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Abstract: An invariable order reduction model cannot be obtained by the adaptive proper orthogonal
decomposition (POD) method in parametric domain, there exists uniqueness of the model with
different conditions. In this paper, the transient POD method based on the minimum error of
bifurcation parameter is proposed and the order reduction conditions in the parametric domain are
provided. The order reduction model equivalence of optimal sampling length is discussed. The POD
method was applied for order reduction of a high-dimensional rotor system supported by sliding
bearings in a certain speed range. The effects of speed, initial conditions, sampling length, and mode
number on parametric domain order reduction are discussed. The existence of sampling length
was verified, and two- and three-degrees-of-freedom (DOF) invariable order reduction models were
obtained by proper orthogonal modes (POM) on the basis of optimal sampling length.

Keywords: POD method; order reduction; parametric domain; nonlinear dynamics; rotor-bearing

1. Introduction

Many actual engineering systems are complex, high-dimensional, nonlinear and
uncertain, e.g., aero-engine, steam turbine, etc [1–4]. Theoretical analysis of the high-
dimensional nonlinear system is difficult, and the calculation is very expensive [5,6].
So, model order reduction (MOR) should be applied to reduce the high-dimensional
system and the reduced system model is used to replace the original system. A series of
MORs have been proposed to study high-dimensional engineering systems [7–11], and the
methods have been summarized by the researchers in their applied studies of nonlinear
dynamics [12–14]. Proper orthogonal decomposition (POD) method is a powerful method
for model dimension reduction and data analysis for obtaining the low-order modes of the
original system [15].

The POD method was reviewed, the classification method of POD was provided,
and the outlooks of POD method were also highlighted in Ref. [14]. Karmer [16] proposed
a nonlinear model dimension reduction method for generally nonlinear systems, and the
POD method was applied to study the FitzHugh-Nagumo benchmark problem. The POD
method was applied for developing a low-dimensional parametrization of these quantities
of interest, and the parametrization with machine learning methods was combined with
the new method to learn the map between input and POD expansion coefficients [17].
The POD method was applied for dimension reduction of the rotor system via numerical
simulation in a series of actual cases. Lu [9] proposed the transient POD method and
applied it to the high-dimensional and nonlinear rotor-bearing system model. In Ref. [18],
a new adaptive POD method was proposed in a wider parametric region to address the
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local property weakness of the interpolation tangent space of the Grassmann manifold
method. Lu [19] used the POD method to reduce the six-degrees-of-freedom (DOF) rotor
system model to a one-DOF dynamic system model, and the bifurcation and dynamic
characteristics of the reduced system model were discussed in detail.

The above POD methods can solve the robustness problems for large-range parametric
domains of order reduction systems to a certain degree. The proper orthogonal modes
(POM) are constantly updated or the number of modes is adjusted to obtain the adaptive re-
duced order of the parameter domain, so the order reduction models become some discrete
numerical equations. There is no invariable mathematical model of parametric domains,
even order reduction model dimensions of subparametric domains are inconsistent. In the
parameter domain, the adaptive POD method cannot obtain a low-dimensional invariant
model that can approximately reflect the dynamic behaviors of high-dimensional com-
plex systems, so it is unable to conduct in-depth theoretical research on high-dimensional
systems. The key problem of the POD method is obtaining an invariable order reduction
model of a high-dimensional system, and the order reduction model can reserve similar
bifurcation behaviors of the original system in the parameter domain. In other words,
the bifurcation parameter errors of the order reduction model and the original system
are minimized, and the bifurcation occurs on the same or similar parameters. On the
basis of the order reduction model obtained by POD method, theoretical analysis of the
high-dimensional system can be carried out. In this paper, order reduction of POD para-
metric domain means the invariable mathematical order reduction model in the parametric
domain can keep the minimum error of bifurcation parameter of the original system.

The motivation of this paper was to propose the transient POD method on the basis
of the bifurcation parameter minimum error. In Section 2, order reduction conditions of
the parametric domain order reduction model equivalence of optimal sampling length
are discussed. A 15-DOFs rotor-bearing system with looseness fault is established by the
Newton’s second law and is described in Section 3. In Section 4, numerical verification is
used to discuss the effects of speed, initial conditions, sampling length, and mode number
to parametric domain order reduction. The POD method is applied to the rotor system
and the efficiency of the MOR is verified. Finally, conclusions and outlooks are drawn
in Section 5.

2. Transient POD of Parametric Domain Order Reduction

In this section, order reduction conditions of the parametric domain are introduced in
Section 2.1. The order reduction model equivalence based on optimal sampling length is
discussed in Section 2.2.

2.1. Order Reduction Conditions of Parametric Domain

The key problem of the POD method is to construct the POM—the obtained POMs
vary with parameters, initial conditions, sampling length, and sampling method of the
original system. Therefore, the order reduction models are different. We will discuss the
relation between the reduced and original system and the conditions of the order reduction
model that approximates to the original model in parameter domain.

The POD POMs are related to parameters of the system, initial conditions, and sam-
pling length, so the POMs are considered as the function of all state parameters—the set of
all order reduction systems is denoted as Sr. Here, we consider dynamical equation of the
high-dimensional complex structure system as

M
..
X + C

.
X + KX = F

(
X,

.
X, t
)

(1)



Mathematics 2021, 9, 392 3 of 21

where M, C, K represent total mass, stiffness, and damping; X is the generalized displace-

ment vector of n DOF; and F
(

X,
.
X, t
)

is generalized force vector. Let Y = [X,
.
X]

T

2n×1
, it can

be expressed as differential equation of motion in the state space

.
Y = HY + h(Y, t) (2)

where H =

[
0 In

−M−1K −M−1C

]
2n×2n

and h(Y, t) = [0, F
(

X,
.
X, t
)
]
T

2n×1
. Denote θ = ω t,

q = [X,
.
X, θ]

T

(2n+1)×1
, transform equilibrium point of the vector field to zero 02n+1 by transla-

tion transformation, the above formula can be converted into an autonomous system

.
q = Aq + g(q) (3)

where A =

 0 In
−M−1K −M−1C

0


(2n+1)×(2n+1)

+ [Dqg(0)](2n+1)×(2n+1), g ∈ C1,

g = O
(
‖q‖2

)
and g(0) = 0. Set q(t) is boundary solution of the above equation, Equation (4)

can be obtained by method of variation of constant

q(t) = Ψ(t)q0 +
∫ t

0
Ψ(t− τ)g(q(τ))dτ (4)

where Ψ(t) = eAt is base solution matrix of linear part of Equation (3), q0 = q(0) is the
initial value.

ϕ(x0, α, ts) is the POM of the dynamical system, and it can be expressed as ϕ(x0, α, ts) =
{ϕk(x0, α, ts)}n

k=1, x0 ∈ R2n, α ∈ Rl , ts ∈ R+, x0, α, ts represent the initial condition, sys-
tem parameters, and sampling length. The coordinate transformation matrix constructed
by the first m POMs is P = P(x0, α, ts) = [ϕ1(x0, α, ts), . . . ,ϕm(x0, α, ts)]n×m, so we can get

X(t) =
m

∑
i=1

ui(t)ϕi(x0, α, ts) = Pu(t). (5)

The state space coordinates of autonomous system can be expressed as

q(t) =

 X(t)
.
X(t)

θ


(2n+1)×1

= T(x0, α, ts)

 u(t)
.
u(t)

θ


(2m+1)×1

, T(x0, α, ts) =

 P 0
0 P

1


(2n+1)×(2m+1)

(6)

By substituting Equation (6) into Equation (3), a differential equation of the motion of
the order reduction system in state space can be obtained

.
qr = Arqr + gr(qr) (7)

where the parameters in Equation (7) are qr = [u(t),
.
u(t), θ]

T
2m+1,gr(qr) = TT × [g(q)]2n+1,

gr(0) = TT × [g(0)]2n+1 = 0, Ar =

 0 Im
−PTM−1KP −PTM−1CP

0


(2m+1)×(2m+1)

+

TT × [Dqg(0)](2n+1)×(2n+1) × T. The general solution of the order reduction system is

qr(t) = Ψr(t)qr0 +
∫ t

0
Ψr(t− τ)gr(qr(τ))dτ (8)
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where Ψr(t) is base solution matrix linear part Ar of the order reduction system, qr0 = TTq(0).
The solution of the original system corresponding to reduced system can be obtained
by Equation (6)

qOr(t) = Tqr(t) = TΨr(t)qr0 +
∫ t

0
TΨr(t− τ)gr(qr(τ))dτ. (9)

The solution of Equation (9) is not the solution of the original system, which re-
lates to system parameters, sampling length, and initial conditions, the condition qOr(t)
approximates to q(t), which is equivalent to Equation (10)

‖q(t)− qOr(t)‖ → 0. (10)

By substituting Equations (4) and (9) into the above equation, we can get

‖q(t)− qOr(t)‖ = ‖
{

Ψ(t)− TΨr(t)TT
}

q0 +
∫ t

0

{
Ψ(t− τ)− TΨr(t− τ)TT

}
g(q(τ))dτ‖ (11)

By making the above equation small enough, ∀t ∈ [0,+∞), which satisfies

‖Ψ(t)−ΨOr(t)‖ → 0, ΨOr(t) = TΨr(t)TT (12)

Ψ(t) and Ψr(t) are the base solution matrices of constant matrices A and Ar, which can
be expressed as

Ψ(t) = eAt =
∞

∑
k=0

Aktk

k!
(13a)

Ψr(t) = eArt =
∞

∑
k=0

Ak
r tk

k!
=

∞

∑
k=0

(
TTAT

)ktk

k!
. (13b)

By substituting Equations (13a) and (13b) into Equation (12), we can get

‖Ψ(t)−ΨOr(t)‖ = ‖eAt − TeArtTT‖ = ‖
∞

∑
k=0

Aktk

k!
− T

(
∞

∑
k=0

(
TTAT

)ktk

k!

)
TT‖. (14)

When m = n, TTT = TTT = I2n+1, the above equation satisfies

‖Ψ(t)−ΨOr(t)‖ ≡ 0. (15)

The above transformation is a canonical transformation, the two models are com-
pletely equivalent, the DOF of the system does not decrease at all. When m � n,
TTT 6= TTT = I2m+1, the above equation cannot be equal to zero, but whether there exist
P(x0, α, ts) or T(x0, α, ts) within the allowed error range, this makes Equation (12) small
enough. On the one hand, a transient response signal contains intrinsic mode information,
so P(x0, α, ts) obtained from a transient response signal makes Equation (12) smaller. On the
other hand, if P(x0, α, ts) is the function of the system parameters, initial conditions, and
sampling length, what sampling parameters can make Equation (12) small enough? Let us
analyze this problem by defining the truncation error function (TEF), the steps can be
expressed as follows:

Response of the original system can be approximated as Equation (16) when the
parameters satisfy x0 ∈ R2n, α ∈ Rl , ts ∈ R+ based on the POD method

X(x0, α, ts, ti) ≈
m

∑
k=1

uk(α, ti)ϕi(x0, α, ts) , i = 1, . . . , N. (16)
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When the response to the system parameter α′ ∈ Rl is not necessarily satisfied

X(x0, α′, ti) 6= X(x0, α′, α, ts, ti) =
m

∑
k=1

uk(α
′, ti)ϕi(x0, α, ts) , i = 1, . . . , N (17)

The reason why the above formula is not valid is that there is no direct approximation
between the solution of the differential equation of order reduction system and the solution
of the original physical system. The average TEF can be defined as follows:

εm
(
t, α′,ϕ(x0, α, ts)

)
=

〈
‖X(x0, α′, ti)−

m

∑
k=1

uk(α
′, ti)ϕi(x0, α, ts)‖

2〉
(18)

which represents the error in time t between the order reduction model obtained by the
sampling parameters x0 ∈ R2n, α ∈ Rl , ts ∈ R+ of the original system and the response of
the original system parameters α′. 〈·〉 represents the average operator of N points in time t.
The difference between α and α′ is that the former is a global parameter and the latter is
the averaged. The response of original system parameter α′ can be represented linearly by
the first m order POD POMs of parameter α when εm is small enough, which means POMs
of parameter α can obtain order reduction of system parameter α′.

Assume that the system parameters change continuously in the parameter domain,
α′ ∈ Ω ⊂ Rl , we hope the POM function {ϕk(x0, α, ts)}m

k=1 of parameter α can approximate
to the original system in the entire parameter domain, so total average TEF of parametric
domain can be defined as

Em(t, x0, α, ts) =
∫

Ω
εm
(
t, α′,ϕ(x0, α, ts)

)
dα′. (19)

The above formula shows the approximation degree of POD POM function sampled
from the original system parameter x0 ∈ R2n, α ∈ Rl , ts ∈ R+ to the original system in the
entire parameter domain. When Em is small enough, the original system response in entire
parameter domain Ω can be expressed linearly by the first order POMs {ϕk(x0, α, ts)}m

k=1
of parameter α. The POM of parameter α can get an invariable order reduction model,
realizing order reduction of high-dimensional complex system in the parameter domain.

By the definition of Em(t, x0, α, ts), it relates to initial conditions x0, parameter of orig-
inal system α, sampling length ts, and POM number m. The POD method constructed
POM via the response signal of the original system, which means x0 and α are confirmed,
and Em(t, x0, α, ts) is related to sampling length ts and POM number m at this moment.
The total average TEF Em(t, x0, α, ts) only relates to ts when POM number m is confirmed.
It is known from the definition of the average TEF, εm

(
t,α

′
, φ(x0, α, ts)

)
≥ 0, that there

must be a lower bound, as it has a minimum value in the parameter domain. When the sys-
tem parameters, initial condition, and POM number are confirmed, the optimal sampling
length is topt, which ensures Em(t, x0, α, ts) minimum, and we can get

Em(t, x0, α, ts) ≥ infEm(t, x0, α, ts) = Em(t, x0, α, topt) (20)

POD POM function
{

ϕk
(
x0, α, topt

)}m
k=1 obtained via optimal sampling length can

approximate to the original system in the entire parametric domain if Em(t, x0, α, topt) < ε,
ε is sufficiently small. Therefore, a low-dimensional invariable order reduction model is
obtained, realizing parametric domain order reduction of a high-dimensional complex
system.

Therefore, in order to realize the invariable order reduction model of high-dimensional
complex systems in the parametric domain and obtain order reduction of complex systems
in the parametric domain, the total average TEF should be small enough. When the system
parameters, initial condition, and POM number are confirmed, if the total average TEF
obtained under the optimal sampling length of the system transient signal is small, the POD
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POM function constructed by the response signal under the sampling length can realize
order reduction in the parameter domain of the high-dimensional complex system.

2.2. Order Reduction Model Equivalence of Optimal Sampling Length

The responses and POD POMs of the original system vary with different parameters,
so the optimal sampling length is different. For clarity, we use parameter ω to stand
for parameter α in this section. We will discuss the relation of order reduction models
obtained by optimal sampling length in different parameters. For two different parameters
ω1, ω2 ∈

[
ωα, ωβ

]
in the parameter domain of the high-dimensional complex system (the

dimension is n), the corresponding optimal sampling lengths are t1
opt, t2

opt. The two order
reduction models are equivalent when E1

m(t, x0, ω1, t1
opt), E2

m(t, x0, ω2, t2
opt) are sufficiently

small, S1, S2 ∈ Sr, S1
∼= S2 X(x0, ω1, t1

opt, t, ω) ≈ X(x0, ω2, t2
opt, t, ω) ≈ X(x0, t, ω). Let us

prove it briefly as follows.
Let the optimal sampling lengths of two different parameters be ω1, ω2 are t1

opt,
and t2

opt, E1
m(t, x0, ω1, t1

opt), and E2
m(t, x0, ω2, t2

opt) are small enough, thus there exists a
small ε > 0, such that

E1
m(t, x0, ω1, t1

opt) <
ε

2
, E2

m(t, x0, ω2, t2
opt) <

ε

2
. (21)

Equations (22) and (23) can be obtained by Equations (18) and (19)

E1
m(t, x0, ω1, t1

opt) =
∫ ωβ

ωα
ε1

m

(
t, ω,ϕ(x0, ω1, t1

opt)
)

dω

=
∫ ωβ

ωα

〈
‖X(x0, t, ω)−

m
∑

i=1
αi(t, ω)ϕi(x0, ω1, t1

opt)‖
2
〉

dω < ε
2

(22)

E2
m(t, x0, ω2, t2

opt) =
∫ ωβ

ωα
ε2

m

(
t, ω,ϕ(x0, ω2, t2

opt)
)

dω.

=
∫ ωβ

ωα

〈
‖X(x0, t, ω)−

m
∑

i=1
βi(t, ω)ϕi(x0, ω2, t2

opt)‖
2
〉

dω < ε
2

(23)

Due to Equations (24a) and (24b)

‖X(x0, t, ω)−
m

∑
i=1

αi(t, ω)ϕi(x0, ω1, t1
opt)‖

2

≥ 0 (24a)

‖X(x0, t, ω)−
m

∑
i=1

βi(t, ω)ϕi(x0, ω2, t2
opt)‖

2

≥ 0 (24b)

so ε1
m

(
t, ω,ϕ(x0, ω1, t1

opt)
)

and ε2
m

(
t, ω,ϕ(x0, ω2, t2

opt)
)

are almost everywhere in the pa-

rameter domain
[
ωα, ωβ

]
, the average TEF of the two parameters is a zero measure set

in the parameter domain, ε1
m

(
t, ω,ϕ(x0, ω1, t1

opt)
)

and ε2
m

(
t, ω,ϕ(x0, ω2, t2

opt)
)

construct

equivalent relation, so X(x0, t, ω) almost equals to
m
∑

i=1
u1

i (t, ω)ϕi(x0, ω1, t1
opt) in the parame-

ter domain, meanwhile, as it almost equals to
m
∑

i=1
u2

i (t, ω)ϕi(x0, ω2, t2
opt), it can be obtained

by the following formula
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∫ ωβ
ωα

〈
‖X
(

x0, ω1, t1
opt, t, ω

)
− X

(
x0, ω2, t2

opt, t, ω
)
‖

2
〉

dω =
∫ ωβ

ωα

〈
‖

m
∑

i=1
αi(t, ω)ϕi

(
x0, ω1, t1

opt

)
−

m
∑

i=1
βi(t, ω)ϕi

(
x0, ω2, t2

opt

)
‖

2
〉

dω

=
∫ ωβ

ωα

〈
‖
(

X(x0, t, ω)−
m
∑

i=1
βi(t, ω)ϕi

(
x0, ω2, t2

opt

))
−
(

X(x0, t, ω)−
m
∑

i=1
αi(t, ω)ϕi

(
x0, ω1, t1

opt

))
‖

2
〉

dω

≤
∫ ωβ

ωα

〈
‖X(x0, t, ω)−

m
∑

i=1
αi(t, ω)ϕi

(
x0, ω1, t1

opt

)
‖

2
〉

dω +
∫ ωβ

ωα

〈
‖X(x0, t, ω)−

m
∑

i=1
βi(t, ω)ϕi

(
x0, ω2, t2

opt

)
‖

2
〉

dω

≤ ε

2
+

ε

2
≤ ε

(25)

Further
X(x0, ω1, t1

opt, t, ω) ≈ X(x0, ω2, t2
opt, t, ω) ≈ X(x0, t, ω). (26)

Therefore, the order reduction models obtained from the optimal sampling lengths of
different sampling parameters constitute equivalent relations when the total average TEF
is sufficiently small; that is, the order reduction models are equivalent to each other. In the
same way, it can be proved that all order reduction models are equivalent to each other if
total average TEF is small enough.

The bifurcation behavior relation of the reduced and original models is discussed
if the conditions meet parameter domain order reduction. Assume that the original sys-
tem only bifurcates once in a parameter domain ω ∈

[
ωα, ωβ

]
, the bifurcation points of

the original and reduced systems are ωc and ωcr , respectively, and the bifurcation type
of the original system remains the same under the linear transformation of POD POM.
Define ∆ω = |ωcr −ωc| as the relative error of the bifurcation parameter, representing the
relative distance between the bifurcation point of the reduced and original systems in the
parameter domain. ∆ω → 0 means that bifurcations of the reduced and original systems
occur on the same or similar parameters, and the bifurcation behaviors of the original and
reduced systems are the same in the parameter domain, so the dynamic behaviors are
consistent. When the difference of ∆ω is large, assume ∆ω = δ, ωcr > ωc, so the response
behaviors of the reduced and original systems are different in the domain ω ∈ [ωc, ωcr ],
and the response errors of the reduced and original systems are large in the parameter
domain, so the order reduction conditions are not satisfied in the entire parameter domain
ω ∈

[
ωα, ωβ

]
, Em(t, x0, ωs, ts) � ε. Therefore, in order to realize order reduction in the

parameter domain of a high-dimensional system, it is necessary to ensure that the relative
error of the bifurcation parameters between the reduced and the original systems tend to
zero, which is a necessary condition for order reduction in the parameter domain. It can
be seen from the above proof that order reduction in the parameter domain can be real-
ized through the optimal sampling length, so the minimum relative error of bifurcation
parameters correspond to the optimal sampling length.

Remark 1. While the total average TEF is different as the system parameters, initial condition,
different sampling length and POM number vary, the obtained order reduction models are also
different. However, under the condition that the total average TEF is small enough, all the order
reduction models are equivalent to each other and can approximately reflect the dynamic behaviors
of the original system in the parameter domain. Therefore, order reduction in the parameter domain
of high-dimensional complex systems can be realized through the POD POM obtained under these
sampling parameters. The POD POM can be constructed by the response signal of optimal sampling
length containing transient progress of the system when the system parameters, initial condition,
and POM number are confirmed. The invariable order reduction model in the parameter domain
of the system is obtained, so as to realize the theoretical research on the high-dimensional complex
system, and the order reduction model satisfying the order reduction in the parameter domain has the
characteristic that the relative error of bifurcation parameters tends to zero with the original system.
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3. Modeling of Rotor-Bearing System with Looseness Fault

In this section, order reduction of the parameter domain for high-dimensional nonlin-
ear rotor system supported by sliding bearing in a certain speed will be studied. The effects
of the system parameters, initial condition, sampling length, and mode number to order
reduction of the parameter domain will be analyzed, and the POD POMs are confirmed,
obtaining invariable order reduction model in parameter domain.

Figure 1 shows the schematic diagram of high-dimensional nonlinear rotor-bearing
system model, the rotor contains five impeller discs, it is assumed that each disc is rigid
and both ends of the rotor are supported by sliding bearings, and the looseness of the
left bearing is considered. Similarly, it is assumed that each shaft section is the elastic
shaft section designed with equal stiffness and the geometric center of the left journal,
each disc shaft section, and the right journal are Oi(i = 1 . . . 7), respectively; the mass
of the left and right journals are concentrated in the corresponding geometric center
O1, O7, the mass of other shaft sections are concentrated at the center of mass of each
wheel, Oi

′(i = 2 . . . 6), the corresponding eccentricity is ei(i = 2 . . . 6); the rotor structure is
symmetrical, the gyroscopic of each disc is ignored; selecting the geometric center of the
bearing at the left end as the reference point, xi, yi(i = 1 . . . 7) are the horizontal and vertical
displacements of the center of mass of the left journal, the center of mass of each disc,
and the right journal relative to the reference point in the radial surface; mi, ci(i = 1 . . . 7),
ki(i = 1 . . . 6) represent equivalent mass, damping. and stiffness of each shaft section of
the corresponding positions; Fx, Fy denote the oil film forces in the horizontal and vertical
directions. Assume that the looseness of the left end only occurs in the vertical direction,
y8 is the displacement of relative reference point, looseness stiffness ks and damping cs are
piecewise linear functions [20–22].

ks =


k1

s (y8 > δ)
0 (0 ≤ y8 ≤ δ)
k2

s (y8 < 0)
, cs =


c1

s (y8 > δ)
0 (0 ≤ y8 ≤ δ)
c2

s (y8 < 0)
. (27)
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Consider the nonlinear oil film force of the bearing at both ends and the unbalanced
excitation of the rotor, the motion differential equation of the multidisc rotor-bearing system
can be established by the Newton’s second law, the dynamical equation can be expressed
as Equation (1). where X = [x1, . . . , x7, y1 . . . y7, y8]

T , M, C, and K are stiffness, mass, and
damping matrices, which can be expressed as:

M =



m1
. . .

m7

0

0

m1
. . .

m7
m8


, C =



c1
. . .

c7

0

0

c1
. . .

c7
cs


(28a)
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K =



k1 −k1
−k1 k1 + k2 −k2

−k2
. . . . . .
. . . k4 + k5 −k5

−k5 k5 + k6 −k5
−k5 k6

0

0

k1 −k1
−k1 k1 + k2 −k2

−k2
. . . . . .
. . . k4 + k5 −k5

−k5 k5 + k6 −k5
−k5 k6 ks



(28b)

F
(

X,
.
X, t
)

represents the external force vector, including the nonlinear oil force of
the left and right journal, eccentric excitation of each disc and gravity, the expression is
shown as:

F = [FX(x1, y1 − y8,
.
x1,

.
y1 −

.
y8), m2e2ω2 cos(ωt), . . . , m6e6ω2 cos(ωt), FX(x7, y7,

.
x7,

.
y7), FY(x1, y1 − y8,

.
x1,

.
y1 −

.
y8)−m1g,

m2e2ω2 sin(ωt)−m2g, . . . , m6e6ω2 sin(ωt)−m6g, FY(x7, y7,
.
x7,

.
y7)−m7g,−FY(x1, y1 − y8,

.
x1,

.
y1 −

.
y8)−m8g]T

(29)

For the convenience of analysis, the dimensionless process is shown as follows:

τ = ωt, xi =
Xi
c , yi =

Yi
c , M1 = m1cω2

sW , M7 = m7cω2

sW , M8 = m8cω2

sW ,

e′i =
ei
c (i = 2 . . . 6), fx = FX

sW , fy = FY
sW ,{

fx
fy

}
= −

√
(x−2

.
y)

2
+(y+2

.
x)

2

1−x2−y2

{
3xV(x, y, α)− sin αG(x, y, α)− 2 cos αS(x, y, α)
3yV(x, y, α) + cos αG(x, y, α)− 2 sin αS(x, y, α)

}
,

α = arctan
(

y+2
.
x

x−2
.
y

)
− π

2 sign
(

y+2
.
x

x−2
.
y

)
− π

2 sign
(
y + 2

.
x
)
,

G(x, y, α) = 2√
1−x2−y2

[
π
2 + arctan

(
y cos α−x sin α√

1−x2−y2

)]
,

V(x, y, α) =
2 + (y cos α− x sin α)G(x, y, α)

1− x2 − y2 ,

S(x, y, α) =
x cos α + y sin α

1− (x cos α + y sin α)2

(30)
where fx, fy are nonlinear oil film forces in two perpendicular directions, respectively;

s = µωRL
W ( R

c )
2
( L

2R )
2

is Sommerfeld coefficient [23]; ω is angular frequency; µ is coefficient
of viscosity; R, L and W represent radius, length, and half weight of the rotor system,
respectively. The system parameters shown in Table 1.
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Table 1. Parameters of the rotor-bearing system.

Parameter Value Parameter Value

m1 = m7 (kg) 4 c1 = c7 (N.s/m) 800
m2 = m6 (kg) 25 c2 =c6 (N.s/m) 1750
m3 = m5 (kg) 20 c3 =c5(N.s/m) 1550

m4 (kg) 10 c4(N.s/m) 1350
m8 (kg) 5 c1

s (N.s/m) 350
ki (i = 1 . . . 6) (N/m) 5 × 108 c2

s (N.s/m) 500
k1

s (N/m) 2.5 × 108 δ(mm) 0.22
k2

s (N/m) 1 × 109 L (mm) 30
e3 (mm) 0.01 R (mm) 30
µ (pa.s) 0.018 c (mm) 0.11

m1 = m7(kg) 4 c1 = c7 (N.s/m) 800

The fourth order Runge-Kutta method is used to calculate the response of 15-DOF orig-
inal system, the displacement response signals X̂(x0, ω, ts) = [x1, . . . , x7, y1, . . . , y7, y8]Ns×15
of different parameters are extracted, as a sampling snapshot matrix, where x0, ω, ts repre-
sent the initial conditions, speed, and sampling length (Ns is data length) of the sampling
signal. Since the transient motion contains free and forced vibration, and contains the
inherent mode information of the system, each parameter sampling contains transient
motion of the system. By calculating the eigenvectors of the autocorrelation matrix

Sc =
1

Ns
[X̂(x0, ω, ts)

TX̂(x0, ω, ts)]15×15 (31)

the eigenvectors are arranged in descending order of eigenvalues and the POD POM
{ϕi(x0, ω, ts)}i=1...15 can be obtained. The original system is projected onto the subspace
spanned by the first m order POMs, that is, the following coordinate transformation relation
is obtained

X(t) =
m

∑
i=1

ui(t)ϕi(x0, ω, ts) = P(x0, ω, ts, m)u(t) (32)

where P(x0, ω, ts, m) = [ϕ1(x0, ω, ts), . . . ,ϕm(x0, ω, ts)]15×m, and the dynamical equation
of order reduction model can be obtained by substituting Equation (32) to Equation (1)

Mr
..
u+Cr

.
u+Kru =Fr

(
u,

.
u, t
)

(33)

where Mr = PTMP, Cr = PTCP, Kr = PTKP, Fr = PTF, the initial condition can be
confirmed by u0 = PTx0.

Mr, Cr, Kr, Fr of the order reduction model relate to system parameter, initial condition,
sampling length, and POM number. However, on the basis of the proof in Section 2,
the order reduction models are equivalent to each other when the sampling signal with
sufficiently small total average truncation error is satisfied, and the order reduction model is
determined once the sampling snapshot signal matrix of the original system is determined.
Therefore, the effects of system parameters, initial conditions, sampling length, and POM
number on the order reduction in the parameter domain can be analyzed to determine
the POM in the parameter domain and obtain the constant order reduction model of the
system in the parameter domain. The efficiency of order reduction in parameter domain is
verified by numerical method.

4. Analysis of Dynamics and Order Reduction Efficiency

The numerical results will be discussed in this section, including bifurcation behavior
analysis, optimal sampling length and order reduction efficiency study of the POD method.

Choose speed as the parameter of order reduction for the system, the speed range is
[300, 1200] rad/s, the bifurcation diagram of the original system in the speed range can
be obtained by numerical integration, which is shown in Figure 2. It can be seen from the
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figure that the response of the system bifurcates at ωc = 915 rad/s, and at the speed of
[300, 915] rad/s, the system is period-1 motion; the complex bifurcation behaviors occur at
the speed [915, 1200] rad/s and the vibration is larger in this speed domain—it is an oil film
oscillation phenomenon caused by the nonlinear oil film force, its main characteristic is
that there is a large peak value in the response spectrum near the half frequency of rotating
shaft. As shown in Figure 3, it is the spectrum diagram corresponding to the two rotating
speeds in the oil film oscillation region of the original system. At the rotating speed of
915 rad/s, the oil film instability just occurred in the system. When the rotating speed is
1100 rad/s, the frequency component amplitude of the 0.469 times rotating shaft is very
large and oil film oscillation of the system occurs violently.
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For the parameter domain order reduction, most order reduction models have approx-
imately the same bifurcation behaviors in parameter domain with original model, such as
similar bifurcation diagram structure, close bifurcation point, and consistent bifurcation
behavior. As usual, we first use a bifurcation diagram structure and then the bifurcation to
verify the efficiency of the parameter domain order. Therefore, in order to analyze the effect
of sampling parameters on parameter domain order reduction, we mainly compare the
bifurcation diagram of the order reduction model with the original system under different
sampling conditions.

Firstly, the effects of sampling length on parameter domain order reduction are an-
alyzed. Suppose the initial value of the original system state vector is xi = yi = 0.69,
y8 = 0.25,

.
xi =

.
yi =

.
y8 = 0 (i = 1 . . . 7), the response signals of the original system at

different time lengths are obtained at a fixed speed, and the order reduction model at
the corresponding sampling length is obtained. The bifurcation behaviors of the original
system were compared in the range of speed [300,1200] rad/s. In Figure 4, it is a bifur-
cation diagram of the original system and a bifurcation diagram of two-DOF reduction
models obtained at different sampling lengths with sampling speed 350 rad/s. As can be
seen from the figure, the bifurcation points of the order reduction models with sampling
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lengths of 50π, 80π, 100π, 130π, 150π, 200π, 300π are 1200 rad/s, 1100 rad/s, 1005 rad/s,
910 rad/s, 865 rad/s, 775 rad/s, 655 rad/s respectively. As the sampling length increases,
the bifurcation point of the order reduction model gradually decreases until it converges.
Compared with the bifurcation diagram of the original system, it is easy to find that only
when the sampling length is 130π, does the bifurcation diagram of the order reduction
model have a similar structure to the original system, where the bifurcation points are
closest to each other in the rotation speed domain and have the smallest error with the
original system; however, the order reduction models at other sampling lengths greatly
differ from the bifurcation diagram structure of the original system, and the bifurcation
points are far away in the speed domain. It can be seen that the two-DOF order reduction
model obtained at this sampling length can depict the bifurcation characteristics of the
original system with 15-DOF in the parameter domain, while the order reduction models
at other sampling lengths cannot reflect the bifurcation behaviors of the original system.
Therefore, the sampling length can be considered as the optimal sampling length with a
sampling speed of 350 rad/s and a POM number of 2.
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Figure 4. Bifurcation diagram (a) of original system, bifurcation diagrams, (b–h) of the proper orthogonal modes (POMs) of
2-degrees-of-freedom (DOF) for the different sampling lengths at the rotational speed 350 rad/s.

Figures 5 and 6 are the orbit of shaft center and spectrum diagrams of the two-DOF
order reduction model at the sampling speed of 350 rad/s and the optimal sampling length
at the speeds of 900 rad/s and 950 rad/s, as well as orbit of shaft center and spectrum
diagrams of the corresponding speed of the original system. As can be seen from the figure,
the orbit of shaft center and spectrum of the order reduction model are basically similar to
the original system, at speed of 900 rad/s, the period of both is 1; at speed of 950 rad/s,
both are almost periodic motions. The main frequency of the original system and the order
reduction model are 0.445 times and 0.453 times the shaft frequency, respectively, which is
about half the shaft frequency. The amplitude of the shaft frequency component is weak.
These characteristics are consistent with oil film oscillation phenomenon of the original
system. The oil film oscillation region of the order reduction model is consistent with the
original system. Therefore, the two-DOF invariant order reduction model obtained from
the optimal sampling length of 350 rad/s can reflect the main dynamic behaviors of the
original system in the parameter domain and can realize the order reduction of the system
on parameter domain.
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Figure 5. Comparisons between POM of 2-DOFs obtained by the optimal sampling length atω = 350 rad/s and the original
system (O-S) for axis orbit and frequency spectrum atω = 900 rad/s: (a) axis orbit of O-S, (b) axis orbit of POM, (c) frequency
spectrum of O-S, (d) frequency spectrum of POM.
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spectrum of O-S, (d) frequency spectrum of POM.

Without loss of generality, we also sampled at other speeds to analyze the similarity
between the order reduction model obtained from different sampling lengths and the
bifurcation diagram of the original system. Here, we express the relationship between the
relative error of the bifurcation parameters and the sampling length. Figure 7 shows the
relationship between the sampling length and the relative error of the bifurcation param-
eter of the two-DOF order reduction model obtained at four different sampling speeds
(350 rad/s, 500 rad/s, 700 rad/s, 1000 rad/s) and different sampling lengths. As can be
seen from the four subgraphs in Figure 7, there is a sampling length at each sampling
speed that makes the relative error of the bifurcation parameter zero or close to zero.
The order reduction model obtained by this sampling length is similar to the bifurcation
diagram structure of the original system, and the bifurcation occurs on the same or simi-
lar parameters in the parameter domain. However, the bifurcation diagram structure of
order reduction model obtained far from this sampling length keeps large differences of
the original system, and the bifurcation occurs on different parameters in the parameter
domain. Therefore, the relative error of the bifurcation parameter in each figure is zero or
close to zero, which is the optimal sampling length of each speed. Only the order reduction
model obtained under the optimal sampling length has similar dynamic behaviors with
the original system in the parameter domain. As can be seen from the figure, the optimal
sampling lengths corresponding to the four sampling speeds are 130π, 280π, 900π, 63π,
respectively. Therefore, when sampling in the simple motion speed domain of the system,
the optimal sampling length increases as the sampling speed increases; in the unstable re-
gion, the optimal sampling length is relatively small, and the relative error of the bifurcation
parameter is sensitive to the variation of the sampling length.
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Figure 8 is a bifurcation diagram of a two-DOF order reduction model obtained at
four different sampling speeds (350 rad/s, 500 rad/s, 700 rad/s, 1000 rad/s) in the optimal
sampling length. As can be seen from the figure, the structure of the bifurcation diagram
of the two-DOF order reduction model obtained by the optimal sampling length at four
different sampling speeds is very similar, and the bifurcation points are basically the
same. Therefore, the bifurcation behaviors of the four order reduction models in this speed
range are consistent, and all of them can reflect the dynamic behaviors of the original
system in the parameter domain. The above numerical results are consistent with the
theoretical results in Section 2, the order reduction models obtained from the optimal
sampling length of different parameters in the parameter domain are equivalent to each
other, and the minimum relative error value of bifurcation parameters corresponds to the
optimal sampling length.

It can be known from the previous theoretical analysis that the POD POM number
also has an effect on the parameter domain order reduction. Therefore, the effect of the
POM number on the optimal sampling length is analyzed below. According to the analysis
idea of the two-DOF order reduction model, the relationship between the sampling length
and the relative error of the bifurcation parameter of the three-DOF order reduction model
will be analyzed below. Figure 9 shows the relationship between the sampling length and
the relative error of the bifurcation parameters of the three-DOF order reduction model at
four different sampling speeds (350 rad/s, 500 rad/s, 700 rad/s, 1000 rad/s) and different
sampling lengths. It can be known from each sub-graph that each rotation speed also
has a sampling length that makes the relative error of the bifurcation parameter zero or
close to zero. The order reduction model obtained by this sampling length is similar to the
bifurcation diagram structure of the original system. The bifurcation occurs on the same or
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similar parameters in the parameter domain. The bifurcation diagram structure of the order
reduction model obtained from this sampling length has large differences to the bifurcation
diagram structure of the original system. Bifurcations occur on different parameters in the
parameter domain. Therefore, there is also an optimal sampling length for each sampling
speed of the three-DOF order reduction model. It can be seen from Figure 9a–c that the
best sampling lengths for sampling in the simple motion speed range are 20π, 80π, 115π,
the optimal sampling length increases as the sampling speed increases. Sampling in the
range of complex motion speeds, the optimal sampling length is relatively short, and the
relative error of the bifurcation parameters is also sensitive to variation in sampling length.
This conclusion is the same as the two-DOF order reduction model. Comparing Figure 9
with Figure 7, the optimal sampling length of the three-DOF order reduction model is
shorter than the optimal sampling length of the two-DOF order reduction model at each
sampling speed.
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Figure 8. Bifurcation diagrams of POMs of 2-DOFs obtained by the optimal sampling lengths at 4 different sampled
rotational speeds: (a) 350 rad/s, (b) 500 rad/s, (c) 700 rad/s, (d) 1000 rad/s.
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Figure 10 shows the bifurcation diagram of the original system and the bifurcation
diagram of the 2-DOF and 3-DOF order reduction model obtained at the sampling speed of
350 rad/s using the optimal sampling length. As can be seen from the figure, the bifurcation
diagram of the 3-DOF invariant order reduction model contains a more detailed structure
in the parameter domain, which is more similar to the original system bifurcation diagram.
However, the existing nonlinear dynamics theory still has difficulties in dealing with
nonlinear systems with three or more DOFs. The two-DOF order reduction model that
can ensure that its main structure of the bifurcation diagram is similar to the original
system, and when the bifurcation occurs on the same or similar parameters, the bifurcation
behaviors are the same. Therefore, an invariant order reduction model with two-DOF can
be obtained via the optimal sampling length at the sampling speed, and the theoretical
analysis to a high-dimensional nonlinear system can be realized.

According to the above analysis, although the optimal sampling length can be used
to obtain the invariant order reduction model of the high-dimensional complex system in
the parameter domain, only the order reduction model can represent the main vibration
behaviors of the original system in the parameter domain under the condition that the total
average truncation error is small. It can be known from the previous theoretical analysis
that the total average truncation error is related to the system parameters, initial conditions,
sampling length, and POM number. Under certain conditions, the optimal sampling length
may not meet the condition that the total average truncation error is small. Therefore,
even the order reduction model obtained by the optimal sampling length cannot reflect
the main dynamic behaviors of the original system in the parameter domain. Figure 11
is the bifurcation diagram of the two-DOF order reduction model with initial conditions
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as follows: xi = yi = y8 = 0.1,
.
xi =

.
yi =

.
y8 = 0 (i = 1 . . . 7), rotor speed 500 rad/s,

and different sampling lengths. It can be seen from the figure that when the sampling
length is less than 40π, as the sampling length increases, the bifurcation area of the order
reduction model shrinks, the bifurcation point moves to the right, and it is closer to the
original system bifurcation point; when the sampling length is greater than 40π, as the
sampling length increases, the bifurcation area of the order reduction model increases, and
the bifurcation point moves to the left, far away from the bifurcation point of the original
system. In all the sampling lengths, only the bifurcation region of the order reduction
model obtained by 40π is closest to the original system, which is the optimal sampling
length for this condition. However, the bifurcation area of the order reduction model of the
sampling length still has large difference from the original system. Therefore, the optimal
sampling length under this initial condition is in the parameter domain, and an invariant
order reduction model that can approximately reflect the dynamic behaviors of the original
system cannot be obtained.
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Figure 10. Bifurcation diagram for the optimal sampling length atω = 350 rad/s (a) original system, (b) the POM of 2-DOFs,
(c) the POM of 3-DOFs
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Figure 11. Bifurcation diagrams of POM of 2-DOFs for the initial displacement and velocity xi = yi = y8 = 0.1,
.
xi =

.
yi =.

y8 = 0 (i = 1 . . . 7) at different sampling lengths at ω = 500 rad/s: (a) S-len = 2π, (b) S-len = 5π, (c) S-len = 10π, (d) S-len =
20π, (e) S-len = 30π, (f) S-len = 40π, (g) S-len = 60π, (h) S-len = 100π, (i) S-len = 300π, (j) S-len = 700π.

Remark 2. The reason why the above initial conditions cannot obtain an invariant order reduction
model that can approximately reflect the dynamic behaviors of the original system in the parameter
domain can be expressed as: the initial value is too small to stimulate the inherent modal information
of the original system during the transient response. Therefore, the dynamic behaviors of the order
reduction model obtained under this initial condition differ greatly from the original system in the
parameter domain.



Mathematics 2021, 9, 392 20 of 21

5. Conclusions and Outlooks

In the parameter domain, the adaptive POD method cannot obtain a low-dimensional
invariant model that can approximately reflect the dynamic behaviors of high-dimensional
systems, so in-depth theoretical research is difficult to carry out. This manuscript focused
on this problem, proposed the transient POD method based on minimum error of bi-
furcation parameter, and provided the order reduction conditions of parameter domain.
The conclusions are summarized as follows:

1. The transient POD method based on minimum error of bifurcation parameter has
been proposed, and the order reduction of parameter domain of this method has
been provided.

2. The equivalence of different order reduction models that satisfy parameter domain
order reduction conditions has been proved.

3. A rotor system with looseness fault and supported by sliding bearings has been
established by the Newton’s second law.

4. The effects of speed, initial conditions, sampling length, and POM number to pa-
rameter domain order reduction has been analyzed and the existence of the optimal
sampling length has been verified.

Future work can be focused on two main directions: one is to apply the transient POD
method to large flexible spacecraft [24], the other one is to use the proposed method to study
high-dimensional nonlinear rotor-bearing dynamic systems with typical faults [25–27] and
parametric uncertainties [28–31].
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