
mathematics

Article

INCO-GAN: Variable-Length Music Generation Method Based
on Inception Model-Based Conditional GAN

Shuyu Li and Yunsick Sung *

����������
�������

Citation: Li, S.; Sung, Y. INCO-GAN:

Variable-Length Music Generation

Method Based on Inception Model-

Based Conditional GAN. Mathematics

2021, 9, 387. https://doi.org/

10.3390/math9040387

Academic Editor: Bo-Hao Chen

Received: 29 December 2020

Accepted: 10 February 2021

Published: 15 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Multimedia Engineering, Dongguk University-Seoul, Seoul 04620, Korea; lishuyu@dongguk.edu
* Correspondence: sung@dongguk.edu

Abstract: Deep learning has made significant progress in the field of automatic music generation.
At present, the research on music generation via deep learning can be divided into two categories:
predictive models and generative models. However, both categories have the same problems that
need to be resolved. First, the length of the music must be determined artificially prior to generation.
Second, although the convolutional neural network (CNN) is unexpectedly superior to the recurrent
neural network (RNN), CNN still has several disadvantages. This paper proposes a conditional
generative adversarial network approach using an inception model (INCO-GAN), which enables
the generation of complete variable-length music automatically. By adding a time distribution layer
that considers sequential data, CNN considers the time relationship in a manner similar to RNN. In
addition, the inception model obtains richer features, which improves the quality of the generated
music. In experiments conducted, the music generated by the proposed method and that by human
composers were compared. High cosine similarity of up to 0.987 was achieved between the frequency
vectors, indicating that the music generated by the proposed method is very similar to that created
by a human composer.

Keywords: convolutional neural network; deep learning; conditional generative adversarial network;
music composition; inception model

1. Introduction

Music composition is a creative task for humans that requires some familiarity with
music theory. To enable machines to compose music like human composers, many studies
utilize deep learning techniques. However, there are two major problems that need to
be overcome for effective automatic music generation via machine learning [1]. First, the
temporal relationship of notes or bars in music must be considered. In music, a single note
or bar has no meaning, as in the case of a sentence containing only a single word. As in
the case of a sentence, wherein nouns, verbs, adjectives, and other elements are arranged
in grammatical order to constitute a meaningful sentence [2], in music, some distinct or
identical notes are arranged in a certain order to constitute a beautiful melody. The task of
automatic music generation is to learn how to arrange the selected notes. Second, one must
consider the connection between multiple tracks in music. When music is being played
by different players or instruments, it is divided into different tracks. The relationship
between tracks is sometimes difficult to grasp; either they can be completely independent,
or they can complement each other [3]. Hence, when multiple tracks are played together,
the interrelationship between their respective notes becomes very complicated.

At present, the research on automatic music generation via deep learning is divided
into two main types. The first type involves predictive models. This type of model mainly
utilizes recurrent neural networks (RNN) to predict the next note based on the previous
notes. In CONCERT [4], the pitch, note duration, and harmonic chord are encoded with
musical rules and then fed into the RNN model. The RNN model then predicts the
next note by analyzing all the information that has been extracted. Subsequently, the

Mathematics 2021, 9, 387. https://doi.org/10.3390/math9040387 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3732-5346
https://doi.org/10.3390/math9040387
https://doi.org/10.3390/math9040387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040387
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/387?type=check_update&version=1

Mathematics 2021, 9, 387 2 of 16

predicted note will be fed back into the RNN as input again to generate a sequence. In
the RL-Tuner melody generation system [5], both RNN and deep Q-learning networks
are combined to generate music. In this model, reinforcement learning is utilized to add
and optimize specific rewards for improving sequence prediction. MiniBach [6] is also one
of the automatic music generation systems, utilizing one-hot encoding and feedforward
networks. However, because the model’s architecture is too simple, the performance is
not ideal. DeepBach builds upon the design philosophy of MiniBach. DeepBach added
long short-term memory (LSTM) to the original feedforward network. Compared with the
basic RNN, LSTM performs better at processing sequence data. Song from Pi [7] draws
inspiration from the music generated based on Pi and achieves the goal of generating
multitrack music by utilizing a multilayer LSTM. In their final test, more than 80% of the
27 listeners perceived that the effect was better than that of Magenta [8].

The second common type is based upon a generative model, most often constructed
from generative adversarial networks (GAN). A GAN is composed of a generator and a
discriminator. The music produced by the generator is passed to the discriminator, and the
discriminator updates itself and the generator by comparing the generated music with a
sample of real target music. The generator generates higher quality music by competing
with the discriminator. C-RNN-GAN [9] was the first research to utilize GAN to generate
music; both the generator and discriminator utilized LSTM networks. The difference is
that, for better comparison from two directions, the discriminator utilizes the Bidirectional-
LSTM (Bi-LSTM) network. Compared with the traditional RNN-based note prediction
model, C-RNN-GAN utilizes the LSTM-based generative adversarial model to generate
music with high accuracy and diversity. The generator of the generative adversarial model
does not get feedback directly from the training data but continuously learns composition
through the feedback of the discriminator, which is the inspiration obtained from the
application of GAN in image generation. The goal of the GAN model is never to generate
samples the same as the training data but to generate new objects similar to the training
data. SeqGAN [10] utilizes the Seq2Seq model [11] as a generator, which consists of two
parts: the encoder and decoder based on RNN. The discriminator utilizes a convolutional
neural network (CNN) because the discriminator is intended to classify both real and
generated samples. In the classification task, the performance of CNN may often be better
than that of RNN. MidiNet’s [12] generator and discriminator each utilize CNN, and the
results show that CNN can be a powerful alternative to RNN. In addition, the structure
of conditional GAN [13] supports human input of the conditional vectors to influence
music generation instead of utilizing only randomly generated noise vectors. Additionally,
MuseGAN [14] only utilizes CNN, but a notable difference from other research is that
music is generated in complete bars rather than note-by-note.

Presently, regardless of the predictive model or generative model being utilized, there
are some common problems that need to be resolved. First, when generating music, the
model cannot judge when to end the generation by itself. In other words, the model only
can generate fixed-length music [15,16]. This means that the model cannot determine
whether the currently generated segment belongs to the beginning, middle or end of the
music. Next, CNN has shown high potential in the music generation given that RNN
is normally suitable for sequence data processing. However, it still suffers from some
disadvantages [17]. For example, there is no apparent time relationship between the notes
or bars generated by a CNN because, unlike RNN, CNN cannot store information in a
memory cell.

In this paper, an inception model-based conditional GAN is proposed to generate
variable-length music automatically. The proposed network is composed of four stages:
First, a conditional vector generator (CVG) is proposed to deduct conditional vectors. The
conditional vectors include two parts, one is utilized to control the structure of the music
generation, and the other one is utilized to determine whether the music generation has
ended. Next, an inception model-based conditional GAN (INCO-GAN) is introduced to
process the conditional vectors for generating variable-length music to enable the INCO-

Mathematics 2021, 9, 387 3 of 16

GAN to decide the portion of the whole composition being generated. Next, a time
distribution layer that considers sequential data is added to the CNN to consider time
relationships in like manner to RNN. Finally, an inception model [18] is utilized to construct
a GAN discriminator to obtain richer features. Our contributions are as follows:

• Using conditional vectors to control the structure of music generation. The structure
comprises intro, verse, chorus, and outro;

• Inception model-based conditional GAN controls the structure of music generation to
generate variable-length music;

• A time distributed layer is added to CNN to share the weight of each timestamp so
that it considers the context relationship in like manner to RNN;

The remainder of this paper is organized as follows: Section 2 overviews studies
on deep learning-based music generation. Section 3 describes the system proposed for
variable-length music generation. Section 4 presents the experiment results. Section 5
analyzes and discusses the results. Section 6 presents concluding remarks.

2. Related Work

In predictive model-based music generation, CONCERT [4] is an exemplar of early
music generation systems. Before the advent of deep learning, the representation was
designed with rich handcrafted features. One advantage of utilizing a deep learning
architecture is that such rich and profound features can be automatically extracted and
managed by the architecture. Although CONCERT is now obsolete, it was a pioneering
work at the time it was proposed. The reinforcement strategy was first proposed by the
RL-Tuner melody generation system [5], and the goal was to control the generation of
melody with user constraints. This reinforcement strategy allowed the combination of user
control along with the RNN. Notably, in the general reinforcement learning model, rewards
are not predefined. For RL-Tuner, there are two rewards that are predefined: handcrafted
rules based on music theory and those learned from the dataset regarding the musical style.
However, designing rewards is often harsh and inaccurate. MiniBach [6] is a melody-based
accompaniment generation system that consists only of an input layer, an output layer, and
only one hidden layer. The hidden layer utilizes ReLu as the activation function, the output
layer utilizes a softmax activation function, and the data representation is PianoRoll [19]
with one-hot encoding. Furthermore, the length of all notes is standardized to one-16th
note. Even if the simplest network structure and strategy is utilized, the result is still
acceptable. Some limitations of MiniBach are its determinism and the fixed duration of
the generation. MiniBach is an extreme simplification of DeepBach [6], only relying on
feedforward. DeepBach has a more complex structure, and it combines two LSTM layers
and two feedforward networks. Unlike standard LSTM, which only considers a single
time direction, DeepBach considers both forward and backward time directions. Therefore,
two LSTM layers are utilized, one to summarize information from the past and the other
to summarize information from the future. The outputs of the two LSTM layers and the
feedforward network are combined and then passed into another feedforward network
to predict notes relying on pseudo-Gibbs incremental sampling of variables. Song from
Pi [7] proposed a hierarchical generation method for popular songs based upon musical
theory. Surmounting past research, this method can generate multitrack music. However,
like most existing methods, this system is still learning only to generate music at the note
level. This can be unsuitable for music, as music is flexible and intentionally made to be
unpredictable when it is composed.

Generative models have made greater progress in automatic music generation than
predictive models. However, limitations still exist when the goal is to generate discrete
sequences. The main reason is that the output of the generative model is discrete, and it is
difficult to transfer the gradient update of the discriminator to the generator. In addition,
the discriminator can only evaluate a complete sequence, but for a partially generated
sequence, after the entire sequence is generated, it is important to balance its current score
and future score. SeqGAN [10] is a proposed sequence generation framework to solve

Mathematics 2021, 9, 387 4 of 16

these problems. The generator of C-RNN-GAN [9] also utilizes RNN to generate discrete
sequences. The representation chosen by C-RNN-GAN is inspired by MIDI and models
each musical note via four attributes: duration, pitch, intensity, and time elapsed relative
to the previous event. This allows the representation of simultaneous notes. C-RNN-GAN
utilizes feature matching when training the model. MidiNet [12] is both an adversarial
and a convolutional architecture to generate pop music melody. The structure also utilizes
chords as an additional input to provide conditions for music generation. Like MidiNet,
MuseGAN’s [14] generator and discriminator are also composed of CNN. Furthermore, a
bar generator is included in the generator to generate bars, and then the generator combines
the generated bars. Chords, style, melody, and groove, are utilized together as input to the
generator. Although it may still be below the level of human musicians in terms of musical
esthetics, it has sparked much inspiration for follow-up research.

A comparison of all related research and proposed methods is presented in Table 1.
Ten music generation research works are compared by considering the representation of
data, type of model, architecture, etc.

Table 1. Differences between related research work and the proposed method.

Research Work Representation of Data Type of Model Architecture Neural Network Self-Control
Structure

CONCERT One-Hot Predictive Single RNN X

RL-Tuner Midi Predictive Compound RNN, Deep Q
Network X

MiniBach One-Hot Predictive Single Feedforward
Network X

DeepBach Note Real Names Predictive Compound
Feedforward

Network,
LSTM

X

Song from Pi Midi Predictive Compound Multi-LSTM Layer X
SeqGAN Midi Generative GAN LSTM, CNN X

C-RNN-GAN Midi Generative GAN LSTM, Bi-LSTM X

MidiNet Midi Generative Conditional
GAN CNN X

MuseGAN Midi Generative GAN CNN X
Proposed
Method Midi Generative Conditional

GAN CNN
√

3. Music Generation System Based on INCO-GAN

This paper proposes an inception model-based conditional GAN to generate variable-
length music automatically. Automatic music generation is divided into two phases:
training and generation.

3.1. Overview

As shown in Figure 1, the training phase consists of three training steps: Preprocessing,
CVG training, and conditional GAN training. The preprocessing step receives and parses
MIDI files and extracts the four elements, t, pt, ct, et, required during training. t is a
constant ranging from one to n, which indicates the time step index in one MIDI file, which
is converted to vector by one-hot encoding. pt represents the musical content of one phrase
at time t and is a combination of several tracks where each track is a combination of bars,
given that every bar will be encoded into a matrix with normalization. ct represents the
position of pt in the MIDI file. t can be regarded as a constant representing the absolute
position, but ct is a percentage that represents a relative position, which will be encoded
into a vector by one-hot encoding. et is a binary value encoded by one-hot encoding. It is
used to indicate whether the pt is the last phrase in the MIDI file.

Mathematics 2021, 9, 387 5 of 16

Mathematics 2021, 9, x FOR PEER REVIEW 5 of 17

tion, which will be encoded into a vector by one-hot encoding. 𝑒𝑡 is a binary value en-

coded by one-hot encoding. It is used to indicate whether the 𝑝𝑡 is the last phrase in the

MIDI file.

Second, 𝑝𝑡 and 𝑡 will be input to the conditional vector generator (CVG). CVG con-

sists of two parts: one part is utilized to generate the relative position vector to represent

the generation process, and the other part can predict whether the generation is to end.

CVG generates conditional vectors 𝑐𝑡
∗ and 𝑒𝑡

∗ based on CNN, the conditional vectors are

the simulation conditional vector different from 𝑐𝑡 and 𝑒𝑡 extracted in training data. The

optimizer continuously updates the CVG by comparing the generated result with the ac-

tual label extracted from the MIDI file. Although 𝑐𝑡
∗ and 𝑒𝑡

∗ are generated, they do not

participate in the music generation step during the training phase. However, they are nec-

essary for the generation phase, so CVG should be trained in advance.

Third, 𝑝𝑡 and 𝑐𝑡 are input into the generator. Because the proposed method utilizes

the conditional GAN model, the generator can accept 𝑐𝑡 as an additional relative position,

vector to be input. The generator generates 𝑝𝑡+1
∗ at time 𝑡 + 1 based on the 𝑝𝑡 under the

influence of 𝑐𝑡. Finally, the discriminator compares the 𝑝𝑡+1
∗ generated by the generator

with the 𝑝𝑡+1. The loss 𝑙 of the comparison will be converted into the gradient by the

optimizer to update the discriminator as well as the generator. When the training phase

concludes, the trained CVG, generator, and discriminator are obtained. In the training

phase, the CVG training and conditional GAN training are independent of each other.

Although the two modules are trained separately, they have a strong correlation because

of the same input data.

Figure 1. Training phase of melody composition system.

As shown in Figure 2, the generation phase comprises three steps: CVG executing,

phrase generation, and postprocessing. First, 𝑝𝑡
∗ and 𝑡 are input to the CVG to generate

𝑐𝑡
∗ and 𝑒𝑡

∗. Because in the generation phase, there is no way to obtain the 𝑐𝑡 and 𝑒𝑡 di-

rectly like that in the training phase, the CVG must predict and generate 𝑐𝑡
∗ and 𝑒𝑡

∗. The

Figure 1. Training phase of melody composition system.

Second, pt and t will be input to the conditional vector generator (CVG). CVG consists
of two parts: one part is utilized to generate the relative position vector to represent
the generation process, and the other part can predict whether the generation is to end.
CVG generates conditional vectors c∗t and e∗t based on CNN, the conditional vectors are
the simulation conditional vector different from ct and et extracted in training data. The
optimizer continuously updates the CVG by comparing the generated result with the
actual label extracted from the MIDI file. Although c∗t and e∗t are generated, they do not
participate in the music generation step during the training phase. However, they are
necessary for the generation phase, so CVG should be trained in advance.

Third, pt and ct are input into the generator. Because the proposed method utilizes
the conditional GAN model, the generator can accept ct as an additional relative position,
vector to be input. The generator generates p∗t+1 at time t + 1 based on the pt under the
influence of ct. Finally, the discriminator compares the p∗t+1 generated by the generator
with the pt+1. The loss l of the comparison will be converted into the gradient by the
optimizer to update the discriminator as well as the generator. When the training phase
concludes, the trained CVG, generator, and discriminator are obtained. In the training
phase, the CVG training and conditional GAN training are independent of each other.
Although the two modules are trained separately, they have a strong correlation because of
the same input data.

As shown in Figure 2, the generation phase comprises three steps: CVG executing,
phrase generation, and postprocessing. First, p∗t and t are input to the CVG to generate c∗t
and e∗t . Because in the generation phase, there is no way to obtain the ct and et directly like
that in the training phase, the CVG must predict and generate c∗t and e∗t . The generated
c∗t and e∗t are input into the checker together. The checker judges whether to end music
generation based on the e∗t . In addition, the c∗t will also be utilized as input to the checker
to assist in judgment. This c∗t can indicate the current music generation point—i.e., whether
intro, verse, chorus, or outro. Through this relative position vector, the checker will try
to avoid ending the music generation if the system is not at the outro. Second, the p∗t+1

Mathematics 2021, 9, 387 6 of 16

generated by the generator is utilized as an input to loop through this process again, and
t is also continuously incremented through the Counter. Because the shape and value
representation of the phrase as input and output differ, reshape and value transform is
required when Phrase∗t+1 is utilized as an input again. Third, when the generation process
is completed, all generated phrases are integrated into a new musical composition through
postprocessing.

Mathematics 2021, 9, x FOR PEER REVIEW 6 of 17

generated 𝑐𝑡
∗ and 𝑒𝑡

∗ are input into the checker together. The checker judges whether to

end music generation based on the 𝑒𝑡
∗. In addition, the 𝑐𝑡

∗ will also be utilized as input to

the checker to assist in judgment. This 𝑐𝑡
∗ can indicate the current music generation

point—i.e., whether intro, verse, chorus, or outro. Through this relative position vector,

the checker will try to avoid ending the music generation if the system is not at the outro.

Second, the 𝑝𝑡+1
∗ generated by the generator is utilized as an input to loop through this

process again, and 𝑡 is also continuously incremented through the Counter. Because the

shape and value representation of the phrase as input and output differ, reshape and

value transform is required when 𝑃ℎ𝑟𝑎𝑠𝑒𝑡+1
∗ is utilized as an input again. Third, when

the generation process is completed, all generated phrases are integrated into a new mu-

sical composition through postprocessing.

Figure 2. Generation phase of melody composition system.

3.2. Extractor

During preprocessing, there are four tasks to be completed. First, the tracks are di-

vided into several phrases in order. Second, the phrases at time 𝑡 and 𝑡+1 are selected to

be encoded into a matrix. Third, during encoding, each phrase is converted into a matrix

in units of the bar, as shown in Figure 3. Each bar can be treated as a sub-matrix of the

phrase matrix. Because the MIDI file may contain multiple tracks, multiple bars are ar-

ranged independently in the track-dimension. The vertical axis of the bar matrix is utilized

to represent the pitch of the note, the horizontal axis is the time axis of the bar, and the

unit is tick. Finally, the bars are connected to compose the encoded 𝑝𝑡 and 𝑝𝑡+1.

Figure 2. Generation phase of melody composition system.

3.2. Extractor

During preprocessing, there are four tasks to be completed. First, the tracks are
divided into several phrases in order. Second, the phrases at time t and t + 1 are selected to
be encoded into a matrix. Third, during encoding, each phrase is converted into a matrix in
units of the bar, as shown in Figure 3. Each bar can be treated as a sub-matrix of the phrase
matrix. Because the MIDI file may contain multiple tracks, multiple bars are arranged
independently in the track-dimension. The vertical axis of the bar matrix is utilized to
represent the pitch of the note, the horizontal axis is the time axis of the bar, and the unit is
tick. Finally, the bars are connected to compose the encoded pt and pt+1.

Mathematics 2021, 9, 387 7 of 16Mathematics 2021, 9, x FOR PEER REVIEW 7 of 17

Figure 3. Result of encoding.

3.3. Structure of the Conditional Vector Generator

CVG provides the conditional vector required for music generation for the generator.

CVG can control music generation, including structure and end. Hence, CVG is also com-

posed of two parts, as shown in Figure 4. One is utilized to control the music generation

structure 𝑐𝑡
∗, and the other one to control the generation’s ending 𝑒𝑡

∗. CVG generates con-

ditional vectors according to the following algorithm.

Algorithm 1 Conditional Vector Generator Training

Input: 𝑝𝑡 , 𝑡, 𝑐𝑡, 𝑒𝑡

Output: 𝑐𝑡
∗, 𝑒𝑡

∗

1: For 𝑡←1 to Input (𝑝1,2,…,𝑡)

2: ℎ1 ← 𝐶𝑜𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑝𝑡)

3: ℎ2 ← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑖𝑜𝑛(ℎ1 ⊕ 𝑡)

4: 𝑐𝑡
∗ ← 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ℎ2)

5: 𝑙𝑜𝑠𝑠𝑐 ← 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟(𝑐𝑡
∗, 𝑐𝑡)

6: 𝑒𝑡
∗ ← S𝑖𝑔𝑚𝑜𝑖𝑑(ℎ2)

7: 𝑙𝑜𝑠𝑠𝑒 ← 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟(𝑒𝑡
∗, 𝑒𝑡)

8: 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝑙𝑜𝑠𝑠𝑐 , 𝑙𝑜𝑠𝑠𝑒)

9: Output 𝑐𝑡
∗, 𝑒𝑡

∗

There are obvious characteristics in each structure of music, especially the phrase at

the end part of music is easy to be identified. CVG predicts the music structure of the

current phrase by analyzing the phrase 𝑝𝑡 and time step index 𝑡; at the same time, by

changing the activation function of the output layer to sigmoid, it outputs the probabil-

ity of predicting the end of the music.

Figure 3. Result of encoding.

3.3. Structure of the Conditional Vector Generator

CVG provides the conditional vector required for music generation for the generator.
CVG can control music generation, including structure and end. Hence, CVG is also
composed of two parts, as shown in Figure 4. One is utilized to control the music generation
structure c∗t , and the other one to control the generation’s ending e∗t . CVG generates
conditional vectors according to the following algorithm.

Algorithm 1 Conditional Vector Generator Training

Input: pt, t, ct, et
Output: c∗t , e∗t
1: For t← 1 to Input (p1,2,...,t)
2: h1 ← Covolution(pt)
3: h2 ← Concatenation(h1 ⊕ t)
4: c∗t ← So f tmax(h2)
5: lossc ← Mean Square Error(c∗t , ct)
6: e∗t ← Sigmoid(h2)
7: losse ← Mean Square Error(e∗t , et)
8: Optimizer(lossc, losse)
9: Output c∗t , e∗t

There are obvious characteristics in each structure of music, especially the phrase at
the end part of music is easy to be identified. CVG predicts the music structure of the
current phrase by analyzing the phrase pt and time step index t; at the same time, by
changing the activation function of the output layer to sigmoid, it outputs the probability
of predicting the end of the music.

CVG utilizes the two simple CNN to achieve this goal. Pt and t are input into CNN,
and then the vector of the control structure and the judgment result of the end generation
output, respectively.

Mathematics 2021, 9, 387 8 of 16

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 17

CVG utilizes the two simple CNN to achieve this goal. 𝑃𝑡 and 𝑡 are input into CNN,

and then the vector of the control structure and the judgment result of the end generation

output, respectively.

Figure 4. Structure of the conditional vector generator.

3.4. Structure of the Generator of INCO-GAN

Part of the conditional GAN model is the generator. In this section, the structure of

the generator is described in detail. As shown in Figure 5, 𝑝𝑡 and 𝑐𝑡 are inputted into the

Generator. After entering the generator, the 𝑝𝑡 will be broken down into several tracks,

with each track containing several bars. At the same time, three noise vectors will be gen-

erated to match each bar. The 𝐶ℎ𝑜𝑟𝑑𝑠 vector could control anything about the music that

changes per bar, such as general rhythmic style, without being specific to any track. The

𝑆𝑡𝑦𝑙𝑒 vector’s job is to control the general dynamic nature of the music over time. The

𝐺𝑟𝑜𝑜𝑣𝑒 vectors are not passed through the temporal network but are instead fed straight

through to the bar generator unchanged. However, unlike in the 𝑠𝑡𝑦𝑙𝑒 vector, there is a

distinct 𝐺𝑟𝑜𝑜𝑣𝑒 input for every track, meaning that the generator can utilize these vectors

to adjust the overall output for each track independently [9].

In the process of generating 𝑝𝑡+1 , MuseGAN’s Bar Generator [9] was borrowed.

Therefore, 𝑃ℎ𝑟𝑎𝑠𝑒𝑡+1 is not directly generated but is a combination of multiple bars that

are given time relationships generated by Bar Generator. Before that, the time-distributed

dense layer adds time relationships to the input at each time by sharing weights.

Figure 4. Structure of the conditional vector generator.

3.4. Structure of the Generator of INCO-GAN

Part of the conditional GAN model is the generator. In this section, the structure of
the generator is described in detail. As shown in Figure 5, pt and ct are inputted into the
Generator. After entering the generator, the pt will be broken down into several tracks,
with each track containing several bars. At the same time, three noise vectors will be
generated to match each bar. The Chords vector could control anything about the music
that changes per bar, such as general rhythmic style, without being specific to any track.
The Style vector’s job is to control the general dynamic nature of the music over time. The
Groove vectors are not passed through the temporal network but are instead fed straight
through to the bar generator unchanged. However, unlike in the style vector, there is a
distinct Groove input for every track, meaning that the generator can utilize these vectors
to adjust the overall output for each track independently [9].

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 17

Figure 5. Structure of the generator.

3.5. Structure of the Discriminator of INCO-GAN

As shown in Figure 6, the input of the discriminator can be 𝑝𝑡 or 𝑝𝑡
∗, and output is

the judgment result. The dimension of 𝑝𝑡 or 𝑝𝑡
∗ is (n, m, j, k), where n is the number of

tracks, m is the number of bars in one track, j is the number of timesteps in a bar, and k is

the range of pitch. The 𝑝ℎ𝑟𝑎𝑠𝑒 needs to be reshaped into (m, j, k, n) before being input to

the first convolutional layer.

The 𝑝𝑡 or 𝑝𝑡
∗ is folded into (1, j, k, n × f) in m-dimension through the first convolu-

tional layer, where f is the number of filters in the convolutional layer. The second convo-

lutional layer does not change the dimension of the input, but it can add more nonlinear

relationships to it, which is helpful for training.

The inception model subsequently folds the input on the j-dimension because the

relationships among notes are complicated on the timesteps. Multiple filters of different

sizes are utilized to convolve the input, in addition to adding a mean pooling layer to

consider larger, more global features. These features are then combined through the Con-

catenate layer. The third convolutional layer folds the input according to the scale on the

k-dimension. The fourth convolutional layer continues to fold on the k-dimension based

on the output of the third layer. Finally, the judgment result is obtained through two fully

connected layers based on the flattened output of the convolutional layer.

Figure 5. Structure of the generator.

Mathematics 2021, 9, 387 9 of 16

In the process of generating pt+1, MuseGAN’s Bar Generator [9] was borrowed.
Therefore, Phraset+1 is not directly generated but is a combination of multiple bars that
are given time relationships generated by Bar Generator. Before that, the time-distributed
dense layer adds time relationships to the input at each time by sharing weights.

3.5. Structure of the Discriminator of INCO-GAN

As shown in Figure 6, the input of the discriminator can be pt or p∗t , and output is the
judgment result. The dimension of pt or p∗t is (n, m, j, k), where n is the number of tracks, m
is the number of bars in one track, j is the number of timesteps in a bar, and k is the range
of pitch. The phrase needs to be reshaped into (m, j, k, n) before being input to the first
convolutional layer.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 17

Figure 6. Structure of the discriminator.

4. Experiment and Results

In the experiments conducted, the process and result of the conditional vectors gen-

eration method based on CVG and the music generation method based on INCO-GAN

were extracted to verify the proposed method. The results of music generation were then

obtained.

4.1. Experimental Environment

The model of the proposed method can be divided into the CVG and conditional

GAN. In the training phase, because the CVG and conditional GAN were trained, respec-

tively, they need to be verified separately. The accuracy and loss value obtained during

the training process were utilized to determine whether the CVG and INCO-GAN were

trained well. Table 2 shows the parameters of the CVG and conditional GAN during train-

ing.

Figure 6. Structure of the discriminator.

The pt or p∗t is folded into (1, j, k, n × f) in m-dimension through the first convo-
lutional layer, where f is the number of filters in the convolutional layer. The second
convolutional layer does not change the dimension of the input, but it can add more
nonlinear relationships to it, which is helpful for training.

The inception model subsequently folds the input on the j-dimension because the
relationships among notes are complicated on the timesteps. Multiple filters of different
sizes are utilized to convolve the input, in addition to adding a mean pooling layer to
consider larger, more global features. These features are then combined through the
Concatenate layer. The third convolutional layer folds the input according to the scale
on the k-dimension. The fourth convolutional layer continues to fold on the k-dimension
based on the output of the third layer. Finally, the judgment result is obtained through two
fully connected layers based on the flattened output of the convolutional layer.

4. Experiment and Results

In the experiments conducted, the process and result of the conditional vectors gen-
eration method based on CVG and the music generation method based on INCO-GAN

Mathematics 2021, 9, 387 10 of 16

were extracted to verify the proposed method. The results of music generation were then
obtained.

4.1. Experimental Environment

The model of the proposed method can be divided into the CVG and conditional GAN.
In the training phase, because the CVG and conditional GAN were trained, respectively,
they need to be verified separately. The accuracy and loss value obtained during the
training process were utilized to determine whether the CVG and INCO-GAN were trained
well. Table 2 shows the parameters of the CVG and conditional GAN during training.

Table 2. The parameters of the conditional generative adversarial network approach using an
inception model (INCO-GAN) and conditional vector generator (CVG) during training.

INCO-GAN CVG

Input dim (2, 16, 84, 4) Learning rate 0.01
Critic learning rate 0.001 Optimizer SGD

Generator learning rate 0.001 Batch size 128
Optimizer Adam

Grad weight 10
z dim 32

Batch size 64
n tracks 4
n bars 2

n steps per bar 16
n pitches 84

When the training was completed, test data were utilized to evaluate the trained
model. In CVG evaluation, pt and t of music by human composers was input into the
trained CVG. The CVG predicted Condition∗t and End∗t based on the input. Subsequently,
the accuracy was obtained by comparing it with the real Conditiont and End∗t . It appeared
that the testing process is like the training process, but by utilizing real data that are not
used in the training phase, it can be verified that the trained CVG has good generalization.

Objectively testing the conditional GAN is a challenge, owing to both the diversity
of music, and the purpose of this paper is to generate music that sounds like that from a
human composer without producing the same music. In this paper, an evaluation method
based on frequency and time was utilized, which is a more appropriate method to compare
the music from human composers and the generated music.

The experimental environment was composed of Windows 10, i5-10400, NVIDIA
GeForce GTX 1650 4 GB, DDR4 32 GB. The proposed system was developed in Python,
and the conditional GAN model was implemented using the deep Keras backend on
TensorFlow. MIDI files were processed by the music21 library.

4.2. Experimental Data

Experiments were conducted on the Lakh MIDI dataset [20]. The Lakh MIDI dataset
is a collection of 176,581 unique MIDI files, 45,129 of which have 13 genre labels since
they were matched and aligned to entries in the Million Song dataset, such as pop/rock,
electronic, country R&B, jazz, Latin, and international.

4.3. Experimental Results

Figure 7 shows the accuracy and loss of the CVG. Because the output of CVG consists
of two parts. They were conditional vectors that control the music generation process and
the judgment result of whether the music generation is over.

Mathematics 2021, 9, 387 11 of 16
Mathematics 2021, 9, x FOR PEER REVIEW 12 of 17

Figure 7. Accuracy and loss of the structure of generation and judgment of end. (A) Structure of
generation; (B) Judgment of end.

Figure 8 shows the loss of the conditional GAN. The discriminator calculated loss

from three aspects are for music by human composers, music generated by INCO-GAN

and construct weighted average between human-composed music and generated music.

The generator had only one loss.

The black line (valid) represented the loss of the discriminator’s judgment of music

by human composers. The black line quickly converged near 0, which indicated that the

discriminator had a good discrimination ability for music by human composers. The green

line (fake) gradually moved towards 0 in the first 500 epochs, which indicated that the

generator was learning how to generate music during this period. After 500 epochs, the

green line fitted around 0, which indicated that it was difficult for the discriminator to

distinguish the music generated by the generator. However, even so, there is still a gap

between the green line and the black line. The red (validity interpolated) line represented

the result of combining the black line and the green line. The loss of the generator repre-

sented by the yellow (generator) line can be regarded as the gap with the music by human

composers.

Figure 7. Accuracy and loss of the structure of generation and judgment of end. (A) Structure of
generation; (B) Judgment of end.

In Figure 7A, the accuracy of the training set was finally floating around 70%, while
the accuracy of the validation set was around 78%. Because the complexity of music and
the same combination of notes may appear at any portion of the music, therefore, this
result can be accepted, and it is helpful for generating diverse music.

In Figure 7B, the accuracy of the training data and validation data remained above
99% at the end. This result shows that the music has the same features at the end portion,
and the feature is easy to be recognized.

Figure 8 shows the loss of the conditional GAN. The discriminator calculated loss
from three aspects are for music by human composers, music generated by INCO-GAN
and construct weighted average between human-composed music and generated music.
The generator had only one loss.

The black line (valid) represented the loss of the discriminator’s judgment of music
by human composers. The black line quickly converged near 0, which indicated that the
discriminator had a good discrimination ability for music by human composers. The
green line (fake) gradually moved towards 0 in the first 500 epochs, which indicated that
the generator was learning how to generate music during this period. After 500 epochs,
the green line fitted around 0, which indicated that it was difficult for the discriminator
to distinguish the music generated by the generator. However, even so, there is still
a gap between the green line and the black line. The red (validity interpolated) line
represented the result of combining the black line and the green line. The loss of the

Mathematics 2021, 9, 387 12 of 16

generator represented by the yellow (generator) line can be regarded as the gap with the
music by human composers.

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 17

Figure 8. Loss of the conditional generative adversarial networks (GAN).

Table 3 shows the test results of the CVG by utilizing real music as test data. The test

results show that the accuracy of music structure and end prediction has achieved 77.2%

and 99.9%, respectively. These results proved that the trained model was generalized and

can provide correct conditional vectors for INCO-GAN to generate music.

Table 3. The musical characteristics and their musical meanings.

Model Test (%)

Structure 77.2

End 99.9

To evaluate the generated music, the pitch frequency of the music generated by the

proposed method was compared with human composers’ music. Figure 9 shows the com-

parison result of music by human composers and the music generated by the proposed

method and MuseGAN [14]. MuseGAN is the main reference research in this paper, so it

was utilized as a comparison. The frequency corresponding to each pitch of the music

generated by INCO-GAN and MuseGAN was converted into the vector, and the cosine

similarity between the music by human composers was calculated to be 0.987 and 0.978,

respectively. These values show that the generated music by INCO-GAN was very similar

to the music created by human composers in characteristic. The similarity of INCO-GAN

was 0.09 higher than that of MuseGAN, which proved that the discriminator based on the

inception model could better grasp the music features and give feedback to the generator.

Figure 8. Loss of the conditional generative adversarial networks (GAN).

Table 3 shows the test results of the CVG by utilizing real music as test data. The test
results show that the accuracy of music structure and end prediction has achieved 77.2%
and 99.9%, respectively. These results proved that the trained model was generalized and
can provide correct conditional vectors for INCO-GAN to generate music.

Table 3. The musical characteristics and their musical meanings.

Model Test (%)

Structure 77.2
End 99.9

To evaluate the generated music, the pitch frequency of the music generated by the
proposed method was compared with human composers’ music. Figure 9 shows the
comparison result of music by human composers and the music generated by the proposed
method and MuseGAN [14]. MuseGAN is the main reference research in this paper, so
it was utilized as a comparison. The frequency corresponding to each pitch of the music
generated by INCO-GAN and MuseGAN was converted into the vector, and the cosine
similarity between the music by human composers was calculated to be 0.987 and 0.978,
respectively. These values show that the generated music by INCO-GAN was very similar
to the music created by human composers in characteristic. The similarity of INCO-GAN
was 0.09 higher than that of MuseGAN, which proved that the discriminator based on the
inception model could better grasp the music features and give feedback to the generator.

Mathematics 2021, 9, 387 13 of 16
Mathematics 2021, 9, x FOR PEER REVIEW 14 of 17

Figure 9. Comparison based on pitch frequency. (A) The pitch frequency of music by human composers; (B) The pitch

frequency of generated music by MuseGAN; (C) The pitch frequency of music by INCO-GAN.

Figure 9. Comparison based on pitch frequency. (A) The pitch frequency of music by human composers; (B) The pitch
frequency of generated music by MuseGAN; (C) The pitch frequency of music by INCO-GAN.

Mathematics 2021, 9, 387 14 of 16

In addition, human composers’ music and generated music can be more easily com-
pared through visualization as shown in Figure 10a was converted from 4 music produced
by human composers, Figure 10b is converted from 4 generated music.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 17

In addition, human composers’ music and generated music can be more easily com-

pared through visualization as shown in Figure 10a was converted from 4 music produced

by human composers, Figure 10b is converted from 4 generated music.

Figure 10. Comparison based on visualization. (A) Visualization of midi by human composers; (B) Visualization of gen-

erated midi by INCO-GAN.

Figure 10. Comparison based on visualization. (A) Visualization of midi by human composers; (B) Visualization of
generated midi by INCO-GAN.

Mathematics 2021, 9, 387 15 of 16

5. Discussion

Through the comparisons, the length of human composers’ music and that of gen-
erated music are usually different, but both distributions of length are similar, which
means that CVG controlled the length of the generated music by the conditional vector by
analyzing the generated music by human composers. In music by human composers, the
tracks were clearly layered, and there was rarely any crossover. The same characteristics
were shown in generated music.

However, in music by human composers, the four tracks show the same trend at the
same time point. This feature was not obvious in the generated music. Moreover, the pitch
of the generated music occasionally changes frequently, which was not common in music
by human composers. This shows that in the generated music, the relationship between the
tracks and the duration of the notes are still some gaps with music by human composers.

6. Conclusions

The paper proposed an automatic music generation method based on the conditional
GAN (INCO-GAN) model with an inception model. In the proposed method, INCO-GAN
is completely autonomous and capable of generating whole musical compositions with
variable-length by controlling the input conditions. Moreover, the series of operations
such as adding a time distribution layer that considers the time relationship of a data
sequence and utilizing the inception model improved the quality of the generated music.
To verify the proposed method, the generated MIDI files were evaluated. In the experiment,
an evaluation method based on frequency and time was utilized, which was a more
appropriate way to compare the musical characteristics in the extracted music by human
composers and the generated music. In particular, it could be seen from the cosine similarity
of up to 0.987 between the frequency vectors that the music produced by this method is
very similar to that made by human composers.

Author Contributions: Conceptualization, S.L., and Y.S.; methodology, S.L., and Y.S.; software, S.L.,
and Y.S.; validation, S.L., and Y.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by the Ministry of Science, ICT, Korea, under the High-
Potential Individuals Global Training Program (MSIT) (2019-0-01585, 2020-0-01576) supervised by
the Institute for Information and Communications Technology Planning and Evaluation (IITP).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from Colin Raffel and are available https://colinraffel.com/projects/lmd/ accessed on 1 December
2020 with the permission of Colin Raffel.

Acknowledgments: This research was supported by the Ministry of Science, ICT, Korea, under the
High-Potential Individuals Global Training Program (MSIT) (2019-0-01585, 2020-0-01576) supervised
by the Institute for Information and Communications Technology Planning and Evaluation (IITP).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, S.; Jang, S.; Sung, Y. Automatic melody composition using enhanced GAN. Mathematics 2019, 7, 883. [CrossRef]
2. Kim, E.; Jang, S.; Li, S.; Sung, Y. Newspaper article-based agent control in smart city simulations. Hum. Cent. Comput. Inf. Sci.

2020, 10, 44. [CrossRef]
3. Li, S.; Jang, S.; Sung, Y. Melody extraction and encoding method for generating healthcare music automatically. Electronics 2019, 8,

1250. [CrossRef]
4. Mozer, M.C. Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and

multi-scale processing. Connect. Sci 1994, 6, 247–280. [CrossRef]
5. Jaques, N.; Gu, S.; Turner, R.E.; Eck, D. Generating music by fine-tuning recurrent neural networks with reinforcement learning.

In Proceedings of the 3rd Deep Reinforcement Learning Workshop, Barcelona, Spain, 9 December 2016.

https://colinraffel.com/projects/lmd/
http://doi.org/10.3390/math7100883
http://doi.org/10.1186/s13673-020-00252-8
http://doi.org/10.3390/electronics8111250
http://doi.org/10.1080/09540099408915726

Mathematics 2021, 9, 387 16 of 16

6. Hadjeres, G.; Pachet, F.; Nielsen, F. Deepbach: A steerable model for bach chorales generation. In Proceedings of the 34th
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1362–1371.

7. Chu, H.; Urtasun, R.; Fidler, S. Song from PI: A musically plausible network for pop music generation. arXiv 2016,
arXiv:1611.03477.

8. Magenta. Available online: https://magenta.tensorflow.org (accessed on 16 November 2020).
9. Mogren, O. C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv 2016, arXiv:1611.09904.
10. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the 31st

AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
11. Amiriparian, S.; Freitag, M.; Cummins, N.; Schuller, B. Sequence to sequence autoencoders for unsupervised representation

learning from audio. In Proceedings of the DCASE 2017 Workshop, Munich, Germany, 16–17 November 2017.
12. Yang, L.C.; Chou, S.Y.; Yang, Y.H. MidiNet: A convolutional generative adversarial network for symbolic-domain music

generation. In Proceedings of the 2017 International Society of Music Information Retrieval Conference (ISMIR), Suzhou, China,
24–27 October 2017.

13. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
14. Dong, H.W.; Hsiao, W.Y.; Yang, L.C.; Yang, Y.H. MuseGAN: Multi-track sequential generative adversarial networks for sym-

bolic music generation and accompaniment. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018; pp. 34–41.

15. Billard, M.; Bishop, R.; Elsisy, M.; Graves, L.; Kolokolova, A.; Nagisetty, V.; Northcott, Z.; Patey, H. Non-sequential melody
generation. In Proceedings of the ICLR 2020 Conference, Addis Ababa, Ethiopia, 20–30 April 2020.

16. Huang, Y.; Huang, X.; Cai, Q. Music generation based on convolution-LSTM. Comput. Inf. Sci. 2018, 11, 50–56. [CrossRef]
17. Han, Z.; Lu, H.; Liu, Z.; Vong, C.M.; Liu, Y.S.; Zwicker, M.; Chen, C.P. 3d2seqviews: Aggregating sequential views for 3D global

feature learning by CNN with hierarchical attention aggregation. IEEE Trans. Image Process. 2019, 28, 3986–3999. [CrossRef]
[PubMed]

18. Szegedy, C.; Loffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the impact of residual connections on learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016.

19. Lakh MIDI Dataset. Available online: https://salu133445.github.io/lakh-pianoroll-dataset/dataset.html (accessed on 16 Novem-
ber 2020).

20. Liu, H.M.; Yang, Y.H. Lead sheet generation and arrangement by conditional generative adversarial network. In Proceedings
of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20
December 2018.

https://magenta.tensorflow.org
http://doi.org/10.5539/cis.v11n3p50
http://doi.org/10.1109/TIP.2019.2904460
http://www.ncbi.nlm.nih.gov/pubmed/30872228
https://salu133445.github.io/lakh-pianoroll-dataset/dataset.html

	Introduction
	Related Work
	Music Generation System Based on INCO-GAN
	Overview
	Extractor
	Structure of the Conditional Vector Generator
	Structure of the Generator of INCO-GAN
	Structure of the Discriminator of INCO-GAN

	Experiment and Results
	Experimental Environment
	Experimental Data
	Experimental Results

	Discussion
	Conclusions
	References

