,  u 1  ,  u 2  }    has degree in H not exceeding   min {  d H   (  u 1  )  ,  d H   (  u 2  )  }  . By the structure of H, for   i ∈ [ 1 , 2 ]  , we have that    d H   (  u i  )  ≤ 2   and if   u i   has a neighbor    u i ′   ( ∉   {  u 0  ,  u 1  ,  u 2  }   ) in H, then    u 0   u i ′  ∉ E  ( H )   . Moreover, by Lemma 5 (1),    (  N  G ¯    (  u 1  )  ∩  N  G ¯    (  u 2  )  )  \  {  u 0  }  = ∅  , which implies that each vertex of    V 1  ∪  V 2    is adjacent to   u 1   or   u 2   in G.



Claim 3.   |   V 0   \ V  ( H )  | ≤ 1   . Otherwise, let    {  v 1  ,  v 2  }  ⊆  (  V 0  \ V  ( H )  )   . Then,    d   G ¯   [  V 0  ]     (  v 1  )  ≤ 1   and    d   G ¯   [  V 0  ]     (  v 2  )  ≤ 1  . Suppose that    d   G ¯   [  V 0  ]     (  v 1  )  = 1   (the case of    d   G ¯   [  V 0  ]     (  v 2  )  = 1   can be similarly discussed). Let    v 1   v 1 ′  ∈ E  (  G ¯   [  V 0  ]  )    and clearly    d   G ¯   [  V 0  ]     (  v 1 ′  )  = 1  . By Lemma 5 (2), a vertex    v 0  ∈  (  V 1  ∪  V 2  )    is adjacent to   {  v 1  ,  v 1 ′  }   in   G ¯  . We WLOG assume that    v 1   v 0  ∈ E  (  G ¯  )   . According to Lemma 6,    G ¯   [ V  ( H )  ∪  {  v 0  }  ]    admits a 2RiDF   g ′   satisfying    g ′   (  v 0  )  = 1   and    g ′   ( x )  = 0   for some   x ∈ V ( H )  . Further, let    g ′   (  v 1  )  = 0   and    g ′   (  v 1 ′  )  = 2  . So   g ′   is a 2RiDF of    G ¯   [ V  ( H )  ∪  {  v 0  ,  v 1  ,  v 1 ′  }  ]   , and by Lemma 2 and Formula (3) we can extend   g ′   to a 2RiDF of   G ¯   with weight at most    |   V 0   | − 2 + 4 = |   V 0   | + 2    (since    g ′   (  v 1  )  =  g ′   ( x )  = 0  ), a contradiction. We therefore assume that    d   G ¯   [  V 0  ]     (  v 1  )  =  d   G ¯   [  V 0  ]     (  v 2  )  = 0  . By Lemma 5 (2) we have    |   N  G ¯    (  {  v 1  ,  v 2  }  )  ∩  (  V 1  ∪  V 2  )   | ≥ 3   . WLOG, suppose that in   G ¯  ,   v 1   has two neighbors belonging to    V 1  ∪  V 2   , say   v 11   and   v 12  . By Lemma 5 (1),   u i   is not adjacent to both   v 11   and   v 12  , and   v  1 j    is not adjacent to both   u 1   and   u 2   in   G ¯  , where   i ∈ [ 1 , 2 ]   and   j ∈ [ 1 , 2 ]  . Thus, it follows that    u 1   v 11  ∉ E  (  G ¯  )    and    u 2   v 12  ∉ E  (  G ¯  )   , or    u 1   v 12  ∉ E  (  G ¯  )    and    u 2   v 11  ∉ E  (  G ¯  )   , which contradicts to Lemma 5 (1) again. This completes the proof of Claim 3.



By Claim 3, we see that    G ¯   [  V 0  ]    contains no component isomorphic to   K 2   and contains at most one   K 1   component.



Claim 4.   G ¯   [  V 0  ]    contains a   K 1   component. If not, we have    G ¯   [  V 0  ]    = H.



Claim 4.1.   (  N  G ¯    (  u 1  )  ∪  N  G ¯    (  u 2  )  )  ∩  (  V 1  ∪  V 2  )  ≠ ∅  .



Otherwise, for   i ∈ [ 1 , 2 ]  ,   u i   is adjacent to every vertex of    V 1  ∪  V 2    in G, and by Lemma 5 (2)    d H   (  u i  )  = 2   and    u 1   u 2  ∉ E  (  G ¯  )   . Set    {  u i ′  }  =  N H   (  u i  )  \  {  u 0  }   ,   i ∈ [ 1 , 2 ]  ; then,    u 0   u i ′  ∉ E  (  G ¯  )   . Let f be:   f  (  u 1  )  = f  (  u 1 ′  )  = 1  ,   f  (  u 2  )  = f  (  u 2 ′  )  = 2   and   f ( x ) = 0   for any x in   V  ( G )  \  {  u 1  ,  u 1 ′  ,  u 2  ,  u 2 ′  }   . So, we get a 2RiDF f of G, which has weight 4, a contradiction. So, Claim 4.1 holds.



Claim 4.2.   |   V 1   | = 3   .



Observe that    |   V 1   | ≥ 3   ; it is enough by showing that G admits a 2RiDF f s.t.    w  ( f )  ≤ |   V 2   | + 3   . When    u 1   u 2  ∈ E  (  G ¯  )   , let f be:   f (  u i  ) = 1   for   i ∈ [ 0 , 2 ]  ,   f ( x ) = 0   for   x ∈  (  V 1  ∪  V 0  )  \  {  u 0  ,  u 1  ,  u 2  }   , and   f ( y ) = 2   for   y ∈  V 2   . By Lemma 5 (1), in   G ¯  ,    V 1  ∪  V 0    contains no vertex adjacent to   u 1   and also   u 2  . Therefore, f is a 2RiDF of G of weight    |   V 2   | + 3   . Now, suppose that    u 1   u 2  ∉ E  (  G ¯  )   . By Lemma 5 (1),   V 1   contains at most one vertex adjacent to both   u 0   and   u 1   in   G ¯  ; say u if such a vertex exists. Let f be:   f  (  u 0  )  = f  (  u 1  )  = 1   (or   f  ( u )  = f  (  u 0  )  = f  (  u 1  )  = 1   if u exists),   f ( x ) = 0   for   x ∈ (  V 1  ∪  (  V 0  \  {  u 0  ,  u 1  }  )  )   (or   x ∈  (  V 1  ∪  V 0  )  \  {  u 0  ,  u 1  , u }   ) and   f ( y ) = 2   for   y ∈  V 2   . Notice that by Claim 1 every vertex of    V 0  ∪  V 1    is adjacent to   V 2   in G, and by the structure of H and the selection of   u 1   and   u 2  , every vertex of    (  V 0  ∪  V 1  )  \  { u ,  u 0  ,  u 1  }    is adjacent to   {  u 0  ,  u 1  }   in G; f is a 2RiDF of G of weight at most    |   V 2   | + 3   . This completes the proof of Claim 4.2.



By Claim 4.2, we have    2 ≤ |   V 2   | ≤ 3   . Let    V 1  =  {  w 1  ,  w 2  ,  w 3  }    in the following.



Claim 4.3.In   G ¯  , for   { i , j } = [ 1 , 2 ]   every vertex in   V i   has not more than one neighbor in   V j  .



If not, let   v ∈  V 2    be adjacent to two vertices of   V 1   in   G ¯  , say    w 1  ,  w 2   . By Lemma 5 (1)   u 1   or   u 2   is not adjacent to v in   G ¯  , say    u 1  v ∉ E  (  G ¯  )   . If    u 2   w 3  ∉ E  (  G ¯  )   , define   g ′   as:    g ′   (  u i  )  = i   for every   i ∈ [ 0 , 2 ]  ,    g ′   (  w 1  )  =  g ′   (  w 2  )  = 0 ,  g ′   (  w 3  )  = 2  ,    g ′   ( v )  = 1  . If    u 2   w 3  ∈ E  (  G ¯  )   , then    u 1   w 3  ∉ E  (  G ¯  )    and let   g ′   be:    g ′   (  u 1  )  =  g ′   (  w 3  )  = 1 ,  g ′   (  w 1  )  =  g ′   (  w 2  )  = 0 ,  g ′   ( v )  = 2  ; further, let    g ′   (  u 2  )  = 0   when    u 2  v ∈ E  (  G ¯  )   , or let    g ′   (  u 2  )  = 2   and    g ′   (  u 0  )  = 0   when    u 2  v ∉ E  (  G ¯  )   . According to Lemma 2, in either case the   g ′   defined above can be extended to a 2RiDF g of   G ¯   under which   g  (  w 1  )  = g  (  w 2  )  = 0   and   g (  u 0  ) = 0   or   g (  u 2  ) = 0  . Therefore, by Formula (3)    w  ( g )  ≤ |   V 0   | − 1 + 3 = |   V 0   | + 2   , a contradiction. With a similar discussion, there is also a contradiction if we assume   V 1   contains a vertex that has two neighbors in   V 2   in   G ¯  . This completes the proof of Claim 4.3.



Now, we consider    |   V 2   |   . Suppose that    |   V 2   | = 3    and let    V 2  =  {  w 4  ,  w 5  ,  w 6  }   . According to Claim 4.1, we WLOG assume that    u 1   w 1  ∈ E  (  G ¯  )   . This indicates that    u 2   w 1  ∉ E  (  G ¯  )    by Lemma 5 (1). If   u 2   has a neighbor in   V 2  , say    u 2   w 4  ∈ E  (  G ¯  )   , then according to Lemma 5 (1),    u 1   w 4  ∉ E  (  G ¯  )   ,    w 1   w 4  ∈ E  (  G ¯  )   , and   u 1   (resp.   u 2  ) is not adjacent to   {  w 2  ,  w 3  }   (resp.   {  w 5  ,  w 6  }  ) in   G ¯   (otherwise   w 4   or   w 1   has two neighbors in   V 1   or   V 2   in   G ¯  , respectively. This contradicts to Claim 4.3). Let f be:   f  (  u 1  )  = f  (  w 1  )  = 1 , f  (  u 2  )  = f  (  w 4  )  = 2   and   f ( x ) = 0   for   x ∈ V  ( G )  \  {  u 1  ,  u 2  ,  w 1  ,  w 4  }   . Observe that   w 1   (resp.   w 4  ) is not adjacent to   {  w 5  ,  w 6  }   (resp.   {  w 2  ,  w 3  }  ) in   G ¯   and by Lemma 5 (1)    V 0  \  {  u 0  ,  u 1  ,  u 2  }    contains no vertex adjacent to both   u i   and   w i   for some   i ∈ [ 1 , 2 ]  . Hence, f is a 2RiDF of   G [ V  ( G )  \  {  u 0  }  ]   of weight 4 and we are able to extend f to a 2RiDF of G with weight at most    5 < |   V 1   | + |   V 2   |    according to Lemma 2, a contradiction. Therefore, we may assume that    N  G ¯    (  u 2  )  ∩  V 2  = ∅  . In this case, when    N  G ¯    (  u 2  )  ∩  V 1  = ∅  , let f be:   f (  u 2  ) = 2  ,   f  (  u 0  )  = f  (  u 1  )  = 1  . By Lemma 5 (1)    V 1  ∪  V 2    has not more than one vertex   w ′   adjacent to both   u 0   and   u 1   in   G ¯   and    V 0  \  {  u 0  }    has not more than one vertex   u ′   adjacent to   u 2   in   G ¯  ; for   x ∈ V  ( G )  \  {  u 0  ,  u 1  ,  u 2  ,  u ′  ,  w ′  }    we further let   f ( x ) = 0  . Then, f is a 2RiDF of   G [ V  ( G )  \  {  u ′  ,  w ′  }  ]   of weight 3 and according to Lemma 2 we can extend f to a 2RiDF of G of weight at most    5 < |   V 1   | + |   V 2   |   , a contradiction. We therefore suppose that   u 2   has a neighbor in   V 1   in   G ¯  , say    u 2   w 2  ∈ E  (  G ¯  )   . With the same argument as    N  G ¯    (  u 2  )  ∩  V 2  = ∅  , we can show that    N  G ¯    (  u 1  )  ∩  V 2  = ∅   as well.



Then, if    w 3   u 1  ∉ E  (  G ¯  )    and    w 3   u 2  ∉ E  (  G ¯  )   , the function f:   f  (  u 1  )  = f  (  w 1  )  = 1 , f  (  u 2  )  = f  (  w 4  )  = 2   and   f ( x ) = 0   for   x ∈ V  ( G )  \  {  u 1  ,  u 2  ,  w 1  ,  w 4  ,  u 0  }   , is a 2RiDF of   G [ V  ( G )  \  {  u 0  }  ]   with weight 4, and according to Lemma 2, we are able to extend f to a 2RiDF of G with weight at most    5 < |   V 1   | + |   V 2   |   , a contradiction. Therefore, we suppose that    w 3   u 1  ∈ E  (  G ¯  )    by the symmetry. By Lemma 5 (1), it has that    w 3   u 2  ∉ E  (  G ¯  )   , and    u 0   w 1  ∉ E  (  G ¯  )    or    u 0   w 3  ∉ E  (  G ¯  )   , say    u 0   w 1  ∉ E  (  G ¯  )    by the symmetry. Let f be:   f  (  u 0  )  = f  (  u 1  )  = 1 , f  (  u 2  )  = f  (  w 2  )  = 2   and   f ( x ) = 0   for   x ∈ V  ( G )  \  {  u 1  ,  u 2  ,  u 0  ,  w 2  ,  w 3  }   . Since in G every vertex in   V  ( G )  \  {  u 1  ,  u 2  ,  u 0  ,  w 2  ,  w 3  }    has a neighbor in   {  u 0  ,  u 1  }   and also   {  u 2  ,  w 2  }  , f is a 2RiDF of   G [ V  ( G )  \  {  w 3  }  ]   of weight 4 and according to Lemma 2 we can extend f to a 2RiDF of G of weight at most    5 < |   V 1   | + |   V 2   |   , and a contradiction.



A similar line of thought leads to a contradiction if we assume that    |   V 2   | = 2   , and so Claim 4 holds.



By Claim 4, we see that    G ¯   [  V 0  ]    contains one component isomorphic to   K 1  . Let s be the vertex of the   K 1   component. We first show that    |   N  G ¯    ( s )  ∩  (  V 1  ∪  V 2  )   | ≤ 1   . If not, in   G ¯   we assume that s has two neighbors in    V 1  ∪  V 2   , say    s 1  ,  s 2   . By Lemma 5 (1) for   i , j ∈ [ 1 , 2 ]  ,   s i   (resp.   u j  ) can not be adjacent to   u 1   and   u 2   (resp.   s 1   and   s 2  ) simultaneously in   G ¯  . This implies that either    s i   u i  ∉ E  (  G ¯  )   ,   i ∈ [ 1 , 2 ]  , or    s 1   u 2  ∉ E  (  G ¯  )    and    s 2   u 1  ∉ E  (  G ¯  )   , which violates Lemma 5 (1) as well. Thus, by Claim 2    |   N  G ¯    ( s )  ∩  (  V 1  ∪  V 2  )   | = 1    and the vertex   s ′   adjacent to s in   G ¯   belongs to   V 1  . Let f be:   f ( x ) = 1   for   x ∈  V 1   ,   f ( s ) = 2  ,   f ( y ) = 0   for   y ∈  V 2   ∪ V  ( H )  )   . Observe that by Claim 1 all vertices in   V 2   are adjacent to   V 1   in G. Hence, every vertex in    V 2  ∪ V  ( H )    is adjacent to s and also   V 1   in G. Therefore, f is a 2RiDF of G with weight    |   V 1   | + 1 < |   V 1   | + |   V 2   |    (since    |   V 2   | ≥ 2   ), a contradiction.



The foregoing discussion shows that there exists a contradiction if we assume that    γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |  − 1  . In what remains, we handle the case when    γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |   .



Case 2.   γ  ri 2    (  G ¯   [  V 0  ]  )  =  |  V 0  |   . Then by Lemma 1 every component of    G ¯   [  V 0  ]    is isomorphic to   K 1   or   K 2  . Recall that    |   V i   | ≥ 2    for   i ∈ [ 0 , 2 ]  . Take two vertices   u , v   in   V 0   s.t.   u v ∈ E (  G ¯  )   if    G ¯   [  V 0  ]    contains a   K 2   component and   u , v   are isolated vertices in    G ¯   [  V 0  ]    otherwise. By Lemma 5 (1), we have


   |   (  N  G ¯    ( u )  ∩  N  G ¯    ( v )  )  ∩  (  V 1  ∪  V 2  )   | ≤ 1   



(4)







We deal with two subcases in terms of the adjacency property of u and v.



Case 2.1.  u v ∈ E (  G ¯  )  . Then in   G ¯  ,    V 0  \  { u , v }    contains no vertex adjacent to   { u , v }  .



Claim 5.In    G ¯   [  V 1  ∪  V 2  ]   ,    V 1  ∪  V 2    contains only vertices with degree at most    |   V 1   | + |   V 2   | − 2   . Suppose that   V 1   contains a vertex w such that   w  w ′  ∈ E  (  G ¯  )    for every    w ′  ∈  V 2   . If   u w ∈ E (  G ¯  )   (or   v w ∈ E (  G ¯  )  ), define a 2RiDF   g ′   of    G ¯   [  { u , v , w }  ]    as:    g ′   ( u )  = 0   (or    g ′    ( v )  = 0 ) ,   g ′   ( w )  = 1   and    g ′   ( v )  = 2   (   g ′   ( u )  = 2  ). According to Lemma 2 we can extend   g ′   to a 2RiDF of   G ¯  , under which    (  V 1  ∪  V 2  )  \  { w }    contains at most two vertices not assigned 0. Thus,    w  ( g )  ≤ |   V 0   | − 1 + 3 = |   V 0   | + 2   , a contradiction. We therefore assume that   u w ∉ E (  G ¯  )   and   v w ∉ E (  G ¯  )  . By Lemma 5 (2), there are at least three vertices in   (  V 1  ∪  V 2  )   that are adjacent to u or v. We WLOG assume that    V 1  ∪  V 2    contains a vertex   u ′   s.t.    u ′  u ∈ E  (  G ¯  )   . Construct a 2RiDF   g ′   of    G ¯   [  { u , v ,  u ′  , w }  ]    as follows:    g ′   ( u )  = 0 ,  g ′   (  u ′  )  = 2  , and    g ′   ( v )  =  g ′   ( w )  = 1  . Then, by Lemma 2   g ′   can be extended to a 2RiDF g of   G ¯  , under which    (  V 1  ∪  V 2  )  \  { w ,  u ′  }    contains at most one vertex not assigned value 0. Therefore,    w  ( g )  ≤ |   V 0   | − 1 + 3 = |   V 0   | + 2   , a contradiction. Similarly, we can also obtain a contradiction if we assume that   V 2   contains a vertex adjacent to every vertex of   V 1  . So, Claim 5 holds.



By Claim 5, for   { i , j }  = [1,2], each vertex of   V i   is adjacent to a vertex of   V j   in G. If    V 1  ∩  (  N  G ¯    ( u )  ∩  N  G ¯    ( v )  )  = ∅  , then in G all vertices of   V 1   are adjacent to   { u , v }  . Let f be:   f ( x ) = 2   for   x ∈  V 2   ,   f ( y ) = 0   for   y ∈  V 1  ∪  (  V 0  \  { u , v }  )   , and   f ( u ) = f ( v ) = 1  . Obviously, f is a 2RiDF of G s.t.   w ( f )   =    |   V 2   | + 2 < |   V 1   | + |   V 2   |   , a contradiction. We therefore assume that   V 1   contains a vertex s s.t.   s u ∈ E (  G ¯  )   and   s v ∈ E (  G ¯  )  . Then, in   G ¯  , by Lemma 5 (1) no vertex in    V 2  ∪  (  V 1  \  { s }  )    is adjacent to u and v simultaneously. Analogously, the function f:   f ( v ) = f ( u ) = 1 , f ( x ) = 2   for   x ∈  V 1   , and   f ( y ) = 0   for   y ∈  V 2  ∪  (  V 0  \  { u , v }  )    (and   f ( s ) = f ( v ) = f ( u ) = 1 , f ( x ) = 2   for   x ∈  V 2   , and   f ( y ) = 0   for   y ∈  (  V 1  \  { s }  )  ∪  (  V 0  \  { u , v }  )   ) is a 2RiDF of G with weight    |   V 1   | + 2    (and    |   V 2   | + 3   ). This implies that    |   V 1   | = 3    and    |   V 2   | = 2   . Let   V 1   =   { s ,  s 1  ,  s 2  }   and   V 2   =   {  s 3  ,  s 4  }  . Then, in   G ¯  , neither u nor v is a neighbor of   s 1   and   s 2   simultaneously; otherwise, we, by the symmetry, suppose that   u  s 1  ∈ E  (  G ¯  )    and   u  s 2  ∈ E  (  G ¯  )   . Let   g ′   be:    g ′   ( v )  =  g ′   (  s 1  )  =  g ′   (  s 2  )  = 0 ,  g ′   ( u )  = 1  , and    g ′   ( s )  = 2  . Obviously,   g ′   is a 2RiDF of    G ¯   [  { u , v , s ,  s 1  ,  s 2  }  ]    with weight 2. According to Lemma 2, we can extend   g ′   to a 2RiDF of   G ¯   with weight at most    |   V 0   | − 1 + |   V 2   | + 1 = |   V 0   | + 2   , a contradiction. In addition, in   G ¯  ,    s i  ,    i ∈ [ 1 , 2 ]  , is not adjacent to u and v simultaneously according to Lemma 5 (1). Therefore, we may assume, by the symmetry, that    s 1  v ∉ E  (  G ¯  )    and    s 2  u ∉ E  (  G ¯  )   .



If no edge between   { u , v }   and   V 2   in   G ¯   exists, then by Lemmas 5 (2),   u  s 1  ∈ E  (  G ¯  )    and   v  s 2  ∈ E  (  G ¯  )   . Then, the function   g ′   such that    g ′   ( s )  =  g ′   (  s 1  )  =  g ′   ( v )  = 0 ,  g ′   (  s 2  )  = 2  , and    g ′   ( u )  = 1   is a 2RiDF of    G ¯   [  { u , v , s ,  s 1  ,  s 2  }  ]    with weight 2. According to Lemma 2, we can extend   g ′   to a 2RiDF of   G ¯   with weight at most    |   V 2   | + 1 + |   V 0   | − 1 = |   V 0   | + 2   , a contradiction. We therefore assume that   G ¯   contains an edge connecting   { u , v }   and   V 2  , say   v  s 3  ∈ E  (  G ¯  )    by the symmetry.



If    s 4  s ∈ E  (  G ¯  )   , define   g ′   as:    g ′   (  s 3  )  = 2 ,  g ′   (  s 4  )  = 0 ,  g ′   ( s )  = 1 ,  g ′   ( v )  = 0  . Then,   g ′   is a 2RiDF of    G ¯   [  { s , v ,  s 3  ,  s 4  }  ]    with weight 2. By Lemma 2 and Formula 3, we are able to extend   g ′   to a 2RiDF of   G ¯   of weight at most    |   V 0   | − 1 + 3 = |   V 0   | + 2   , a contradiction. Consequently, we have    s 4  s ∉ E  (  G ¯  )   . Then, the function   g ′   such that    g ′   (  s 3  )  = 0 ,  g ′   (  s 4  )  =  g ′   ( s )  = 2 ,  g ′   ( v )  = 1 ,  g ′   ( u )  = 0   is a 2RiDF of    G ¯   [  { s , u , v ,  s 3  ,  s 4  }  ]    with weight 3, and by Lemma 2 and Formula 3 we can extend   g ′   to a 2RiDF of   G ¯   with weight at most    |   V 0   | − 1 + 3 = |   V 0   | + 2   . This contradicts the assumption.



Case 2.2.  u v ∉ E (  G ¯  )  . Then, by the selection of   u , v   and   f 0  ,    G ¯   [  V 0  ]    contains only isolated vertices and G does not admit a    γ  ri 2    ( G )   -function for which the induced subgraph of   G ¯   by vertices with value 0 contains   K 2   components.



For every   x ∈  V 0   , let    U i x  =  N  G ¯    ( x )  ∩  V i    for   i ∈ [ 1 , 2 ]  . Let   f ′   be:    f ′   ( x )  = 0   for   x ∈  (  (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )  )  ∪  (  V 0  \  { u , v }  )   ,    f ′   ( v )  = 2  , and    f ′   ( u )  = 1  . Apparently,   f ′   is a 2RiDF of   G − (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  ) )   with weight 2. According to Lemma 2, we can extend   f ′   to a 2RiDF of G with weight at most   | (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  ) ) | + 2  . To ensure    |   (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )   ) | + 2 ≥ |   V 1   | + |   V 2   |   , we have


   |   (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )   | ≤ 2   



(5)







Claim 6.   |   (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )   | = 2    and the two vertices in    (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )    are adjacent in   G ¯  . Define a 2RiDF   g ′   of    G ¯   [  V 0  ]    as:    g ′   ( u )  =  g ′   ( v )  = 1  . Suppose that    |   (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )   | ≤ 1   . Since   V 1   and   V 2   are cliques in   G ¯   and every vertex in    U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v    is adjacent to u or v in   G ¯  , by Lemma 2 we are able to extend   g ′   to a 2RiDF g of   G ¯   under which at most one vertex in    V i  ,    i ∈ [ 1 , 2 ]  , is not assigned value 0 (here if    (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )    contains a vertex, say w, then let   g ( w ) = 2  ). Clearly,   w  ( g )  = w  (  g ′  )  + 2 ≤  |  V 0  |  + 2  , a contradiction. Moreover, if    (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )    contains two nonadjacent vertices in   G ¯  , say    w 1  ,  w 2   , then   w 1   and   w 2   are not in the same set   V i   for some   i ∈ [ 1 , 2 ]  . Therefore, we can extend   g ′   to a 2RiDF g of   G ¯   via letting    g ′   ( x )  = 0   when x is in    (  V 1  ∪  V 2  )  \  {  w 1  ,  w 2  }    and    g ′   (  w 1  )  =  g ′   (  w 2  )  = 2  . However,   w  ( g )  = w  (  g ′  )  + 2 ≤  |  V 0  |  + 2  , a contradiction. This completes the proof of Claim 6.



By Claim 6,    (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v  )    contains two adjacent vertices in   G ¯  , say    w 1  ,  w 2   . If there exists a   z ∈ (  V 0  \  { u , v }  )   s.t.   z  w 1  ∈ E  (  G ¯  )    (or   z  w 2  ∈ E  (  G ¯  )   ), then set   g ′   as:    g ′   ( z )  =  g ′   ( u )  =  g ′   ( v )  = 1  ,    g ′   (  w 1  )  = 0   (or    g ′   (  w 2  )  = 0  ),    g ′   (  w 2  )  = 2   (or    g ′   (  w 1  )  = 2  ). Since in   G ¯   every vertex in    (  V 1  ∪  V 2  )  \  {  w 2  }    has a neighbor in   { z , u , v }   and every vertex in    V ′  \  {  w 2  }    is a neighbor of   w 2  , where    w 2  ∈  V ′    for some    V ′  ∈  {  V 1  ,  V 2  }   , we can extend   g ′   to a 2RiDF g of   G ¯   according to Lemma 2. Under g, every vertex in    V ′  \  {  w 2  }    is assigned value 0 and at most one vertex in    {  V 1  ,  V 2  }  \  V ′    is not assigned value 0. Therefore,    w  ( g )  ≤ |   V 0   | + 2   , a contradiction. This demonstrates that in   G ¯   no vertex in   V 0   is adjacent to   {  w 1  ,  w 2  }  . Furthermore, if there is a   z ∈  V 0  \  { u , v }   , then by Claim 6 we have    (  V 1  ∪  V 2  )  \  (  U 1 u  ∪  U 2 u  ∪  U 1 z  ∪  U 2 z  )  =  {  w 1  ,  w 2  }    and    (  V 1  ∪  V 2  )  \  (  U 1 v  ∪  U 2 v  ∪  U 1 z  ∪  U 2 z  )  =  {  w 1  ,  w 2  }   , which implies that    N  G ¯    ( z )  =  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v   . Set   g ′   as:    g ′   ( z )  = 1 ,  g ′   ( u )  =  g ′   ( v )  = 2   and    g ′   ( x )  = 0   for   x ∈  U 1 u  ∪  U 2 u  ∪  U 1 v  ∪  U 2 v   . Then,   g ′   is a 2RiDF of    G ¯  −  (  {  w 1  ,  w 2  }  ∪  (  V 0  \  { u , v , z }  )  )    with weight 3, and we can extend   g ′   to a 2RiDF of   G ¯   with weight at most    ( |   V 0   | + 2 − 3 ) + 3 = |   V 0   | + 2    according to Lemma 2, a contradiction. So far, we have shown that    V 0  =  { u , v }   , that is,    γ  ri 2    ( G )  = n − 2  .



Now, we define a 2RiDF   f ′   of   G [  { u , v ,  w 1  ,  w 2  }  ]   as follows:    f ′   (  w 1  )  =  f ′   (  w 2  )  = 0  ,    f ′   ( u )  = 1   and    f ′   ( v )  = 2  . According to Lemma 2, we can extend   f ′   to a 2RiDF f of G with weight at most   n − 2  . To ensure   w  ( f )  ≥  γ  ri 2    ( G )  = n − 2  , f must be a    γ  ri 2    ( G )   -function (since   w ( f ) = n − 2  ). However,    G ¯   [  {  w 1   w 2  }  ]    is isomorphic to   K 2  . This contradicts the selection of   f 0  . Eventually, the proof of Theorem 3 is finished. □





Based on the foregoing analysis, we observed that the upper bound   n + 2   can be attained by graphs    S r   ( r ≥ 2 )   ,    S r +   ( r ≥ 2 )   , and   S ( r , 1 )    ( r ≥ 1 )  , while we did not find other graphs that possess this property. So, we propose a problem as follows.



Question 1. Is it enough to determine graphs G with    γ  ri 2    ( G )  +  γ  ri 2    (  G ¯  )  =  | V  ( G )  |  + 2   by    S r   ( r ≥ 2 )   ,    S r +   ( r ≥ 2 )   , and   S ( r , 1 ) ( r ≥ 1 )  ?
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