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Abstract: The infiltration phenomena has been studied by several authors for decades, and numerical
and approximate results have been shown through the asymptotic solution in short and long times.
In particular, it is worth highlighting the works of Philip and Parlange, who used time and volumetric
content as independent variables and space as a dependent variable, and found the solution as a
power series in t1/2 that is valid for short times. However, several studies show that these models
are not applicable to anomalous flows, in which case the application of fractional calculus is needed.
In this work, a fractional time derivative of a Caputo type is applied to model anomalous infiltration
phenomena. Fractional horizontal infiltration phenomena are studied, and the fractional Boltzmann
transform is defined. To study fractional vertical infiltration phenomena, the asymptotic behavior is
described for short and long times considering an arbitrary diffusivity and hydraulic conductivity.
Finally, considering a constant flux-dependent relation and a relation between diffusivity and hy-
draulic conductivity, a fractional cumulative infiltration model applicable to various types of soil is
built; its solution is expressed as a power series in tν/2, where ν ∈ (0, 2) is the order of the fractional
derivative. The results show the effect of superdiffusive and subdiffusive flows in different types
of soil.

Keywords: asymptotic solution; parlange equations; Darcy’s law; fractional Caputo derivative

1. Introduction

More than a century ago, Green and Ampt [1] laid the bases for describing the infiltra-
tion process; to this day, there are still open problems in the area, where existing models
in the literature cannot explain laboratory results [2]. As one of the pioneers in the area,
Philip [3] describes the infiltration phenomenon as a Fokker–Planck type equation. In a
semi-infinite domain, homogeneous, its form is

∂θ

∂t
= ∇ · (D(θ)∇θ)− dK

dθ
· ∂θ

∂z
, (1)

where θ is the volumetric water content, D(θ) is the hydraulic diffusivity, K(θ) is the
hydraulic conductivity, θ0 is the initial volumetric water content, θs is the volumetric water
content at saturation, t is the time, and z is the spatial variable taken positive downward.

In particular, when considering horizontal infiltration:

∂θ

∂t
=

∂

∂x

(
D(θ)

∂θ

∂x

)
, (2)

with initial conditions

t = 0, x > 0, θ = θ0,
t ≥ 0, x = 0, θ = θs,

(3)
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Equations (2) and (3) reduces to

−φ

2
=

d
dθ

(
D(θ)

dφ/dθ

)
, (4)

φ = 0, θ = θs,
φ→ ∞, θ = θ0,

(5)

by introducing the Boltzmann transform [4].
On the other hand, when considering vertical infiltration,

∂θ

∂t
=

∂

∂z

(
D(θ)

∂θ

∂z

)
− dK

dθ

∂θ

∂z
, (6)

t = 0, z > 0, θ = θ0,
t ≥ 0, z = 0, θ = θs,

(7)

Philip [5] applied the implicit function theorem and rewrote Equation (6) as

∂z
∂t

=
∂q
∂θ

, q(θ, t) = − D(θ)

∂z/∂θ
+ K(θ), (8)

where q = q(θ, t) is the Darcy flow; Philip proved that, for short times, the solution of
Equation (8) is sought in the form

z(θ, t) = φ(θ)t1/2 + χ(θ)t + Ψ(θ)t3/2 + ω(θ)t2 + · · · (9)

where each term function of θ in the series is defined from integro-differential equations
whose expression considering fractional calculus will be shown in Section 4. In particular,
the first term in the series (9), φ(θ), matches the solution of the horizontal infiltration
problem, Equation (4).

However, Philip did not work with the radius of convergence of the series, a problem
that remains open to date, but suggests that the range of useful convergence is tgrav, where
it is obtained from dimensional analysis that gravity effects are as great as capillarity
effects, namely,

t < tgrav :=
(

S
Ks − K0

)2
, (10)

where Ks = K(θs) is the hydraulic conductivity at saturation, K0 = K(θ0) is the initial
hydraulic conductivity, and S is the sorptivity defined by

S =
∫ θs

θ0

φ(θ)dθ, (11)

where φ(θ) is the Boltzmann transform defined by the differential Equation (4).
Likewise, Philip [5] proves that, for long times, the solution of Equation (8) has

the form

z(θ, t) = ζ(θ) +
Ks − K0

θs − θ0
t, (12)

where ζ(θ) is a function of volumetric water content and can be expressed in terms of
diffusivity and hydraulic conductivity as

ζ(θ) =
∫ θa

θ

(θs − θ0)D(θ̄)dθ̄

(Ks − K0)(θ̄ − θ0)− (K(θ̄)− K0)(θs − θ0)
, (13)

where θa = θs−∆θ and ∆θ is a definite small positive quality; the calculus of ζ, Equation (13),
should be done carefully since, in general, ζ has singularities at θ = θs, θ0.
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Philip showed that, when water is applied to uniform soils, it is sufficient to retain
only two terms of the series to obtain an adequate description of the vertical infiltration.
Talsma and Parlange [6] proved that sorptivity S and conductivity at saturation Ks were
the soil parameters necessary for the two terms of the Philip series; in addition, the one-
dimensional infiltration equation is more sensitive to soil heterogeneity than its equivalents
in two or three dimensions.

Later, Parlange et al. [7] showed that adding a third parameter to the series is sufficient
to describe cumulative infiltration accurately, where this extra parameter is representative
of the type of soil in which water infiltration takes place.

Haverkamp et al. [8] recognize that the infiltration process can be described either
by solving the Richards equation or by considering cumulative infiltration. They chose
the second option. Since previous models used highly time-dependent parameters [9],
they developed an equation for infiltration subject to head boundary conditions consider-
ing time-independent parameters, which takes into account the possibility of an infinite
diffusivity near saturation.

Fuentes et al. [10] analyzed the constraints on different fitting parameters used in a
water retention equation and hydraulic conductivity using the infiltration equations to
describe several soils types. Later, Fuentes et al. [11] calculated the analytical solution for
vertical infiltration considering a constant diffusivity and a hydraulic conductivity resulting
from a linear combination of linear and quadratic functions of volumetric water content.
They showed that their model can also be applied to soils that do not necessarily meet
the hypotheses for his deduction. On the other hand, using a numerical approximation,
Saucedo et al. [12] verified the contact time hypothesis to describe water transfer in melgas
irrigation by coupling the Saint– Venant and Richards equations.

Over the years, the Philip power series has been applied in different contexts, such as
falling head ponded infiltration [13], variable head ponded infiltration on flat surfaces [14],
and variable head ponded infiltration on sloping surfaces [15], to name a few. In particular,
in the last work, they showed that sorptivity is independent of the slope angle and that
cumulative infiltration normal to the slope decreases with increasing slope angles.

Recently, cumulative infiltration was used to describe the effect of pressure head and
soil bulk density on moistube irrigation [16]. It was concluded that infiltration index α is
negatively correlated with pressure head but positively with soil bulk density, while the
infiltration coefficient K was positively correlated with the pressure head but negatively
with the soil bulk density.

Likewise, water infiltration has been used to calculate infiltrated depth evolution
and humidity profiles by coupling the Saint–Venant and Richards equations with furrow
boundary conditions [17]. Considering this model, the relationship between the optimal
irrigation flow and the length of the border for different types of soil was found [18].

These examples show the wide range of applications that the Philip power series has
for water infiltration in different types of soil; in this sense, it goes without saying how
useful infiltration models are in developing an effective design and evaluating surface
irrigation systems, whether they are physical (such as Philip’s [5] and Richards’ [19] mod-
els), semi-empirical (such as Holtan’s [20] model) or empirical models (such as Sihag’s [21]
model) [22].

When studying non-heterogeneous soils, the transport phenomenon in soils is rec-
ognized as being fundamentally stochastic [23,24]. Moreover, to apply equations, e.g.,
Richards or Philip power series, it is necessary to assume that water moves in a Brown-
ian motion [25]; however, several studies have shown that this assumption is not valid
and that anomalous flows can be created. The reason behind these anomalous flows is
explained by several authors; they argue that constraints can be imposed by the structure
of the porous media or by solute–surface interactions, resulting in Lévy flights due to the
presence of highly conductive fractures, channels, or macropores or because the infiltration
front undergoes jerky movements [26–28]. Thus, the application of fractional derivatives
was considered to explain the anomalous behavior.
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Pachepsky et al. [29] considered water transport in horizontal soil columns and
generalized the Richards equation to include a fractional time derivative and solved it
by generalizing the Boltzmann transform. Sun et al. [30] considered the same problem;
however, noting that the fractional derivative fails with the chain rule, they considered
a fractal derivative and showed that their results exhibited an anomalous Boltzmann
transform, attributed to the fractal nature of the heterogeneous media.

Generalizing the Fokker–Planck type equation, Su [31] applied the fractional deriva-
tive to present a fractional cumulated infiltration into swelling soils where convection
dominates, applying the most linear hydraulic conductivity. Subsequently [32], he general-
ized these results to include mobile and immobile zones with and without gravity effects.
Later [33], he introduced mass–time fractional derivatives for swelling-shrinking soils and
space–time fractional derivatives for non-swelling soils, applying for mobile zones with or
without immobile zones by using power functions for diffusivity and hydraulic conductiv-
ity. Physically, the spatial fractional derivative means that the concentration change at the
point of observation depends on upstream concentrations, while the temporal fractional
derivative implies that the concentration change at the point of observation depends on
the prior concentration loading [34].

In the present work, a model for infiltration is developed using a fractional calculation
as a tool to incorporate the anomalous behavior in the flow of water. Anomalous horizontal
infiltration will first be studied to later extend these results to study anomalous vertical
infiltration, where asymptotic solutions will be given for short and long times. Finally,
a relationship between conductivity and diffusivity will be assumed to yield a valid
anomalous infiltration model for all times.

The work is developed in the following way: Section 2 describes the mathematical
tools from fractional calculus that will be implemented; Section 3 develops the equation
for the fractional horizontal infiltration considering x = x(θ, t) as the dependent variable
and θ, t as independent variables; Section 4 extends the results of the previous section
by studying vertical infiltration phenomena for both arbitrary diffusivity and hydraulic
conductivity through the asymptotic solution in short times and long times; Section 5
considers, as additional hypotheses, a constant flux-dependant relationship and a relation
between diffusivity and hydraulic conductivity to build a model for fractional cumulative
infiltration, where its solution is developed for short times expressed as a power series of
tν/2, where ν is the order of the time fractional derivative with 0 < ν < 2; finally, Section 6
summarizes the conclusions reached in this work.

2. Fractional Calculus

At present, there is a great diversity of fractional derivatives such as Riemann–
Liouville, Caputo, Grünwald, Marchaud, and Riez, among many others. In this section,
the basis of fractional calculus that will be applied for the development of this work will be
described. For more information regarding these properties, see [35–37].

Definition 1. Let −∞ < a < ∞. The Riemann–Liouville fractional integral RL Iα
a+ f of order

α ∈ R is defined by (
RL Iα

a+ f
)
(x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a, (14)

where Γ(α) is the gamma function applied to α defined by

Γ(α) =
∫ ∞

0
tα−1e−tdt, <e(α) > 0. (15)

The fractional integral is the basis from which various forms of fractional derivative
are defined:

Definition 2. The Riemann–Liouville fractional derivative RLDα
a+y of order α ∈ R is defined by
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(
RLDα

a+y
)
(x) =

dn

dxn

(
RL In−α

a+ y
)
(x) =

1
Γ(n− α)

dn

dxn

∫ x

a
(x− t)n−α−1y(t)dt, (16)

where n ∈ N with n− 1 < α ≤ n.

Definition 3. The Caputo fractional derivative CDα
a+y of order α ∈ R is defined by

(
CDα

a+y
)
(x) =

(
RL In−α

a+
dn

dxn y
)
(x) =

1
Γ(n− α)

∫ x

a
(x− t)n−α−1y(n)(t)dt, (17)

where n ∈ N with n− 1 < α ≤ n and y(n) is the n-th derivative.

The Riemann–Liouville fractional derivative and the Caputo fractional derivative are
two of the most widely used definitions in fractional calculus; the first because it can be
implemented numerically with ease due to the Grünwald-Letnikov algorithm, although
it does not allow for the use of the usual initial conditions, while the second allows the
classical initial conditions to be implemented when solving fractional differential equations.

In addition, both definitions of the fractional derivative are related by

(
CDα

a+y
)
(x) =

(
RLDα

a+

[
y(t)−

n−1

∑
k=0

y(k)(a)
k!

(t− a)k

])
(x); (18)

it follows from Equation (18) that both definitions of the fractional derivative are equivalent
if y(k)(a) = 0 for k = 0, 1, . . . , n− 1.

In particular, if α, β ∈ R, it can be verified directly from definitions 2 and 3 that(
RLDα

a+(t− a)β
)
(x) =

(
CDα

a+(t− a)β
)
(x) =

Γ(β + 1)
Γ(β− α + 1)

(x− a)β−α. (19)

Likewise, the Caputo fractional derivative and the Riemann–Liouville fractional
integral act among themselves, generalizing the fundamental theorem of calculus, where,
for sufficiently good conditions of y(t), it is satisfied that

(
RL Iα

a+
CDα

a+y
)
(x) = y(x)−

n−1

∑
k=0

y(k)(a)
k!

(x− a)k. (20)

3. Fractional Horizontal Infiltration

In this section, the fractional horizontal infiltration equation is developed and solved
by replacing the time derivative by the Caputo fractional derivative and neglecting the
term associated with the gravitational field.

Note that applying the implicit function theorem to Equation (2), to express θ and t as
independent variables and x = x(θ, t) as a dependent variable, it follows that

∂x
∂t

=
∂q
∂θ

, q(θ, t) = − D(θ)

∂x/∂θ
, (21)

where q = q(θ, t) is the Darcy flow.
Therefore, the fractional differential equation that describes the anomalous horizontal

infiltration is

τν−1
c

∂νx
∂tν

+
∂

∂θ

[
D(θ)

∂x/∂θ

]
= 0, (22)



Mathematics 2021, 9, 383 6 of 14

where ν ∈ (0, 2) is the order of the fractional derivative, and τc is a constant introduced
to maintain dimensional balance with units of time and initial and boundary conditions
shown in Equation (3).

It can be verified that the solution to anomalous horizontal infiltration, Equation (22), is

x(θ, t) = φν(θ)tν/2 (23)

where φν can be called the fractional Boltzmann transform and is defined by the following
ordinary differential equation:

τν−1
c

Γ(1 + ν/2)
Γ(1− ν/2)

φν(θ) +
d
dθ

[
D(θ)

dφν/dθ

]
= 0; (24)

φν(θs) = 0, φν(θ0)→ ∞. (25)

In addition, fractional cumulative infiltration for fractional horizontal infiltration is
defined by

Iν(t) =
∫ θs

θ0

x(θ, t)dθ = Sνtν/2, Sν =
∫ θs

θ0

φν(θ)dθ, (26)

where Sν can be called the ν-sorptivity.
Note that, when ν→ 1, Equations (24) become Equation (4), and Equation (26) becomes

I(t) =
∫ θs

θ0

x(θ, t)dθ = St1/2. (27)

Further, Equations (24) and (4) are equivalent if

φν(θ) =

[
τ1−ν

c Γ(1− ν/2)
2Γ(1 + ν/2)

]1/2

φ(θ); (28)

therefore,

Sν =

[
τ1−ν

c Γ(1− ν/2)
2Γ(1 + ν/2)

]1/2

S. (29)

4. Fractional Vertical Infiltration

The fractional differential equation that describes the complete anomalous infiltration
is obtained analogously to the previous section, namely,

τν−1
c

∂νz
∂tν

=
∂q
∂θ

, q(θ, t) = − D(θ)

∂z/∂θ
+ K(θ); (30)

expressing it in closed form, we obtain

τν−1
c

∂νz
∂tν

+
∂

∂θ

[
D(θ)

∂z/∂θ

]
=

dK
dθ

, (31)

with initial and boundary conditions as in (7).
This equation has been analytically solved for ν = 1 considering particular behaviors

for diffusivity and hydraulic conductivity; however, considering arbitrary behavior for D
and K, the asymptotic behavior for infiltration can be deduced.

4.1. Short-Time Approximation

As a solution for the fractional differential equation, Equation (31), we consider the
ansatz given by the convergent finite radius convergent series:
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z(θ, t) =
∞

∑
n=1

fν,n(θ)t
nν
2 . (32)

where fν,n(θ) for n = 1, 2, . . . are defined through the ordinary differential equations
that are obtained from substituting the series (32) into the differential Equation (31) and
matching terms, considering

∂νz
∂tν

=
∞

∑
n=1

Γ(1 + 1
2 νn)

Γ(1 + 1
2 νn− ν)

fν,n(θ)t
nν
2 −ν, (33)

∂z
∂θ

=
∞

∑
n=1

f ′ν,n(θ)t
nν
2 . (34)

where f ′ν,n = d
dθ fν,n(θ). In particular, it can be seen that fν,1(θ) = φν(θ), as in (23). Likewise,

similar to Philip, defining φν(θ) := fν,1(θ), χv(θ) := fν,2(θ), Ψv(θ) := fν,3(θ), and ω(θ) :=
fν,4(θ), the first four terms of series (32) satisfy the following integro-differential equations:

τν−1
c

Γ(1 + 1
2 ν)

Γ(1− 1
2 ν)

∫ θ

θ0

φν(θ̄)dθ̄ = − D(θ)

dφν/dθ
; (35)

τν−1
c Γ(1 + ν)

∫ θ

θ0

χν(θ̄)dθ̄ =
D(θ)

(dφν/dθ)2
dχν

dθ
+ K(θ)− K0; (36)

τν−1
c

Γ(1 + 3
2 ν)

Γ(1 + 1
2 ν)

∫ θ

θ0

Ψν(θ̄)dθ̄ =
D(θ)

(dφν/dθ)2

[
dΨν

dθ
−
(

dχν

dθ

)2/dφν

dθ

]
; (37)

τν−1
c

Γ(1 + 2ν)

Γ(1 + ν)

∫ θ

θ0

ων(θ̄)dθ̄ =
D(θ)

(dφν/dθ)2

{
dων

dθ
−
[

2
dχν

dθ

dΨν

dθ
−
(

dχν

dθ

)3/dφν

dθ

]/
dφν

dθ

}
, (38)

with φν(θs) = 0, χν(θs) = 0, Ψν(θs) = 0, and ων(θs) = 0.
Note that, with ν = 1, Equations (35)–(38) become the equations given by Philip [3].
Furthermore, integrating the continuity equation, Equation (31), it follows that the

Darcy flow becomes

τν−1
c

∫ θ

θ0

∂νz
∂tν

dθ̄ = − D(θ)

∂z/∂θ
+ K(θ)− K0 = q(θ, t)− K0; (39)

the infiltration flow is calculated as Darcy’s law at the entry position of water into the soil,
i.e., qs(t) = q(θs, t), by

qs(t)− K0 = τν−1
c

∫ θs

θ0

∂νz
∂tν

dθ̄. (40)

Thereby, by substituting the series (33) in the previous equation, we have

qs(t)− K0 = τν−1
c

∞

∑
n=1

Γ(1 + 1
2 νn)

Γ(1 + 1
2 νn− ν)

Sν,nt
nν
2 −ν, (41)

where Sν,n =
∫ θs

θ0
fν,n(θ)dθ for n = 1, 2, . . . .

In this case, the fractional cumulative infiltration for an anomalous vertical infiltration
considering both an arbitrary diffusivity and hydraulic conductivity is defined by

Iν(t)−
K0τ1−ν

c
Γ(1 + ν)

tν =
∫ θs

θ0

z(θ, t)dθ. (42)

Since
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qs(t)− K0 = τν−1
c

dν

dtν

[
Iν(t)−

K0τ1−ν
c

Γ(1 + ν)
tν

]
, (43)

it is concluded that

Iν(t)−
K0τ1−ν

c
Γ(1 + ν)

tν =
∞

∑
n=1

Sν,nt
nν
2 −ν. (44)

4.2. Long-Time Approximation

We now find the long-time asymptotic behavior of fractional vertical infiltration,
Equation (31); note that, from initial conditions, Equation (7), it follows that ∂z

∂θ → ∞ when
θ → θs; from Darcy’s law, qs → Ks when θ → θs. Therefore, assuming that, when t→ ∞,
∂νz
∂tν is independent of time, we have

τν−1
c

∂νz
∂tν

=
Ks − K0

θs − θ0
; (45)

consequently,

z(θ, t) = ζν(θ) +
τ1−ν

c
Γ(1 + ν)

(
Ks − K0

θs − θ0

)
tν, (46)

where ζν(θ) is a function from volumetric water content.
Note that, when ν = 1, the vertical infiltration, Equation (46), has the same behavior

described by Philip in [5], Equation (12).
Finally, from Equation (42), the asymptotic behavior at long times for fractional

cumulative infiltration is

Iν(t) = I0 +
τ1−ν

c
Γ(1 + ν)

Kstν; I0 =
∫ θs

θ0

ζν(θ)dθ. (47)

5. Fractional Parlange Solution

In the previous sections, the fractional equation that describes the behavior of anoma-
lous infiltration was deduced by neglecting the term associated with the gravitational field,
generalizing the Boltzmann transform, as well as the anomalous cumulative infiltration and
its relationship with the expressions corresponding to the non-anomalous case; otherwise,
for both an arbitrary diffusivity and hydraulic conductivity, the fractional equation was
deduced to describe the full anomalous vertical infiltration, and the asymptotic behavior
was found for fractional cumulative infiltration in short and long times. Next, considering
an arbitrary but related hydraulic diffusivity and conductivity, as well as the approximation
of sorptivity given by Parlange [38], the explicit form of fractional equation for anomalous
vertical infiltration will be deduced, and its solution will be given in terms of a power
series in tν/2 with ν ∈ (0, 2).

Starting from the flow–concentration relationship applied to fractional flow, Equations (39)
and (40) are

F(θ, t) =
q(θ, t)− K0

qs(t)− K0
= τν−1

c

∫ θ

θ0

∂νz
∂tν

dθ̄

/
τν−1

c

∫ θs

θ0

∂νz
∂tν

dθ̄, (48)

with 0 ≤ F(θ, t) ≤ 1. Substituting Darcy’s law and making a first integration, it follows that

z(θ, t) =
∫ θs

θ

D(θ̄)

F(θ̄, t)[qs(t)− K0]−
[
K(θ̄)− K0

]dθ̄. (49)

Considering the previous expression, the fractional cumulative infiltration is obtained by
substituting in Equation (42), namely,



Mathematics 2021, 9, 383 9 of 14

Iν(t)−
K0τ1−ν

c
Γ(1 + ν)

tν =
∫ θs

θ0

(θ − θ0)D(θ)

F(θ, t)[qs(t)− K0]− [K(θ)− K0]
dθ. (50)

Considering this, in long times, the flow concentration relationship behaves as follows:

lim
t→∞

F(θ, t) =
θ − θ0

θs − θ0
, (51)

assuming that this behavior is valid for all times. We consider the following relationship
between diffusivity and hydraulic conductivity [7]:

K(θ)− K0

Ks − K0
=

(
θ − θ0

θs − θ0

)[
1− β + β

∫ θ

θ0

D(θ̄)dθ̄

/ ∫ θs

θ0

D(θ̄)dθ̄

]
, (52)

where β is a parameter associated with the soil type that satisfies 0 < β < 1. Equation (52)
interpolates between the Green and Ampt model and the Talsma and Parlange model, for
which β = 0 and 1, respectively; moreover, β can be calculated from the experimentally
measured hydrodynamic characteristics data using the relation [39]

β = 2− 2
∫ θs

θ0

(
K(θ)− K0

Ks − K0

)(
θs − θ0

θ − θ0

)
D(θ)dθ

/ ∫ θs

θ0

D(θ)dθ. (53)

In fact, Parlange et al. [7] recommend β ≈ 0.85 to represent the two soil types sand
and clay. Hereafter, β will be considered as a fixed but arbitrary constant parameter.

By substituting Equations (51) and (52) into Equation (50), we have

Iν(t)−
K0τ1−ν

c
Γ(1 + ν)

tν =
S2

2β(Ks − K0)
ln
[

1 + β
Ks − K0

qs(t)− Ks

]
, (54)

where S is the sorptivity defined by the following approximation [38]:

S2 ≈ 2(θs − θ0)
∫ θs

θ0

D(θ)dθ. (55)

Considering the dimensionless variables

tD =
2(Ks − K0)

2

S2 t; IDν(tD) =
2(Ks − K0)

S2

[
Iν(t)−

K0τ1−ν
c

Γ(1 + ν)
tν

]
;

τcD =
2(Ks − K0)

2

S2 τc; qsD(tD) =
qs(t)− K0

Ks − K0
; qsD(tD) = τν−1

cD
dν IDν

dtν
D

,

the fractional cumulative infiltration, Equation (54), is expressed through the following
dimensionless fractional differential equation:

τν−1
cD

dν IDν

dtν
D

= 1 +
β

exp(βIDν)− 1
; (56)

with initial condition IDν(tD = 0) = 0.
Note that, for ν = 1, IDν = ID and Equation (56) can be integrated to obtain the

following result:

tD = ID −
1

1− β
ln
[

1− (1− β) exp(−βID)

β

]
, (57)

as in [7], where, for β→ 0, the last equation is reduced to ID = tD + ln(1 + ID), as in [1];
for β→ 1, the last equation is reduced to ID = tD + 1− exp(−ID), as in [6].

The asymptotic behavior of Equation (57) is, for short times,

ID =
√

2tD +
1
3
(2− β)tD + O(t3/2

D ); (58)
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for long times, it is

ID = tD +
1

1− β
ln
(

1
β

)
, (59)

where, for the singular value β = 0, the last expression becomes ID = tD + ln(tD).
Note that, for ν ∈ (0, 1), the integral equation equivalent to Equation (56) is

IDν(tD) =
τ1−ν

cD
Γ(1 + ν)

tν
D + β

τ1−ν
cD

Γ(ν)

∫ tD

0

(tD − τ)ν−1

exp(βIDν)− 1
dτ. (60)

Equation (60) expresses the general solution to fractional cumulative infiltration before
different types of soil considering an anomalous flow. However, since the integral term
has a singularity for tD → 0, its solution requires numerical methods; nevertheless, an
approximate solution in short times can yield useful information.

As in Equation (44), consider the approximation of IDν(tD) through the dimensionless
power series

IDν(tD) =
∞

∑
n=1

SDν,ntnν/2
D ; SDν,n =

Sν,n

Ks − K0

[
S2

2(Ks − K0)2

] νn
2 −1

, (61)

where SDν,n for n = 1, 2, . . . are obtained by matching terms.
Thus, by substituting the approximation of Equation (61) into the right hand side of

Equation (56), we have

β

exp(β ∑∞
n=1 SDν,ntnν/2

D )− 1
=

∞

∑
n=1

bDν,nt(n−2) ν
2

D , (62)

where, the first four terms are

bDν,1 =
1

SDν,1
; bDν,3 =

β2SDν,1

12
−

SDν,3

S2
Dν,1

+
S2

Dν,2

S3
Dν,1

; (63)

bDν,2 = −
(

β

2
+

SDν,2

SDν,1

)
; bDν,4 =

β2SDν,2

12
+

2SDν,2SDν,3

S2
Dν,1

−
S3

Dν,2

S4
Dν,1
−

SDν,4

S2
Dν,1

. (64)

By introducing the approximation shown in Equation (62) into the fractional differen-
tial equation, Equation (56), we have

τν−1
cD

∞

∑
n=1

Γ(1 + 1
2 nν)

Γ(1 + (n− 2)ν/2)
SDν,nt(n−2)ν/2

D = 1 +
∞

∑
n=1

bDν,nt(n−2) ν
2

D , (65)

where the following coefficients relationship between the series is found:

SDν,n = τ1−ν
cD


Γ(1+(n−2)ν/2)

Γ(1+ 1
2 nν)

bDν,n, n 6= 2;
1

Γ(1+ν)
(1 + bDν,n), n = 2.

(66)

Since bDν,n depends on SDν,k for k = 1, 2, . . . , n and n = 1, 2, . . . , it is necessary to solve
non-linear equations to find the coefficients of the series IDν(tD). The expressions for the
first four coefficients of IDν are shown below:

SDν,1 =

[
τ1−ν

cD
Γ(1− ν/2)
Γ(1 + ν/2)

]1/2

; (67)

(68)
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SDν,2 =
τ1−ν

cD Γ(1− ν/2)(1− β/2)
Γ(1 + ν/2) + Γ(1− ν/2)Γ(1 + ν)

; (69)

(70)

SDν,3 =
τ1−ν

cD Γ(1− ν/2)Γ(1 + ν/2)
Γ2(1 + ν/2) + Γ(1− ν/2)Γ(1 + 3ν/2)

(
β2SDν,1

12
+

S2
Dν,2

S3
Dν,1

)
; (71)

(72)

SDν,4 =
τ1−ν

cD Γ(1− ν/2)Γ(1 + ν)

Γ(1 + ν/2)Γ(1 + ν) + Γ(1− ν/2)Γ(1 + 2ν)

(
β2SDν,2

12
+

2SDν,2SDν,3

S3
Dν,1

−
S3

Dν,2

S4
Dν,1

)
. (73)

It can be seen that the short-time asymptotic behavior shown in Equation (58) is
obtained from Equations (67) and (68), making ν = 1.

Figure 1 shows the first four terms of the series IDν(tD), SDν,ntnν/2
D for n = 1, 2, 3, 4,

where SDν,n is as in Equations (67)–(73). In particular, it can be observed that the first two
terms of the series provide the main contribution to IDν, which is why it is understood
that the approximation to two terms used in the literature is considered sufficient to
approximate the cumulative infiltration; however, it is from the fourth term that the
contribution provided by SDν,n is less than 5% of the cumulative infiltration value.

(a) ν = 0.50 (b) ν = 1.00 (c) ν = 1.50
Figure 1. First four terms from Series (61), for the solution in short times to the fractional cumulative infiltration given by the fractional
differential Equation (56), considering subdiffusive flow ν = 0.5, classic flow ν = 1.0, and superdiffusive flow ν = 1.5 for a soil type
represented by β = 0.85, which is valid for both sands and clays and τcD = 1.

Figure 2 shows the behavior of anomalous infiltration for different values of ν, where
ν = 1 is the classic case solved in [7,40]. The phenomena described by the anomalous
infiltration with ν < 1 are known as subdifusive phenomena, which indicate that the
flow modifies the porous media such that particles blocking fractures or channels are
moved, where, for a lower value of ν, there is greater blockage to the flow, showing a
lower value to fractional cumulative infiltration. The phenomena described with ν > 1
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is known as superdiffusive phenomena, where the flow modifies the porous media such
that the particles create new fractures or channels that allow greater mobility to the fluid,
where, for a higher value of ν, there is a greater flow and therefore greater fractional
cumulative infiltration.

Figure 2. Short-time-approximated solution given by Series (61) for fractional cumulative infiltration
considering subdiffusive flows ν < 1, classical flows ν = 1, and superdiffusive flows ν > 1, for a soil
type represented by β = 0.85 that is valid for sands and clays and τc = 1.

Figure 3 shows the effect of β on the fractional accumulated infiltration IDν(tD) for
several values of ν. As previously described, β is associated with hydrodynamic charac-
teristics of the soil type, where β = 0 corresponds to a linear soil type solved in [1] for
ν = 1. β = 1 corresponds to the solution given by Talsma and Parlange solved in [6] for
ν = 1. Further, Figure 3 shows how the effect of ν is greater than β in determining the
value of the fractional cumulative infiltration IDν; that is, the anomalous soil behavior has a
greater impact on the cumulative infiltration compared to the soil type. On the other hand,
it can be observed that, for a fixed value of ν, the extreme values of β limit the behavior for
cumulative infiltration.

Figure 3. Short-time-approximated solution for fractional cumulative infiltration considering dif-
ferent soil types represented by β = 0.0, 0.25, 0.5, 0.75, 1.0, with τcD = 1 and subdiffusive, classical,
and superdiffusive flows represented by ν = 0.5, 1.0, 1.5, respectively. Results in green correspond
to ν = 1.5, results in orange to ν = 1.0, and results in blue to ν = 0.5, where a more dashed line
indicates a lower value of β.
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6. Conclusions

A new model is proposed to capture the phenomenon of anomalous infiltration
through the use of fractional calculus considering time t and volumetric water content θ
as dependent variables and space z as an independent variable. We began the study of
fractional horizontal infiltration phenomena by neglecting the term associated with the
gravitational field, finding as a solution the fractional Boltzmann transform φv and the
corresponding accumulated infiltration. For the study of fractional vertical infiltration
phenomena, the asymptotic solution is found in short and long times for both an arbitrary
diffusivity and hydraulic conductivity; the short-time approximation was expressed as
a power series in tν/2, where ν is the order of fractional derivative, and the first terms
are expressed as integro-differential equations. Finally, a constant flow–concentration
relationship and a relation between diffusivity and hydraulic conductivity were considered
to construct a fractional accumulated infiltration model that is valid for all times and for
different soil types. The model was solved through a series that was valid for short times.
It is shown that the first two terms of the series provide the main contribution to the
anomalous infiltration. It is shown that, for subdifusive flows, there is less accumulated
infiltration than in the classic case; for superdifusive flows, the accumulated infiltration
is greater than the classic case. The effect of considering different types of soils is also
shown, concluding that, for a fixed value of ν, the extreme values of β limit the behavior of
cumulative infiltration, and the anomalous soil behavior has a greater impact on cumulative
infiltration compared to the soil type.
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