
mathematics

Article

High-Speed Implementation of PRESENT on
AVR Microcontroller

Hyeokdong Kwon 1, YoungBeom Kim 2 , Seog Chung Seo 2,3 and Hwajeong Seo 1,*

����������
�������

Citation: Kwon, H.; Kim, Y.; Seo,

S.C.; Seo, H. High-Speed

Implementation of PRESENT on AVR

Microcontroller. Mathematics 2021, 9,

374. https://doi.org/10.3390/

math9040374

Academic Editor: Raúl M. Falcón

Received: 7 January 2021

Accepted: 4 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of IT Convergence Engineering, Hansung University, Seoul 136-792, Korea; hyeok@hansung.ac.kr
2 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea;

darania@kookmin.ac.kr (Y.K.); scseo@kookmin.ac.kr (S.C.S.)
3 Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707, Korea
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-2-760-8033

Abstract: We propose the compact PRESENT on embedded processors. To obtain high-performance,
PRESENT operations, including an add-round-key, a substitute layer and permutation layer opera-
tions are efficiently implemented on target embedded processors. Novel PRESENT implementations
support the Electronic Code Book (ECB) and Counter (CTR). The implementation of CTR is improved
by using the pre-computation for one substitute layer, two diffusion layer, and two add-round-key op-
erations. Finally, compact PRESENT on target microcontrollers achieved 504.2, 488.2, 488.7, and 491.6
clock cycles per byte for PRESENT-ECB, 16-bit PRESENT-CTR (RAM-based implementation), 16-bit
PRESENT-CTR (ROM-based implementation), and 32-bit PRESENT-CTR (ROM-based implementa-
tion) modes of operation, respectively. Compared with former implementation, the execution timing
is improved by 62.6%, 63.8%, 63.7%, and 63.5% for PRESENT-ECB, 16-bit PRESENT-CTR (RAM based
implementation), 16-bit PRESENT-CTR (ROM-based implementation), and 32-bit PRESENT-CTR
(ROM-based implementation) modes of operation, respectively.

Keywords: PRESENT; counter mode of operation; AVR; software implementation

1. Introduction

Lightweight cryptography is getting more important than ever due to the emergence
of the Internet of Things. The lightweight cryptography supports encryption in resource-
constrained environments, such as sensor network, health care, and surveillance systems.
Therefore, the implementation of lightweight cryptography aims at optimizing certain
criteria, such as energy consumption, execution time, memory footprint, and chip size.

We propose a number of implementation techniques for well-known lightweight
cryptography, namely PRESENT, and its Electronic Code Book (ECB) and Counter (CTR)
on low-end embedded processors, where ECB encrypts the plaintext directly with the
master key and CTR encrypts the counter value with the master key and then the result
of encryption is XORed with the plaintext. In order to achieve optimal results on target
microcontrollers, we used processor-specific optimizations for PRESENT block ciphers.
Furthermore, the compact counter mode of PRESENT and its bit-slicing-based implemen-
tation are also presented. Novel implementation techniques for PRESENT block cipher can
be extended to other lightweight cryptography algorithms and other platforms.

1.1. Contribution
1.1.1. Optimal Implementation of PRESENT Block Cipher on Embedded Processors

We implemented the PRESENT block cipher on low-end microcontrollers. The Alf and
Vegard’s RISC (AVR) processor is a resource-constrained device that is used extensively
in low-end Internet of Things (IoT) applications, such as Arduino UNO and Arduino MEGA.
The PRESENT-ECB implementation is optimized in terms of execution timing and other
factors (e.g., code size and RAM). The word size of general purpose registers in the target

Mathematics 2021, 9, 374. https://doi.org/10.3390/math9040374 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4715-8393
https://orcid.org/0000-0001-8016-2808
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/math9040374
https://doi.org/10.3390/math9040374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040374
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/374?type=check_update&version=1

Mathematics 2021, 9, 374 2 of 16

AVR microcontroller is 8-bit wise. All 16-bit wise PRESENT operations are optimized for
8-bit word and instruction set. Compared with the former implementation of PRESENT-
ECB for a 128-bit security level on AVR microcontrollers, the proposed work improved the
execution timing by 62.6% [1].

1.1.2. Pre-Computation for PRESENT with CTR

CTR is utilized in real applications and services, such as Transport Layer Security
(TLS) and Virtual Private Network (VPN). CTR receives the input consisting of two parts,
including constant nonce and variable counter. Since the nonce part is the constant vari-
able, the constant nonce value is repeated several times throughout computations. For
this reason, some computations of PRESENT block cipher can be optimized through pre-
computation. By exploiting this feature, we further improved the execution timing of
PRESENT-CTR. The method is a generic algorithm and can be implemented with other
processors. Compared with the state-of-art implementation,the proposed works on embed-
ded processors that have obtained performance enhancements by 63.8%, 63.7%, and 63.5%
for 16-bit PRESENT-CTR (RAM), 16-bit PRESENT-CTR (ROM), and 32-bit PRESENT-CTR
(ROM), respectively.

1.1.3. Open Source

The proposed PRESENT implementation is a public domain and full source codes are
available at https://github.com/solowal/PRESENT_AVR (accessed on 7 January 2021).
Source codes were written in (mixed) AVR assembly language (core algorithm) and C
language (function call). Codes support four 128-bit PRESENT implementations, including
PRESENT-ECB, PRESENT-CTR16 (RAM based implementation), PRESENT-CTR16 (ROM
based implementation), and PRESENT-CTR32 (ROM based implementation). Projects were
created and evaluated with Atmel Studio 7.0 framework. Researchers can evaluate and
re-create the result with the available source codes.

2. Related Works
2.1. PRESENT Block Cipher

PRESENT block cipher was introduced in CHES’07 [2]. PRESENT block cipher sup-
ports two parameters (i.e., PRESENT-64/80 and PRESENT-64/128). PRESENT block cipher
requires 31 rounds and the Substitution-Permutation-Network (SPN) structure is adopted.
PRESENT requires three computations including the substitution layer, permutation layer,
and add-round-key.

The add-round-key operation performs exclusive-or computations with plaintext and
round keys. Round keys (roundkey = (roundkey1, roundkey2, ..., roundkey32)) are generated
from the key schedule. In particular, roundkey32 is used for post-whitening. PRESENT block
cipher uses a 4-bit substitution layer. The inner state of PRESENT block cipher (S63, ..., S0)
can be seen as 16 4-bit words (w15 ... w0), where one w word consists of four states (i.e.,
wx = {S4·x+3 ‖ S4·x+2 ‖ S4·x+1 ‖ S4·x}, 0 ≤ x ≤ 15). The 4-bit substitution layer can be
represented in Boolean operations for the bitslicing implementation. The PRESENT 4-bit
S-box is designed for higher hardware efficiency and compact implementation. PRESENT
block cipher uses a bit of permutation for the linear diffusion layer. The permutation
layer performs bit permutation in the intermediate result. Each bit state (x) is permutated
through P(x).

2.2. Target Processor

The AVR microcontroller finds many interesting applications in embedded systems,
such as sensor networks, surveillance systems, and health care. The number of available
registers is only 32 8-bit long. Basic arithmetic instructions take a single clock cycle. The
memory load/store instruction requires two clock cycles. The microcontroller supports
an 8-bit instruction set, 128 KB of FLASH memory, 8 MHz of working frequency, two-stage
pipeline design, and 4 KB of RAM (e.g., ATmega128). Among them, 6 registers (i.e.,

https://github.com/solowal/PRESENT_AVR

Mathematics 2021, 9, 374 3 of 16

R26∼R31) are reserved for address pointers, and the remaining registers can be utilized
for general purpose registers by a programmer. In particular, the R1 register is the ZERO
register that should be cleared before function returns.

2.3. Former Implementations on Low-End Embedded Processors

Several works optimized the LEA on embedded processors [3–7]. They optimized ex-
ecution timing and memory consumption. There are many implementations of lightweight
cryptography such as CHAM, SPECK, and SIMON [5,7–17].

Many works are also devoted to improve the execution timing of AES on embedded
processors [18–22]. In [23], the compact implementation of ARIA on low-end microcon-
trollers was proposed.

In CHES’17, optimized PRESENT implementation on embedded ARM CPUs was
presented by using a novel decomposition of permutation layers (see Listing 1.2 of [24]),
and bitsliced for the S-boxes [24]. A description of PRESENT is detailed in Algorithm
2 of [24]. Unlike a traditional PRESENT algorithm, it performs the permutation layer
before the substitution layer. This order of computation is beneficial for bit-slicing-based
substitution layer implementation.

In this paper, we presented the compact PRESENT implementation on AVR micro-
controllers. We re-designed the PRESENT implementation for 8-bit architecture. Then,
we also suggested the PRESENT-CTR. The CTR implementation technique optimizes
2 add-round-key, 2 permutation, and 1 substitution operations with a 1 look-up table
operation.

3. Proposed Method
3.1. Optimization of PRESENT–ECB

For the efficient implementation of PRESENT block cipher, add-round-key, substituion,
and permutation layers are optimized.

In Algorithm 1, add-round-key operation is described in a source code level. The com-
putation is performed with XOR operations with round keys where XOR operation rep-
resents logical bitwise exclusive-or operation. The memory access for round keys is
performed with the incremental memory pointer mode.

Algorithm 1: Add-round-key operation in assembly language.

Input: Intermediate data (reg0∼7), round
key pointer (X).

Output: Output results (reg0∼7).

1: LD tmp, X+
2: EOR reg0, tmp

3: LD tmp, X+
4: EOR reg1, tmp

5: LD tmp, X+
6: EOR reg2, tmp

7: LD tmp, X+
8: EOR reg3, tmp

9: LD tmp, X+
10: EOR reg4, tmp

11: LD tmp, X+
12: EOR reg5, tmp

13: LD tmp, X+
14: EOR reg6, tmp

15: LD tmp, X+
16: EOR reg7, tmp

The efficient implementation of permutation (P0) is described in Algorithm 2. A
16-bit wise rotation operations are performed with LSR, ROR, LSL, and ROL instructions.
Exclusive-or and logical and operations are performed with EOR and ANDI instructions.
Similar to the P0 operation, the permutation (P1) is implemented, efficiently.

Mathematics 2021, 9, 374 4 of 16

Algorithm 2: Permutation (P0) operation in assembly language.

Input: Intermediate data (reg0∼7).

Output: Result (reg0∼7).

//t=(X0⊕(ROR_u16(X1,1)))&0x5555

1: MOVW tmp0, reg4
2: LSR tmp1
3: ROR tmp0

4: EOR tmp0, reg6
5: EOR tmp1, reg7

6: ANDI tmp0, 0X55
7: ANDI tmp1, 0X55

//X0=X0⊕t; X1=X1⊕(ROL_u16(t,1));

8: EOR reg6, tmp0
9: EOR reg7, tmp1

10: LSL tmp0
11: ROL tmp1

12: EOR reg4, tmp0
13: EOR reg5, tmp1

//t=(X2⊕(ROR_u16(X3, 1)))&0x5555;

14: MOVW tmp0, reg0
15: LSR tmp1
16: ROR tmp0

17: EOR tmp0, reg2
18: EOR tmp1, reg3

19: ANDI tmp0, 0X55
20: ANDI tmp1, 0X55

//X2=X2⊕t; X3=X3⊕(ROL_u16(t, 1));

21: EOR reg2, tmp0
22: EOR reg3, tmp1

23: LSL tmp0
24: ROL tmp1

25: EOR reg0, tmp0
26: EOR reg1, tmp1

//t=(X0⊕(ROR_u16(X2, 2)))&0x3333;

27: MOVW tmp0, reg2
28: LSR tmp1
29: ROR tmp0
30: LSR tmp1
31: ROR tmp0

32: EOR tmp0, reg6
33: EOR tmp1, reg7

34: ANDI tmp0, 0X33
35: ANDI tmp1, 0X33

//X0=X0⊕t; X2=X2⊕(ROL_u16(t, 2));

36: EOR reg6, tmp0
37: EOR reg7, tmp1

38: LSL tmp0
39: ROL tmp1
40: LSL tmp0
41: ROL tmp1

42: EOR reg2, tmp0
43: EOR reg3, tmp1

//t=(X1⊕(ROR_u16(X3, 2)))&0x3333;

44: MOVW tmp0, reg0
45: LSR tmp1
46: ROR tmp0
47: LSR tmp1
48: ROR tmp0

49: EOR tmp0, reg4
50: EOR tmp1, reg5

51: ANDI tmp0, 0X33
52: ANDI tmp1, 0X33

//X1=X1⊕t; X3=X3⊕(ROL_u16(t, 2));

53: EOR reg4, tmp0
54: EOR reg5, tmp1

55: LSL tmp0
56: ROL tmp1
57: LSL tmp0
58: ROL tmp1

59: EOR reg0, tmp0
60: EOR reg1, tmp1

Mathematics 2021, 9, 374 5 of 16

The bitslicing substitution operation is performed with Boolean operations. Detailed
descriptions are given in Algorithm 3. Boolean operations, such as logical XOR, AND, OR,
and one’s complement are performed with EOR, AND, OR, and COM instructions. To move two
adjacent registers in a single instruction, MOVW instruction is utilized.

Algorithm 3: Substitution operation in assembly language.

Input: Intermediate data
(reg0∼7).

Output: Result (reg0∼7).

//T1=x2⊕x1;

1: MOVW tmp0, reg2
2: EOR tmp0, reg4
3: EOR tmp1, reg5

//T2=x1&T1;

4: MOVW tmp2, reg4
5: AND tmp2, tmp0
6: AND tmp3, tmp1

//T3=x0⊕T2;

7: MOVW tmp4, reg6
8: EOR tmp4, tmp2
9: EOR tmp5, tmp3

//T5=x3⊕T3;

10: MOVW tmp7, reg0
11: EOR tmp7, tmp4
12: EOR tmp8, tmp5

//T2=T1&T3;

13: MOVW tmp2, tmp0
14: AND tmp2, tmp4
15: AND tmp3, tmp5

//T1=T1⊕T5;

16: EOR tmp0, tmp7
17: EOR tmp1, tmp8

//T2=T2⊕x1;

18: EOR tmp2, reg4
19: EOR tmp3, reg5

//T4=x3|T2;
20: MOVW tmp6, reg0
21: OR tmp6, tmp2
22: OR tmp6, tmp3

//x2=T1⊕T4;

23: MOVW reg2, tmp0
24: EOR reg2, tmp6
25: EOR reg3, tmp6

//x3=x3⊕0xFFFF;

26: COM reg0
27: COM reg1

//T2=T2⊕x3;

28: EOR tmp2, reg0
29: EOR tmp3, reg1

//x0=x2⊕T2;

30: MOVW reg6, reg2
31: EOR reg6, tmp2
32: EOR reg7, tmp3

//T2=T2|T1;

33: OR tmp2, tmp0
34: OR tmp3, tmp1

//x1=T3⊕T2;

35: MOVW reg4, tmp4
36: EOR reg4, tmp2
37: EOR reg5, tmp3

//x3=T5;

38: MOVW reg0, tmp7

3.2. Optimization of PRESENT–CTR

For high-end IoT devices, such as 32-bit ARM-based processors, the size of the counter
is fixed at 32-bit [20,25]. However, in an 8-bit ATmega processor, the memory size is limited
to at least 2KB depending on the ATmega model (e.g., ATtiny). For this reason, block
cipher encryption is usually performed by 216 times [26]. From the security perspective
of CTR mode, the attacker can pre-compute and collect ciphertext information relied
on the IV. When the initial CTR mode is operated, the counter of IV (Initial Vector) is
initialized to zero. If there is an unpredictable n-bit input in the encryption process other
than the master key, the effective key size for Time-Memory Trade Off (TMTO) attack
and Key Collision (KC) attacks increases by n-bit [27]. For an 8-bit AVR microcontroller
with a small memory footprint, it is suitable to use a 16-bit counter. For general cases, a
32-bit counter is also widely used in practice. In this section, we present both PRESENT-
CTR mode implementations with 16-bit and 32-bit counter modes of operation on the
ATmega128 microcontroller.

Mathematics 2021, 9, 374 6 of 16

Algorithm 4: Generation of look-up tables for proposed PRESENT-CTR16 en-
cryption.

Input: 64-bit block of Initial Vector (16-bit counter and 48-bit nonce) B, roundkeys
(roundkey1, roundkey2).

Output: Look-up tables for 16-bit counter (LUT160, LUT161, LUT162, LUT163).

1: CTR← 0

2: MASK ← 0xFFFFFFF0

3: for i = 0 to 3 do

4: C ← (B&(MASK ≪ 4i))|(CTR� 4i)

5: for j = 0 to 15 do

6: C ← C⊕ roundkey1

7: C ← P0(C)

8: C ← SBitslicing(C)

9: C ← P1(C)

10: C ← C⊕ P(roundkey2)

11: LUT16i(j)← C

12: end for

13: end for

14: return LUT160, LUT161, LUT162, LUT163

PRESENT-CTR with a 16-bit counter is described in Figure 1. We represent the bit
in square form. Since PRESENT block cipher performs 64-bit block-wise encryption, 64
squares are utilized (i.e., 64-bit data). The most left square and the most right square
represent the first and last bit, respectively. Colored squares represent a counter part. The
remaining white squares represent nonce part. The computation is performed from top
to bottom.

Mathematics 2021, 9, 374 7 of 16

Algorithm 5: Proposed PRESENT-CTR16 encryption.
Input: 64-bit plaintext B, a key K.

Output: 64-bit ciphertext C.

1: roundkey = (roundkey1, roundkey2, ..., roundkey32)← keySchedule(K)

2: C0∼15 ← LUT160(B0∼3)

3: C16∼31 ← LUT161(B4∼7)

4: C32∼47 ← LUT162(B8∼11)

5: C48∼63 ← LUT163(B12∼15)

6: C ← SBitslicing(C)

7: for i = 2 to 15 do

8: C ← C⊕ roundkey2i−1

9: C ← P0(C)

10: C ← SBitslicing(C)

11: C ← P1(C)

12: C ← C⊕ P(roundkey2i)

13: C ← SBitslicing(C)

14: end for

15: C ← C⊕ roundkey31

16: C ← P(C)

17: C ← SBitslicing(C)

18: C ← C⊕ roundkey32

19: return C

Mathematics 2021, 9, 374 8 of 16

S S S S S S S S S S S S S S S S

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

P0

P1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Figure 1. PRESENT-CTR with 16-bit counter.

1. First add-round-key. 64-bit plaintext is XORed with 64-bit round key. Since this is a
bit-wise operation, each bits do not interfere with each other;

2. Permutation P0. The intermediate result is permuted. 16-bit counter values are
distributed throughout the 64-bit intermediate result. Bits of the counter are arranged
by 1 bit in the order of green, red, blue, and yellow according to a permutation rule;

3. Substitution. The 4-bit input values consist of 1-bit counter-part and 3-bit nonce part.
The output of substitution can be pre-computed with the counter-part;

4. Permutation P1. The intermediate result is permuted again. After the permutation,
the intermediate result is aligned by 16-bit wise;

5. Second add-round-key. The intermediate result is XORed with a second 64-bit
round key.

The 4-bit data for each color of the initial 16-bit counter is distributed to the 16-bit data
through permutation P0 and the bitslicing-substitution process. After the permutation P1
process is done, 16-bit data for each color is gathered regularly in the color (green, red,
blue, and yellow) order of the initial counter. Through this, it is possible to predict 16-bit
data through 4-bit of the initial counter. During the encryption process up to permutation
P1, there is no interference between each color. For four 4-bit counter data, four 16-bit
data can be pre-computed, independently. The required look-up table size is 128 bytes
(4 colors × 24 counters × 16-bit size of data). A detailed description of look-up table
generation is given in Algorithm 4. It generates 16 16-bit data with a counter divided into
4-bit data and repeats this process 4 times. The cost of generating a look-up table is less
than performing PRESENT-ECB encryption by 4 times. We computed the pre-computation
table in a parallel way, which generates four look-up tables at once. Four index parts
(1∼4-th bits, 5∼8-th bits, 9∼12-th bits, and 13∼16-th bits) generate four pre-computed
outputs (1∼16-th bits, 17∼32-th bits, 33∼48-th bits, and 49∼64-th bits). This ensures the

Mathematics 2021, 9, 374 9 of 16

generation of pre-computation is independent of each other. The computation of a look-up
table on AVR requires only 4022 clock cycles. This is roughly one time of PRESENT-ECB
encryption. The look-up table can be stored in RAM or ROM. If we allocate the look-up
table to RAM, we can access to the data with the LD instruction in 2 clock cycles. Otherwise,
we can store it to ROM and access to the data with the LPM instruction in 3 clock cycles.
The encryption process of PRESENT-CTR mode can be optimized away from the operation
up-to the second add-round-key operation by using the created look-up table. Overall, this
approach replaces the two permutation layers, two add-round-key, and one substitution
layer to one look-up table accesses.

Algorithm 5 shows the proposed PRESENT-CTR16 implementation using a 16-bit
counter. In steps 2–5, look-up table access with 16-bit counter is performed. Afterward, the
remaining PRESENT computations are performed. Listing 1 shows the AVR assembly code
for the 16-bit data look-up. In order to improve performance, 16-bit LUT is performed with
two 8-bit memory accesses. The memory access for 16-bit data is 9 clock cycles. This process
is repeated 4 times. PRESENT encryption is optimized at the cost of just 36 clock cycles.

Listing 1. Look up table access for 16-bit counter.

1 .macro LUT16 LUT0 , LUT1 , OFFSET , T0, T1
2 LDI R31 , hi8(LUT0)
3 MOV R30 , OFFSET
4 LPM T0, Z
5 LDI R31 , hi8(LUT1)
6 LPM T1, Z
7 .endm

PRESENT-CTR with 32-bit counter is described in Figure 2. The 1-th to 16-th counters
are indicated by a colored square. The 17-th to 32-th counters are indicated by symbol
squares. During the encryption process, the colored symbol square, which can be shown in
Permutation P1, represents part of being affected by a color square and symbol square.

1. First add-round-key. Similarly to the 16-bit counter mode, the 64-bit plaintext is
XORed with 64-bit round key. Since this is a bit-wise operation, bits do not interfere
with each other;

2. Permutation P0. The intermediate result is permuted. 32-bit counter values are
distributed throughout 64-bit intermediate results. The 16-bit to 32-bit of 32-bit
counter are arranged one by one behind each color square;

3. Substitution. The 4-bit input values consist of a 2-bit counter part and 2-bit nonce
part. The output of substitution can be pre-computed with the counter part;

4. Permutation P1. The intermediate result is permuted again. After the permutation,
the intermediate result is aligned by 16-bit wise;

5. Second add-round-key. Similarly to the 16-bit counter mode of operation, the inter-
mediate result is XORed with a second 64-bit round key.

Mathematics 2021, 9, 374 10 of 16

S S S S S S S S S S S S S S S S

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

P0

P1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Figure 2. PRESENT-CTR with 32-bit counter.

The 8-bit data for each 4-bit color and 4-bit symbol parts of the initial 32-bit counter is
distributed to the 16-bit data through permutation P0 and bitslicing-substitution process.

Unlike the 16-bit counter case, the counter-part represented by the colored square and
the counter-part represented by the symbol square interfere with each other during the
bitslicing-substitution process. This can be seen in detail in Figure 2. When permutation
(P1) is completed, the 16-bit data mixed by color and symbol is gathered in the color and
symbolic order of the initial counter. This allows the pre-computation of 16-bit data through
the 8-bit (4-bit color and 4-bit symbol) of the initial counter. At this time, the required
look-up table size is 2048 bytes (= 4 color and symbol × 28 counter × 16-bit size of data).
Unlike the 16-bit PRESENT-CTR implementation, 32-bit PRESENT-CTR implementation
requires a huge look-up table (i.e., 2048). We placed a look-up table in ROM instead of
RAM. The manufacture of AVR provides secure memory-based architecture (i.e., Cryp-
toMemory; https://www.microchip.com/design-centers/security-ics/mature-products/
cryptomemory). For real world implementation, we can utilize this technology. A detailed
description of look-up table generation is given in Algorithm 6.

Similarly to the 16-bit counter, the encryption process of PRESENT-CTR mode can be
optimized from the operation up-to the second add-round-key by using the created look-up
table. Overall, this approach replaces the two permutation layers, two add-round-key,
and one substitution layer to one look-up table accesses.

https://www.microchip.com/design-centers/security-ics/mature-products/cryptomemory
https://www.microchip.com/design-centers/security-ics/mature-products/cryptomemory

Mathematics 2021, 9, 374 11 of 16

Algorithm 6: Generation of look-up tables for proposed PRESENT-CTR32 en-
cryption.

Input: 64-bit block of Initial Vector (32-bit nonce and 32-bit counter) B, roundkeys
(roundkey1, roundkey2).

Output: Look-up tables for 32-bit counter (LUT320, LUT321, LUT322, LUT323).

1: CTR← 0

2: MASK ← 0xFFF0FFF0

3: for i = 0 to 3 do

4: C ← (B&(MASK ≪ 4i))|(CTR0∼3 � 4i)|(CTR4∼7 � 4i + 16)

5: for j = 0 to 256 do

6: C ← C⊕ roundkey1

7: C ← P0(C)

8: C ← SBitslicing(C)

9: C ← P1(C)

10: C ← C⊕ P(roundkey2)

11: LUT32i(j)← C

12: end for

13: end for

14: return LUT320, LUT321, LUT322, LUT323

Mathematics 2021, 9, 374 12 of 16

Algorithm 7: Proposed PRESENT-CTR32 encryption.
Input: 64-bit plaintext B, a key K.

Output: 64-bit ciphertext C.

1: roundkey = (roundkey1, roundkey2, ..., roundkey32)← keySchedule(K)

2: C0∼15 ← LUT320(B0∼3‖B16∼19)

3: C16∼31 ← LUT321(B4∼7‖B20∼23)

4: C32∼47 ← LUT322(B8∼11‖B24∼27)

5: C48∼63 ← LUT323(B12∼15‖B28∼31)

6: C ← SBitslicing(C)

7: for i = 2 to 15 do

8: C ← C⊕ roundkey2i−1

9: C ← P0(C)

10: C ← SBitslicing(C)

11: C ← P1(C)

12: C ← C⊕ P(roundkey2i)

13: C ← SBitslicing(C)

14: end for

15: C ← C⊕ roundkey31

16: C ← P(C)

17: C ← SBitslicing(C)

18: C ← C⊕ roundkey32

19: return C

Listing 2. Look up table access for 32-bit counter.

1 .macro LUT32 LUT0 , LUT1 , OFFSET1 , OFFSET2 , T0 , T1
2 LDI R31 , hi8(LUT0)
3 MOV R30 , OFFSET1
4 ADD R30 , OFFSET2
5 LPM T0, Z
6 LDI R31 , hi8(LUT1)
7 LPM T1, Z
8 .endm

Algorithm 7 shows the proposed PRESENT-CTR32 implementation using a 32-bit
counter. In Steps 2∼5, 16-bit data look-up with 8-bit (4-bit color and 4-bit symbol) counter is

Mathematics 2021, 9, 374 13 of 16

performed. Listing 2 shows the AVR assembly code for the 32-bit data look-up. The cost of
looking-up 16-bit data is 10 clock cycles. This process is repeated 4 times. This is optimized
at the cost of just 40 clock cycles.

4. Evaluation

In CHES’17, bitslicing-based PRESENT implementation was proposed [24]. It has
been theoretically and practically proven that the bitslicing technique shows the best results
in 32-bit or higher processors. However, bitslicing-implementation in an 8-bit AVR environ-
ment has not been explored before. In embedded devices, bitslicing optimizes the memory
access for the substitution layer but it requires Boolean operations. The AVR microcon-
troller has 8-bit wise 32 general-purpose registers and it should be carefully optimized
to achieve high performance in bitslicing implementation. We evaluated PRESENT-ECB
and PRESENT-CTR implementations and compared them with former works. ATmega128
is selected as a microcontroller, which is one of the most popular AVR microcontrollers
in wireless sensor networks. In the case of CTR mode, 16-bit counter and 32-bit counter
versions are evaluated. The software was evaluated with Atmel Studio 7 and -Os op-
tion. Benchmarks are checked in clock cycles per byte which occurs when each mode of
operation is called once.

Table 1 describe the comparison between this work and former implementations.
PRESENT-ECB encryption by Dinu et al. (80-bit) and Engel et al. (128-bit) required
930.8 and 1349.0 clock Cycles Per Byte (CPB), respectively [1,28]. On the other hand,
the proposed PRESENT-ECB implementation uses almost the same RAM as the existing
implementation, but only requires 504.2 clock cycles per byte. For the code size, the
proposed implementation utilized two permutation operations (P0, P1). The code size is
bigger than former works. Since the proposed PRESENT-CTR implementation is optimized
further by utilizing pre-computation, the proposed PRESENT-CTR mode achieved a higher
performance than the existing PRESENT-ECB mode. The code size of the CTR mode of
operation is bigger than the ECB mode of operation, but it achieved 488.2, 488.7, and 491.6
CPB, for 16-bit counter (RAM), 16-bit counter (ROM), and 32-bit counter (ROM). In Table
2, the comparison of execution timing depending on the message size is given. The RAM
based 16-bit counter mode of operation requires look-up table generation online. For this
reason, performance is lower than the ROM-based 16-bit counter mode of operation.
However, the RAM-based implementation outperforms when the length is over 8192
bytes. PRESENT implementations are publicly available at: https://github.com/solowal/
PRESENT_AVR, where anyone can access PRESENT implementations.

Table 1. Comparison of PRESENT on target embedded processors (Alf and Vegard’s RISC (AVR)) in
terms of timing (cycles per byte), RAM (bytes), and code size (bytes), 1: Pre-computation in RAM, 2:
Pre-computation in ROM, †: 16-bit counter, ‡: 32-bit counter. ECB: Electronic Code Book.

Method Security Level Mode of Operation Code Size RAM Timing

[28] 80 ECB 760 281 930.8

[1]

128

ECB
660 280 1349.0

This work

956 282 504.2

CTR †,1 1150 420 488.2

CTR †,2 1152 292 488.7

CTR ‡,2 3072 292 491.6

https://github.com/solowal/PRESENT_AVR
https://github.com/solowal/PRESENT_AVR

Mathematics 2021, 9, 374 14 of 16

Table 2. Comparison of PRESENT on target embedded processors (AVR) in terms of timing (106

clock cycles) depending on message size (bytes), 1: Pre-computation in RAM, 2: Pre-computation in
ROM, †: 16-bit counter, ‡: 32-bit counter.

Method
Message size (bytes)

4096 8192 16,384 32,768 65,536

CTR †,1 2.0038 4.0037 8.0035 16.0030 32.0019

CTR †,2 2.0010 4.0038 8.0076 16.0153 32.0307

CTR ‡,2 2.0136 4.0273 8.0547 16.1095 32.2191

In Table 3, a comparison with other lightweight block cipher implementations on
target-embedded processors is given. On the 8-bit AVR environment, previous PRESENT
implementation using 128-bit key shows a lower performance than other lightweight
cryptographic algorithms [28], since substitution and permutation layers of the PRESENT
algorithm incurs considerable overheads in an 8-bit AVR environment. We achieved the
execution timing improvement of target block cipher implementation to 504 clock cycles
per byte in an 8-bit AVR environment. Therefore, we believe that our optimization results
are not only actually usable from real 8-bit AVR microcontrollers but can be applied to
various cryptographic application algorithms.

Table 3. Comparison of other implementations on target embedded processors (AVR) in terms of
timing (cycles per byte), RAM (bytes), and code size (bytes).

Algorithm Plaintext Security Level Code Size RAM Timing

PIPO [29]

64 128

320 31 197

SIMON [17] 290 24 253

RECTANGLE [28] 466 204 403

RoadRunneR [30] 196 24 477

PRESENT [this work] 956 282 504

SKINNY [28] 502 187 877

PRIDE [28] 650 47 969

PRESENT [1] 660 280 1349

CRAFT [31] 894 243 1,504

5. Conclusions

We presented compact ECB and CTR for PRESENT on embedded processors. The
ECB mode of operation was efficiently implemented in an optimization of diffusion layer,
substitute layer, and add-round-key operations. The operation was accelerated with pre-
computation in CTR. This new approach optimized away PRESENT operations by the
substitution layer of second round. Finally, PRESENT block cipher on target microcon-
trollers consumed 504.2, 488.2, 488.7, and 491.6 CPB for ECB, 16-bit CTR (RAM-based
implementation), 16-bit CTR (ROM-based implementation), and 32-bit CTR (ROM-based
implementation) modes of operation, respectively.

Author Contributions: Investigation, H.K. and Y.K.; Software, H.K., Y.K., S.C.S., and H.S.; Writing-
original draft, H.K. and Y.K.; Writing-review and editing, H.K., Y.K., S.C.S., and H.S. All authors have
read and agreed to the published version of the manuscript.

Mathematics 2021, 9, 374 15 of 16

Funding: This research of Hyeokdong Kwon and Hwajeong Seo was partly supported by the
National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.
NRF-2020R1F1A1048478) and this research of Hyeokdong Kwon and Hwajeong Seo was partly
supported by Institute for Information & communications Technology Promotion(IITP) grant funded
by the Korea government(MSIT) (No.2018-0-00264, Research on Blockchain Security Technology
for IoT Services). This research of YoungBeom Kim and Seog Chung Seo was funded by National
Research Foundation of Korea: 2019R1F1A1058494.

Conflicts of Interest: The authors declare no conflicct of interest.

References
1. Engels, S.; Kavun, E.B.; Paar, C.; Yalçin, T.; Mihajloska, H. A non-linear/linear instruction set extension for lightweight ciphers.

In Proceedings of the 2013 IEEE 21st Symposium on Computer Arithmetic, Austin, TX, USA, 7–10 April 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 67–75.

2. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C. PRESENT: An
ultra-lightweight block cipher. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded
Systems, Vienna, Austria, 10–13 September 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

3. Hong, D.; Lee, J.K.; Kim, D.C.; Kwon, D.; Ryu, K.H.; Lee, D.G. LEA: A 128-bit block cipher for fast encryption on common
processors. In Proceedings of the International Workshop on Information Security Applications, Jeju Island, Korea, 19–21 August
2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–27.

4. Seo, H.; Liu, Z.; Choi, J.; Park, T.; Kim, H. Compact implementations of LEA block cipher for low-end microprocessors. In
Proceedings of the International Workshop on Information Security Applications, Jeju Island, Korea, 20–22 August 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 28–40.

5. Seo, H.; Jeong, I.; Lee, J.; Kim, W.H. Compact implementations of ARX-based block ciphers on IoT processors. ACM Trans. Embed.
Comput. Syst. (TECS) 2018, 17, 1–16.

6. Seo, H.; An, K.; Kwon, H. Compact LEA and HIGHT implementations on 8-bit AVR and 16-bit MSP processors. In Proceed-
ings of the International Workshop on Information Security Applications, Jeju Island, Korea, 23–25 August 2018; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 253–265.

7. Kim, Y.; Kwon, H.; An, S.; Seo, H.; Seo, S.C. Efficient Implementation of ARX-Based Block Ciphers on 8-Bit AVR Microcontrollers.
Mathematics 2020, 8, 1837.

8. Hong, D.; Sung, J.; Hong, S.; Lim, J.; Lee, S.; Koo, B.S.; Lee, C.; Chang, D.; Lee, J.; Jeong, K.; et al. HIGHT: A new block cipher
suitable for low-resource device. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded
Systems, Yokohama, Japan, 10–13 October 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 46–59.

9. Eisenbarth, T.; Gong, Z.; Güneysu, T.; Heyse, S.; Indesteege, S.; Kerckhof, S.; Koeune, F.; Nad, T.; Plos, T.; Regazzoni, F.; et al.
Compact implementation and performance evaluation of block ciphers in ATtiny devices. In Proceedings of the International
Conference on Cryptology in Africa, Ifrance, Morocco, 10–12 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 172–187.

10. Kim, B.; Cho, J.; Choi, B.; Park, J.; Seo, H. Compact Implementations of HIGHT Block Cipher on IoT Platforms. Secur. Commun.
Netw. 2019, 2019, 5323578.

11. Koo, B.; Roh, D.; Kim, H.; Jung, Y.; Lee, D.G.; Kwon, D. CHAM: A family of lightweight block ciphers for resource-constrained
devices. In Proceedings of the International Conference on Information Security and Cryptology, Xi’an, China, 3–5 November
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–25.

12. Seo, H. Memory-efficient implementation of ultra-lightweight block cipher algorithm CHAM on low-end 8-bit AVR processors.
J. Korea Inst. Inf. Secur. Cryptol. 2018, 28, 545–550.

13. Roh, D.; Koo, B.; Jung, Y.; Jeong, I.W.; Lee, D.G.; Kwon, D.; Kim, W.H. Revised Version of Block Cipher CHAM. In Pro-
ceedings of the International Conference on Information Security and Cryptology, Seoul, Korea, 4–6 December 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 1–19.

14. Kwon, H.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, H. Compact Implementation of CHAM Block Cipher on Low-End
Microcontrollers. In Proceedings of the International Conference on Information Security Applications, Jeju Island, Korea, 26–28
August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 127–141.

15. Kwon, H.; An, S.; Kim, Y.; Kim, H.; Choi, S.J.; Jang, K.; Park, J.; Kim, H.; Seo, S.C.; Seo, H. Designing a CHAM Block Cipher on
Low-End Microcontrollers for Internet of Things. Electronics 2020, 9, 1548.

16. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK Families of Lightweight
Block Ciphers. IACR Cryptol. EPrint Arch. 2013, 2013, 404–449.

17. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK block ciphers on AVR
8-bit microcontrollers. In Proceedings of the International Workshop on Lightweight Cryptography for Security and Privacy,
Istanbul, Turkey, 1–2 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–20.

18. Osvik, D.A.; Bos, J.W.; Stefan, D.; Canright, D. Fast software AES encryption. In Proceedings of the International Workshop on
Fast Software Encryption, Seoul, Korea, 7–10 February 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–93.

19. McGrew, D.; Viega, J. The Galois/counter mode of operation (GCM). Submiss. NIST Modes Oper. Process 2004, 20, 1–27.

Mathematics 2021, 9, 374 16 of 16

20. Park, J.H.; Lee, D.H. FACE: Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive Data. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018, 469–499, doi:10.13154/tches.v2018.i3.469-499.

21. Kim, K.; Choi, S.; Kwon, H.; Liu, Z.; Seo, H. FACE–LIGHT: Fast AES–CTR Mode Encryption for Low-End Microcontrollers. In
Proceedings of the International Conference on Information Security and Cryptology, Seoul, Korea, 4–6 December 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 102–114.

22. Kim, K.; Choi, S.; Kwon, H.; Kim, H.; Liu, Z.; Seo, H. PAGE–Practical AES-GCM Encryption for Low-End Microcontrollers.
Appl. Sci. 2020, 10, 3131.

23. Seo, H.; Kwon, H.; Kim, H.; Park, J. ACE: ARIA-CTR Encryption for Low-End Embedded Processors. Sensors 2020, 20, 3788.
24. Reis, T.B.; Aranha, D.F.; López, J. PRESENT runs fast. In Proceedings of the International Conference on Cryptographic Hardware

and Embedded Systems, Taipei, Taiwan, 25–28 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 644–664.
25. Seo, H.; Lee, G.; Park, T.; Kim, H. Compact GCM implementations on 32-bit ARMv7-A processors. In Proceedings of the 2017

International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 704–707.

26. Kim, Y.; Seo, S.C. An Efficient Implementation of AES on 8-Bit AVR-Based Sensor Nodes. In Proceedings of the International
Conference on Information Security Applications, Jeju Island, Korea, 26–28 August 2020; Springer: Berlin/Heidelberg, Germany,
2020; pp. 276–290.

27. McGrew, D.A. Counter mode security: Analysis and recommendations. Cisco Syst. Novemb. 2002, 2; pp. 1-8..
28. Dinu, D.; Biryukov, A.; Großschädl, J.; Khovratovich, D.; Le Corre, Y.; Perrin, L. FELICS–fair evaluation of lightweight

cryptographic systems. In Proceedings of the NIST Workshop on Lightweight Cryptography, Gaithersburg, MD, USA, 20–21 July
2015; Volume 128.

29. Kim, H.; Jeon, Y.; Kim, G.; Kim, J.; Sim, B.Y.; Han, D.G.; Seo, H.; Kim, S.; Hong, S.; Sung, J.; et al. A New Method for Designing
Lightweight S-Boxes with High Differential and Linear Branch Numbers, and Its Application*. In Proceedings of the 23rd Annual
International Conference on Information Security and Cryptology (ICISC 2020), Seoul, Korea, 2–4 December 2020; pp. 105–132.

30. Baysal, A.; Şahin, S. RoadRunneR: A small and fast bitslice block cipher for low cost 8-bit processors. In Lightweight Cryptography
for Security and Privacy; Springer: Cham, Switzerland, 2015; pp. 58–76.

31. Beierle, C.; Leander, G.; Moradi, A.; Rasoolzadeh, S. CRAFT: Lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symmetric Cryptol. 2019, 2019, 5–45.

	Introduction
	Contribution
	Optimal Implementation of PRESENT Block Cipher on Embedded Processors
	Pre-Computation for PRESENT with CTR
	Open Source

	Related Works
	PRESENT Block Cipher
	Target Processor
	Former Implementations on Low-End Embedded Processors

	Proposed Method
	Optimization of PRESENT–ECB
	Optimization of PRESENT–CTR

	Evaluation
	Conclusions
	References

