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Abstract: Mobile robots are currently exploited in various applications to enhance efficiency and
reduce risks in hard activities for humans. The high autonomy in those systems is strongly related
to the path-planning task. The path-planning problem is complex and requires in its formulation
the adjustment of path elements that take the mobile robot from a start point to a target one at the
lowest cost. Nevertheless, the identity or the number of the path elements to be adjusted is unknown;
therefore, the human decision is necessary to determine this information reducing autonomy. Due to
the above, this work conceives the path-planning as a Variable-Length-Vector optimization problem
(VLV-OP) where both the number of variables (path elements) and their values must be determined.
For this, a novel variant of Differential Evolution for Variable-Length-Vector optimization named
VLV-DE is proposed to handle the path-planning VLV-OP for mobile robots. VLV-DE uses a popu-
lation with solution vectors of different sizes adapted through a normalization procedure to allow
interactions and determine the alternatives that better fit the problem. The effectiveness of this
proposal is shown through the solution of the path-planning problem in complex scenarios. The
results are contrasted with the well-known A* and the RRT*-Smart path-planning methods.

Keywords: Variable-Length-Vector optimization; Differential Evolution; mobile robots; path-planning

1. Introduction
1.1. A Review of Path-Planning Methods

Robots have become fundamental tools to perform diverse activities, mainly those that
are dangerous or tough for humans [1]. Particularly, mobile robots extend the operation of
classical fixed-base robotic manipulators to almost any place [2].

The success of mobile robots depends on their autonomy degree, i.e., insofar as they
require less human intervention [3]. Among the tasks required to achieve autonomy in
robots, path-planning is one of the most critical [4].

Without loss of generality, the path-planing problem is to find a sequence of path
elements (points, curves, line segments, etc.) that connect a start point to a target one
avoiding threats (usually, collisions with obstacles or risky regions) and achieving the best
performance (typically, the shortest length) [5]. Since the path’s shape is strongly related to
the optimization of energy consumption, the robot’s safety, navigation time and the path’s
overall cost [6], the relevance of the path-planning task is highlighted.

In the last decades, several path-planning solution approaches, also named path-
planners, have been proposed and can be classified in five categories [7]: (i) sampling-based
algorithms, (ii) node-based optimal algorithms, (iii) mathematical-model-based algorithms,
(iv) bio-inspired algorithms and (v) multifusion-based algorithms.

The path-planners in (i) randomly or heuristically sample the path elements to find
a feasible and short path. Within this category, the Rapidly-exploring Random Trees

Mathematics 2021, 9, 357. https://doi.org/10.3390/math9040357 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7565-8128
https://orcid.org/0000-0003-2856-9648
https://doi.org/10.3390/math9040357
https://doi.org/10.3390/math9040357
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040357
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/357?type=check_update&version=1


Mathematics 2021, 9, 357 2 of 20

(RRT) [8], and the Probabilistic Road Maps (PRM) [9] stand out. In RRT, random points in
the workspace are incrementally sampled in a radius to generate branched feasible path
segments. Therefore, the resulting tree contains the searched path. On the other hand,
the PRM samples random nodes in a radius within the workspace and creates collision-free
connections among them. After this, PRM selects a feasible path between the start and target
nodes. Despite the rapid exploration of the workspace with RRT and PRM, the probability
of finding the shortest path is extremely low [10]. Improved RRT and PRM versions like
RRT* and PRM* have been proposed to obtain the shortest possible path by taking into
account each branch length and scaling the sampling radius gradually, respectively [11].
The main shortcoming of the methods in (i) is that calculating the best path depends on
probability, while their main strength is the computational efficiency. Moreover, a human
intervention must establish the proper sampling radius and the number of sampled points
or branches, affecting the robot autonomy. If the above parameters are settling incorrectly,
it may result in a very low-performance path or excessive calculation time.

Category (ii) includes techniques that require the workspace to be described in a
graph. These techniques then explore the graph to find the shortest path between the
start and target nodes, usually as variants of the Dijkstra algorithm. Four representative
methods are the A* [12], the Fast Marching (FM) [13], the Potential Field (PF) [14] and the
Visibility Graphs (VG) [15]. A* is a greedy and deterministic technique that heuristically
finds sub-optimal paths in informed graphs. A well-known variant of A* is the D* that
deals with dynamical workspaces [16]. FM solves a discretized version of the Eikonal wave
propagation differential equation in a graph. The solution to this equation is related to the
wave’s arrival time at each node in the graph from a given origin node. The propagation of
the wave generates a velocity field at each node used to calculate the arrival times to its
neighbors. The best route is the one that takes the wave from the origin to the destination
in the shortest cumulative time, and is obtained by the gradient descent. The PF method
applies a potential field to the workspace. This field generates an attractive force between
any node in the graph and the target, and induces a repulsive effect to the obstacles or
risky regions. Based on the above two effects, a potential can be calculated for each node.
Then, the best path can be found as the lowest cumulative potential alternative through the
gradient descent. In VG, the vertices of each obstacle in the workspace are selected as the
nodes of a graph, and the connections among them are established based on visibility, i.e., a
collision-free edge between each pair of nodes. The best path is obtained from that graph.
Since all the above methods discretize the workspace, their effectiveness depends on how
the graph is built. The most accurate workspace representation requires an infinite graph
of which the best path cannot be found in finite time. In practice, the human establishes
a proper trade-off between planning precision and computational cost. If each node in
the graph represents a wide region of the workspace, the obtained path may be very long,
but the calculation could be fast. The opposite can happen if each node is associated with a
smaller region.

The methods in (iii) require an accurate mathematical model of the workspace and the
mobile robot. Based on that model, a linear or non-linear dynamic programming problem
is established to find the control actions that take the robot through the best feasible path.
The above problem, also known as the optimal control problem, is typically solved by
classical direct or indirect methods. The work in [17] shows a clear example of this category.
In that proposal, a dynamic control problem is solved in the path-planning for a spherical
mobile robot. Although the methods in (iii) can achieve the lower cost path theoretically,
their performance is limited by model accuracy. All models are imprecise, and the above
coupled with the presence of uncertainties and disturbances [18] in the real-world can lead
to poor performance in path-planning.

The bio-inspired approaches in (iv) use analogies with biological or physical phenom-
ena to solve the path-planning problem. In this sense, Artificial Intelligence (AI) techniques
such as Fuzzy Logic (FL), Neural Networks (NNs) and meta-heuristics are recurrently
found in the specialized literature. In [19], the Ant Colony Optimization (ACO) algorithm
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improved with FL is used to obtain cost-effective paths with an unmanned aerial vehicle
in dynamic environments. Another example is the work in [20], where a NN is used to
dynamically predict and avoid collisions in the path-planning for mobile robots. On the
other side, the meta-heuristic approaches are referred to as algorithms from evolutionary
computation and swarm intelligence that solve a formal optimization problem to find
the path elements that minimize its overall cost. These methods are discussed further
in this document. The methods in (iv) have shown outstanding performance, especially
when the path-planning problem is hard, e.g., when there are moving obstacles or the
path cost involves other criteria beyond the overall length such as energy, time, shape,
etc. Nevertheless, the computational cost of these methods can be considered higher than
the previous categories. Particularly, the FL and NN methods need proper training to
generalize an expert human’s knowledge before its use.

Finally, the techniques in (v) combine different features of the other four categories.
The above aims to enhance the path-planning effectiveness by decreasing the implicit drawbacks
of a single category. An example of these techniques is found in [21]. In the above research,
an NN improves the RRT* algorithm by determining a suitable sampling distribution.

1.2. Optimization in Path-Planning

Optimization is required in almost every engineering application due to the current
limitations and challenges of modern life, and path-planning is not an exception. It is used
either to reduce costs [22], improve accuracy [23], raise the incomes [24] or enhance other
performance indicators. The systematic procedure in the general optimization process for
engineering is noticeable. First, the system or process is studied in-depth to determine
the relationships among the involved variables (design variables), the performance needs
(objectives) and the overall limitations (constraints). The above elements are established,
through the mathematical language, as a formal optimization problem. Finally, an op-
timizer is used to find suitable solutions that can be implanted in the final application.
Therefore, the path-planning problem can be formally stated as an optimization problem,
where the path requirements can be expressed as the objectives, the path elements are
the design variables and the constraints can be set to prevent risky behaviors [25]. By its
own nature, the path-planning optimization problem is Non-Polynomial Hard (NP-Hard)
one [26], and deterministic optimization techniques may not achieve the best performance.
Fortunately, the use of soft computing techniques such as meta-heuristics has shown out-
standing results compared to deterministic solution methods and state-of-the-art sampling
and node-based approaches [25,27]. In this sense, meta-heuristics are stochastic computa-
tional techniques that can find good solutions to complex optimization problems using a
reasonable amount of resources [28]. Those based on evolutionary computation and swarm
intelligence stand out among meta-heuristic methods.

On the other hand, for a wide variety of optimization problems associated with real-
world applications, the engineer knows the variables involved in the process or system,
which must be adjusted to optimize the outcome. Nevertheless, there are more intricate
problems where the identity or the number of the involved variables is uncertain [29].
Examples of the above problems are observed in controller design [30], re-configurable
robotics [31], machine scheduling [32], among others.

Path-planning for mobile robots is part of the problems described in the previous
paragraph since the number of path elements cannot be known a priori. A common way to
address this issue requires human intervention to propose or decide the number of path
elements (points in the Cartesian plane) to be adjusted. For example, an improvement of
the Particle Swarm Optimization (PSO) is proposed in [33] to optimize a mobile robot’s
trajectory. PSO can place the points that the robot travels in each iteration, solving an
optimization problem that considers the distance to the target point and the obstacles’
separation. The proposal in [34] introduces a new crossing operator in the GA to optimize
the location of the points that make up a trajectory for mobile robots. GA uses a cost
function that considers the total distance, the robot’s energy and the safety of the path.
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In [35], a method is proposed to find the point local positions of a trajectory sequentially
(points that the robot travels from an initial location to a final one) through the Differential
Evolution (DE) algorithm. The method finds a new feasible point position on each iteration
to minimize the distance to an end point. The work in [36] presents a hybridization between
PSO and DE to solve the problem of trajectory planning for mobile robots. The problem
aims to minimize a single target that considers the total distance and the trajectory’s safety.
The trajectory is made up of consecutive points located over vertical lines of action within
the Cartesian space. The research in [37] proposes a hybridization between a GA and the A*
planning technique to find the spline segments of a trajectory for the differential wheeled
robot. An optimization problem is formulated that weights four objectives, the distance,
the travel time, the smoothness and the safety of the trajectory (based on how close the
mobile robot passes to the obstacles).

It can be observed that the main drawback of the above approach is the reduction
of autonomy in mobile robots, i.e., mobile robots cannot decide the number of path el-
ements by themselves and the human help is needed. Additionally, if the number of
path elements is not well established, a large value can over-define the path (this can
complicate the post-processing task aspects [38] such as path smoothing [39], control [40])
and energetic efficiency [41], while a lower one can reduce the chances of finding the
optimal path [42]. A way to deal with the above difficulty is to treat the path-planning
as a Variable-Length-Vector Optimization Problem (VLV-OP) to determine the number of
the variables (points) and their values (Cartesian coordinates) enhancing the application
performance. The above implies an additional complexity in the problem, and its solution
requires more sophisticated optimization mechanisms, even in the meta-heuristics.

To the best of the author’s knowledge, the path-planning as a VLV-OP has been
investigated little. In this way, two representative works [43,44] can be found in the
specialized literature. Both alternatives take advantage of the GA’s binary encoding to
deal with the VLV-OP in discrete workspaces modeled as finite grids. In [43], the GA
with a simple one-point crossover, a swap mutation and a gene elimination mechanism
is adopted to evolve the generation of mobile robots’ paths. On the other hand, the work
in [44] finds optimal trajectories for a robotic manipulator using the GA. The adopted
one-point crossover uses information regarding nodes’ location in two paths to select the
split point. Simultaneously, the mutation strategy alters random points on the path based
on the location of its neighbors.

Although only a couple of works address the path-planning problem as a VLV-OP,
different solution approaches can be found from other application contexts. For example,
GAs are also proposed to solve VLV-OPs related to the preventive maintenance scheduling
problem [45], the headway optimization and the scheduling combination problem for
vehicles [46] and the routing problem for informed graphs [47,48]. Those works require
fewer modifications of the GAs to solve VLV-OPs, and their effectiveness is limited to
discrete search spaces.In the case of path-planning problems, discrete workspaces reduce
the accuracy of the found paths in the sense that optimizers cannot find the optimal
solution [25]. However, variations of well-known meta-heuristic optimizers such as DE
and PSO have been proposed to solve VLV-OPs in engineering with continuous search
spaces. Related to DE, the work in [49] proposes a DE variant to solve the satellite re-
configuration problem using a fixed-length vector alongside an expression vector that
determines the activation of a chromosome. A similar approach is found in [50], where
DE was used for clustering. In this DE variant, the chromosome is divided into activation
genes (threshold to decide which centroid is active) and genes that include the cluster
centroids. Since the vector size remains fixed for all solutions, classical DE operators are
used by their own nature. In the operational amplifier design, circuit components are
represented by blocks with a variable number of genes into a fixed-length vector, where
unusable genes are set to zero in [51]. To allow the use of classical DE operators, truncation
and expansion procedures are adopted to standardize chromosomes’ size. In PSO to solve
VLV-OPs, some applications with continuous search spaces have also been developed.
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In [52], the maintenance scheduling problem for a pressurized water reactor is solved by a
PSO variant. The particles represent variable groups of interventions on maintenance days.
The particle information is included in a fixed-length vector, where a variable equal to or
lower than zero denotes a state of non-activation. Then, the traditional PSO operators can
be applied without additional considerations. Relevant applications of PSO for VLV-OPs
are also related to the optimization of neural networks. In [53], PSO optimizes the layers
of convolutional neural networks. It uses a fixed-length vector with binary encoding
and a range of variable values to represent a disabled state of a layer. On the other
hand, the work published in [54] uses PSO to automatically select the number of hidden
neurons, the input weights and the hidden biases in a single hidden layer feedforward.
A stochastic strategy was proposed to update particle sizes and apply the original PSO
operators over actual variable-length solutions to achieve it. In the case of DE and PSO
to solve VLV-OPs in engineering with continuous search spaces, most of the alternatives
found in literature use a fixed-vector to represent individuals or particles and strategies
to distinguish the active variables (i.e., those variables that are considered in the problem
evaluation). For techniques with actual variable-length-vectors, the previously mentioned
strategies aim to stochastically standardize the size of the vectors to apply traditional
meta-heuristic operators. However, the above ways to handle VLV-OPs with continuous
search spaces may not provide relevant information for the search, i.e., they do not consider
the variable values of the current solution alternatives for the standardization.

1.3. Scope and Contributions of the Proposal

In this work, the path-planning for mobile robots is conceived as a VLV-OP where the
number of path points and their locations must be determined simultaneously to minimize
the overall path length. The VLV-OP is established considering the features of a four
mecanum wheeled omnidirectional mobile robot and can be easily scaled to other kinds of
mobile systems.

The VLV-OP aims to adjust a variable number of sequential path points in a continuous
workspace to minimize the total length between the start and target points. In order to
avoid collisions with obstacles, a hard equality constraint is imposed on the VLV-OP. In this
way, a path is assigned to a simple 2D shape to ensure the robot safety in the path tracking,
and obstacles are treated as polygons to support the collision detection. The above VLV-
OP is then solved by a novel variant of Differential Evolution for Variable-Length-Vector
optimization (VLV-DE). This optimizer uses an initial VLV population generated by the
weighted variant of the A* path-planning method [55] to speed up the finding of the first
set of feasible paths. The candidate solution vectors of different sizes are then adapted
through a normalization procedure to allow interactions with the ordinary DE operators,
i.e., scaling and recombination. This normalization can increase or decrease the vector
length by incorporating valuable solution information from the current vector variables.
The above helps to generate improved paths that better fit the problem.

For instance, the proposal’s effectiveness is shown through the solution of the path-
planning problem in three complex scenarios with different obstacle distributions and
shapes. The results are contrasted with those of the original A* method and the RRT*-Smart
technique.

The rest of the present work is organized as follows. Section 2 presents the general
VLV-OP and introduces the path-planning problem for mobile robots. Section 3 details the
operation of the proposed VLV-DE. The experiment details and results are described in
Section 4 to show the effectiveness of the proposal. Finally, Section 5 draws some conclusions.

2. The Path-Planning Problem
2.1. General Variable-Length-Vector Optimization Problem

The general Variable-Length-Vector Optimization Problem (VLV-OP) shown in (1),
is to find a VLV x of design variables (variables involved in a process or system) that
minimizes the value of the objective function J (an indicator of the process or system
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performance). Unlike classical global optimization problems, where only the value of the
design variables in x is searched, the VLV-OP additionally requires the number of design
variables to be found, i.e., the size of x, denoted by s(x), is unknown. Moreover, the search
space can be delimited by a set of ng inequality constraints gi(x) or nh equality constraints
hj(x) (both usually describe the process or system limitations regarding the cost, space,
resources, to name just a few) that describe the feasible search space Ω ∈ Rs(x). In addition,
the box constraints described by xmin

k and xmax
k , can be considered to limit the possible

values that each design variable xk can take, while the constraints over s(x) control the size
of the vector x.

minx∈Ω J(x)

subject to:

gi(x) ≤ 0, i = 1, . . . , ng

hj(x) = 0, j = 1, . . . , nh

xmin
k ≤ xk ≤ xmax

k , k = 1, . . . , s(x)

Lmin ≤ s(x) ≤ Lmax

(1)

2.2. The Path-Planning for Mobile Robots as a Variable-Length-Vector Optimization Problem

The path-planing problem for mobile robots is to find the shortest way (a set of
consecutive control points pl) from a start point ps to a target one pt within the workspace
W. The workspace W is considered as a finite subspace of R2. In this case, W is related to
the plane’s coordinates where the mobile robot is placed. Additionally, W includes a set of
obstacles or threats. Hence, the obtained path must somehow ensure collision avoidance
between the mobile robot and the obstacle geometries.

In this work, the four mecanum wheeled mobile robot (4MWMR) is used to illus-
trate the development of the path-planning problem. Nevertheless, it can be intuitively
extrapolated to other mobile configurations.

The 4MWMR is an omnidirectional mobile robot whose wheels are independently
controlled by DC motors. Each wheel includes a single hub circumference, which is
circumferentially coupled with a series of rollers oriented at 45◦ concerning it. A remarkable
feature of the 4MWMR is its capability to track nonlinear paths by keeping a constant
orientation [56].

The above path-planning problem is put in the form of the general variable-length-
vector optimization problem in (1), and its elements are detailed as follows:

2.2.1. The Variable-Length-Vector of Design Variables

The variable-length-vector x in (2) includes the information (2D Cartesian coordinates)
of the control points pl , l = 1, . . . , s(x) in the path, i.e., the ordered sequence of positional
configurations that the mobile robot must track to reach pt from ps.

x = [p1, . . . , ps(x)]
T (2)

2.2.2. The Objective Function

The objective function J in (3) measures the total path length, i.e., the sum of the
Euclidean distance (denoted by de) of each pair of consecutive points in the path (start
point ps, target point pt and control points pl , included) as observed in Figure 1.

J(x) = de(ps, p1) +
s(x)−1

∑
l=1

(de(pl , pl+1)) + de(pd, pt) (3)



Mathematics 2021, 9, 357 7 of 20

2.2.3. The Constraints

The studied path-planning problem does not consider any inequality constraint but
only one equality constraint. The latter is established to strictly avoid the collisions of the
mobile robot geometry with the obstacles in W.

In practice, objects of complex geometries are represented by simpler shapes (e.g.,
boxes, circles, polygons, etc.). The use of these shapes notably improves the computational
algorithms’ performance for collision detection [57]. For the above reason, 2D shapes were
assigned to all the elements in W, as shown in Figure 1. These shapes are described next:

• Obstacles: Polygons Pm, m = 1, . . . , no, defined by an arbitrary number of vertices
which describe all the no obstacles in the workspace W.

• Path points: Circles Cl , l = 1, . . . , s(x) are assigned to each control point in the path.
Each circle is centered in the control point and has a diameter of 2r that matches the
length of the longest diagonal of the 4MWMR in the plane. This shape is selected to
allow possible orientation changes of the 4MWMR.

• Path edges: In order to improve the collision detection procedure, rectangular geome-
tries Rl , l = 1, . . . , s(x) + 1 are attached to each edge in the path. An edge is the line
segment between a pair of consecutive points in the path. The width of each Rl is
equal to the edge length, its height is 2r and its orientation matches the inclination
α, l = 1, . . . , s(x) + 1 of the edge. The Rl is centered in the middle of the two points.

Figure 1. Example path computed for a workspace W with several obstacles.

Once the elements in W are assigned to a 2D shape, it is possible to determine if
the path geometry (this includes the Cl and Rl geometries) collides with the ones of the
obstacles (the polygons Pm). For this reason, the function (4) implements a polygon-polygon
and a polygon-circle collision detection based on the Separating Axis Theorem (SAT) [58,59].
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Based on (4), the single equality constraint for the path-planning problem is established
in (5), which indicates the times the elements on the path collide with the obstacles in W.

c(G1, G2) =

{
1, if G1 collides G2
0, otherwise

(4)

h(x) =
no

∑
m=1

s(x)

∑
l=1

c(Pm, Cl) +
no

∑
m=1

s(x)+1

∑
l=1

c(Pm, Rl) (5)

Additionally, all the control points pl must be inside W. The above conform to the box
constraints of the problem. It is important to remark that the VLV-OP for path-planning
has particular features distinguishing it from other specialized literature problems. In this
sense, all variables are of the same type (2D points), and their position within the VLV of
design variables is relevant. The above two features are taken into account while designing
the novel optimizer in the next section.

3. The Novel Variable-Length-Vector Differential Evolution

Differential Evolution (DE) is a well-known evolutionary algorithm that has been
successfully used to find outstanding solutions to global optimization problems [60].
Moreover, DE has proven to be particularly effective when these optimization problems
are related to engineering applications [61].

DE uses an evolutionary procedure over a population (a set of candidate solutions) to
explore (i.e., to find potentially good search regions) and exploit (i.e., to obtain outstanding
solutions within a search region) the search space towards the global solution [62]. The in-
dividuals in the population are initially random, and during a given number of generations,
they are recombined and mutated to generate an offspring population. By the end of each
generation, the original and offspring populations’ individuals compete to determine those
solutions that survive for the next generation. The best solution is found in the population
of the last generation. Several variants of DE have been proposed over time, and they differ
in the type of used evolutionary operators that improve its explorative and exploitative
capacity [63].

The proposed Variable-Length-Vector Differential Evolution (VLV-DE) introduces
a novel normalization procedure that allows the interaction of variable-length solutions
through the original DE evolutionary operators (mutation, crossover and selection designed
for searching in continuous spaces) to solve the VLV-OP associated with the path-planning
task for mobile robots.

The above normalization aims to incorporate as much relevant information as pos-
sible of a given solution (candidate path) to increase or decrease its number of variables
(path nodes).

Unlike the optimizers for continuous VLV-OPs found in the specialized literature,
the proposed VLV-DE handles actual variable-length solutions. The above implies the
representation of solutions through the use of actual variable-length-vectors.

The operation of the proposed VLV-DE is described in Algorithm 1 and is based on the
DE/best/1/bin variant [63]. Nevertheless, it can be easily extended to other DE variants.

The elements of VLV-DE are detailed as follows:
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Algorithm 1: Variable-Length-Vector Differential Evolution (VLV-DE)

Input: Scaling factor (F), Crossover rate (CR)
Output: Best solution (xb).

1 Generate new population X randomly in the search space
2 Evaluate individuals in X
3 G ← 1
4 while G ≤ Gmax do
5 Get best individual xb from X
6 foreach xi ∈ X do
7 Get two random individuals xr1 and xr2 from X such that i 6= r1 6= r2 6= b
8 Select Ns randomly from {s(xi), s(xr1 ), s(xr2 ), s(xb)}
9 Variate Ns

10 xn
k ←Normalize(xk, Ns), k = i, r1, r2, b

11 Generate a mutant individual vi using (6)
12 Generate an offspring individual ui using (7).
13 Evaluate ui

14 Select individuals that conform X for G + 1
15 foreach xi ∈ X do
16 xi ←LocalSearch(xi)

17 G ← G + 1

18 Get best individual xb from X

3.1. Initialization

In the first step, as in any DE variant, NP individuals in the population X are randomly
generated within the search space (the box constraints given by xmin

k and xmax
k in (1) delimit

this space).
Due to the complexity of the path-planning problem, it is improbable to generate a

feasible solution during the random initialization. Depending on the workspace conditions
and the problem complexity (i.e., the number, location and size of obstacles), it could take
several generations to find a feasible solution through the evolutionary process, and even
it may never be found.

To address the above difficulty, the weighted A* search algorithm [55] is used to
generate a feasible initial population in VLV-DE with different variable-length paths.
The weighted variant of A* establishes a trade-off between search performance and com-
putational cost through the weighting factor w [64]. With the larger w, the performance in-
creases, as does the cost, while the opposite happens when w is decremented. The adopted
A* uses a grid discretization of the workspace with a cell width and height equal to 2r
(to fit the mobile robot dimension), the Manhattan heuristic model [65], the cost function
f (n) = 1 + h(n) + w(g(n)− 1) and a uniformly distributed weight w in [0, 1] to generate
different sub-optimal paths.

Once X is generated, the fitness of each individual is determined by calculating the
values J, gi and hj in (1).

3.2. Evolutionary Cycle

During a maximum of Gmax generations, the individuals in X interact to generate
mutants. Then, these mutants are recombined with the original individuals in X to obtain
offsprings. Finally, the offsprings compete with the individuals in X based on their fitness,
and the fittest alternatives persist in X for the next generation.

3.3. Normalization

DE/best/1/bin requires three different individuals xr1 , xr2 and xb, to generate a single
mutant vi. The individuals xr1 and xr2 are randomly selected from the current population
X for each solution xi. On the other hand, xb is selected as the fittest solution in X at the
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start of the current generation. Moreover, DE/best/1/bin uses the mutant vi along with an
original individual xi to create an offspring ui.

Computation of both individuals vi and ui is performed through evolutionary opera-
tors that require the base solutions (i.e., xi, xr1 , xr2 and xb) to be the same size.

Nevertheless, VLV-DE conceives a population X with individuals of different sizes to
solve the VLV-OP in (1), and a normalization procedure needs to be performed to allow
interactions by applying the original evolutionary operators of DE/best/1/bin (mutation
and crossover).

The normalization procedure, described in Algorithm 2, temporarily adjusts the size
of an arbitrary solution to a given value Ns. The value of Ns is first randomly selected from
{s(xi), s(xr1), s(xr2), s(xb)} to favor the similarity of the generated mutant or offspring with
at least one of the involved solutions, i.e., to enhance the exploitation capability of VLV-
DE regarding the vector size. Next, the exploration is improved by applying a variation
operator to Ns. The Gaussian mutation [66] is adopted for this purpose.

If the size of a given solution is greater than Ns, its variables must be compressed
to obtain an individual of reduced size. On the contrary, if this size is smaller than Ns,
a decompression procedure is used to increase the original individual size.

Algorithm 2: Normalize(xk, Ns)

Input: xk (arbitrary solution), Ns (normalization size)
Output: xn

k (normalized solution)
1 if s(xk) 6= Ns then
2 if s(xk) < Ns then
3 xn

k ← Decompress(xk, Ns)

4 else
5 xn

k ← Compress(xk, Ns)

6 else
7 xn

k ← xk

3.4. Compression

This procedure is observed in Algorithm 3 and aims to iteratively reduce the size
of an arbitrary individual while losing as little path information as possible. For each
iteration, the compression procedure can reduce the size of the individual xk in two ways
based on probability:

• Selecting a pair of consecutive path points and replacing them with a new single one
that preserves information from both. The new variable is obtained as the pair’s mean
and can be altered through a variation operator (the polynomial mutation [67]) to
enhance the exploitative search.

• Removing the first or the last path point.

The compression stops once the individual size reaches Ns.

3.5. Decompression

Unlike compression, the procedure described in Algorithm 4 aims to iteratively include
new valuable variables in the individual to increase its size. As long as the individual size
is different from Ns, the decompression procedure can increase the size of the individual xk
in two ways based on probability:

• Selecting a pair of consecutive path points to generate a single one based on their
information, which is then inserted in the middle of both. This new variable is
calculated as the pair’s mean and can be modified by using a variation operator (the
polynomial mutation) to improve the exploratory search.

• Including altered versions of the first or the last path points (obtained through the
polynomial mutation), at the beginning or the end of the solution, respectively.
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Algorithm 3: Compress(xk, Ns)

Input: xk (arbitrary solution), Ns (normalization size)
Output: xc

k (compressed solution)
1 xc

k ← xk
2 while s(xc

k) 6= Ns do
3 j← randi(0, s(xc

k))

4 if j 6= 0 and j 6= s(xd
k ) then

5 Compute mean variable x̄k,j ←
xc

k,j+1−xc
k,j

2
6 Variate x̄k,j using Polynomial Mutation
7 xc

k,j ← x̄k,j

8 Remove xk,j+1 from xc
k

9 else
10 if j = 0 then
11 Remove xk,1 from xc

k

12 else
13 Remove xk,s(xc

k)
from xc

k

Algorithm 4: Decompress(xk, Ns)

Input: xk (arbitrary solution), Ns (normalization size)
Output: xd

k (decompressed solution)
1 xd

k ← xk
2 if s(xc

k) = 1 then
3 Insert random variable in xd

k
4 Shuffle xd

k

5 while s(xd
k ) 6= Ns do

6 j← randi(0, s(xd
k ))

7 if j 6= 0 and j 6= s(xd
k ) then

8 Compute mean variable x̄k,j ←
xd

k,j+1−xd
k,j

2

9 else
10 if j = 0 then
11 x̄k,j ← xd

k,1

12 else
13 x̄k,j ← xd

k,s(xd
k )

14 Variate x̄k,j using Polynomial Mutation
15 Insert x̄k,j in xd

k after xd
k,j

3.6. Evolutionary Operators

At this point, all the individuals required for mutation and crossover have acquired
the temporarily forms xn

i , xn
r1

, xn
r2

and xn
b , which have the same size. Then, the evolutionary

operators of the original variant DE/best/1/bin can be applied as usual to generate
interactions between individuals. These operators include the mutation in (6), with the
scaling factor F ∈ [0, 1], and the crossover in (7), with the crossover rate CR ∈ [0, 1].

vi = xn
b + F · (xn

r1
− xn

r2
) (6)

ui,j =

{
vi,j, if rand(0, 1) ≤ CR or j = jrand
xn

i,j, otherwise (7)
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3.7. Selection

At the end of each generation, every individual xi from X is compared to its corre-
sponding offspring ui regarding their fitness. Then, the fittest alternative persists in X
for the next generation. Any individual’s fitness considers two important aspects: The
compliance with restrictions and the value of the objective function. Due to the above,
the binary tournament selection operator in [68] is used to determine the fittest individual
by pondering first the feasibility and then the convergence.

When the last generation ends, the best individual is selected as the fittest one in X.
This solution can then be implanted in the motion planner for the mobile robot.

3.8. Local Search

An additional local search procedure, shown in Algorithm 5, is applied to all solutions
in X to improve their fitness at the end of each generation. This procedure generates a
new local solution by altering the size (using Gaussian mutation over the original size and
performing the normalization) and the variables (using the polynomial mutation) of the
original solution xi. The new solution is compared to the original one to determine the
local best alternative.

Algorithm 5: LocalSearch(xi)

Input: xi (arbitrary solution)
Output: xl

i (local best solution)
1 Ns ← s(xi)
2 Variate Ns using Gaussian mutation
3 xn

i ←Normalize(xi,Ns)
4 Variate xn

i using Polynomial Mutation
5 Evaluate xn

i
6 Select xl

i as the best between xi and xn
i

4. Results an Discussion
4.1. Details of the Experiment

Three test cases, (A), (B) and (C), based on the scenarios (Scenarios are available
to the public in the website of the Intelligent and Mobile Robotics Group in the Depart-
ment of Cybernetics of the Czech Technical University in Prague (http://imr.ciirc.cvut.cz/
planning/maps.xml).) in Figure 2, are selected to test the VLV-DE in the solution of the
path-planning problem for mobile robots. For all test scenarios in Figure 2, the lower-left
corner coincides with the origin of the Cartesian plane (i.e., the path-planning is performed
on the first quadrant), the mobile robot radius is set as r = 0.25 (m), and the minimum
and the maximum number of control points are established as Lmin = 2 and Lmax = 100,
respectively. The obstacles are represented with black objects, and the location of ps and pt
is indicated with a green and a red circle, respectively.

The information of these scenarios is compiled in Table 1. It includes the number of
obstacles, the size of the workspace, the start and target points’ location and the complexity
of the VLV-OP associated with each test case.

The complexity in Table 1 indicates the rate of feasible alternatives found in a set of
1E8 randomly generated solutions (each solution has a random size in [Lmin, Lmax] and
random variable values within the box bounds). As it can be noticed, no feasible solutions
were found, and the complexity is high.

The VLV-DE parameters are set as follows: the maximum number of generations is
Gmax = 5000, the population size NP = 50, the crossover rate is CR = 0.5, the scaling
factor is F = 0.5, the distribution index in the polynomial mutation is ηm = 10,000 and the
standard deviation in the Gaussian mutation is σ = 1.0.

The parameters Gmax and NP are established empirically. The rest of the parameters
are tuned using the “i-race” method [69] over ten uniformly distributed samples of the

http://imr.ciirc.cvut.cz/planning/maps.xml
http://imr.ciirc.cvut.cz/planning/maps.xml
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following parameter ranges: CR ∈ (0, 1], F ∈ (0, 1], ηm ∈ (0,10,000] and σ ∈ (0, 1]. The cost
function provided to “i-race” considers the sum of the J values of the three test cases.

The described experiments are developed in the Java programming language and exe-
cuted on a PC with a 2.90 GHz i5-10400F processor. The obtained results are discussed next.

(A) (B) (C)

Figure 2. Workspaces used in test cases (A), (B) and (C), respectively.

Table 1. Details of the workspaces used in test cases (A), (B) and (C), respectively.

Test Case Obstacles Size (m, m) ps (m, m) pt (m, m) Complexity

(A) 32 (100, 100) (5, 5) (87.5, 87.5) 0/1E8
(B) 2 (100, 100) (5, 5) (97.5, 97.5) 0/1E8
(C) 17 (100, 100) (5, 5) (97.5, 97.5) 0/1E8

4.2. Discussion of the Results

Due to the stochastic nature of VLV-DE, a set of 30 independent runs was performed
for each test case to determine the effectiveness of the proposal.

The results achieved by VLV-DE are compared to the best solutions found by the
weighted A* (i.e., when w = 1), and the paths computed by the sampling-based planning
method RRT*-Smart [70] (a rapid convergence implementation of RRT*), after a number of
N = 30,000 iterations.

The results of VLV-DE are shown in Table 2. This table’s information is grouped
into blocks that describe the mean, best and worst results regarding the values of J and
s(x). The best and worst groups include the value of the objective function J (which
represents the overall length of the path from ps to pt) and the number of control points
s(x) required to achieve it. Analogously, the mean groups include the mean values of
J and s(x), and besides, shows the standard deviation (STD) and the 95% confidence
interval (C.I.).

Concerning the number of control points, the STD of s(x) samples shows that the
paths achieved by VLV-DE do not differ significantly from the mean path (less than two
points). This indicator describes a high convergence level in the size of the found paths.

The STD of J samples is related to the number of obstacles and their arrangement in
each scenario (see Figure 2). In case (A), the number of possible feasible paths (related
to the multiple choices to overcome obstacles in a dense but reasonably well-distributed
arrangement) is visibly greater than in case (C) (related to the limited number of maze
solutions). In contrast, for case (B), only a single feasible path is observed (the one that
goes through the wavy corridor).
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Table 2. Differential Evolution for Variable-Length-Vector (VLV-DE) results for test cases (A), (B)
and (C).

Test Case (A) Test Case (B) Test Case (c)

Mean s(x) 9 13.2666 13.9666
STD 1.2317 1.2015 1.5196
C.I. [8.61788, 9.3821] [12.8939, 13.6394] [13.4952, 14.4380]

Mean J (m) 2627.0570 3453.4441 4095.0317
STD (m) 45.9620 11.4728 48.2714
C.I. (m) [2612.7988, 2641.3152] [3449.8850, 3457.0032] [4080.0571, 4110.0064]

Best s(x) 9 15 13
Best J (m) 2548.8696 3415.7757 3989.3064

Worst s(x) 11 13 17
Worst J (m) 2731.2721 3471.7303 4194.8301

The above indicates that scenarios such as (A) and (C), with a greater number of
feasible choices, require a deeper exploration of the search space. On the other hand,
an exploitative search is best used in scenarios similar to (B), with a limited number of
feasible choices. Since the original evolutionary operations of DE/best/1/bin are preserved
in VLV-DE, the trade-off of the above exploratory and exploitative capabilities can be
adjusted by varying CR and F.

About repeatability of results, the C.I. for both J and s(x), gives a range of values in
which a new solution is not statistically significant at the 5% level.

Table 3 shows the best results achieved by the A* method. This table includes the total
path length J and the number of control points s(x) between the start and target points.
Compared to the paths achieved by VLV-DE, the ones of A* require a noticeable greater
number of control points (with at least a ratio of 1:15) as observed in Tables 2 and 3. As
a result of the smaller number of control points in VLV-DE, the relevant aspects in the
computational and control effort required to perform post-planning tasks are reduced. Such
aspects include the path smoothing [39], the development of control problems [40] and also
the energy consumption [41]. As a result, VLV-DE shows outstanding behavior.

Table 3. A* results for test cases (A), (B) and (C).

Test Case s(x) J (m)

(A) 166 3314.1421
(B) 219 4374.1421
(C) 232 4634.1421

The aforementioned advantage is related to the capability of VLV-DE to deal with the
problem of multimodality induced by the number of control points. Figure 3a,b shows an
example of how this multimodality is manifested in path-planning. Figure 3a describes
a path with minimum length (i.e., with the minimum value of J) and with the minimum
number of control points, while Figure 3b shows an alternative path with the same length
but using an increased number of points.

On the opposite side, increasing the number of control points during the search
improves the exploration of alternative shorter paths. An example of the above can be
observed in Figure 4a,b. Figure 4a shows a path with minimum length using two control
points, while Figure 4b depicts an alternative path with fewer points but longer. In this
way, VLV-DE applies the variation operators to the normalization size of Ns, intending to
search for different solution lengths to fit the problem solution with balanced exploration
and exploitation.
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(a) (b)

Figure 3. Multimodality in the path-planning problem: (a) a path with minimum length and a
minimum number of control points and (b) the same path using more control points.

(a) (b)

Figure 4. Exploration in the path-planning problem: (a) a path with minimum length using two
control points and (b) a longer path using a single control point.

On the other hand, if the worst path lengths obtained by VLV-DE are compared to
the constant lengths of A*, larger paths are found by this last with significant differences
of around 583 (m), 902 (m) and 439 (m), for the test cases (A), (B) and (C), respectively.
Considering the current energetic limitations of autonomous mobile robots (concerning the
capacity of the onboard battery [71]), the benefits of the shortest paths found by VLV-DE
are highlighted.

Concerning RRT*-Smart, Table 4 includes the results obtained for each test case in
terms of the path length J and the number of control points s(x). Contrasting the results
with those of VLV-DE, the number of points in the paths of RRT*-Smart is about less by
one for the mean value in Table 2. Therefore, the path smoothness and the computational
and control effort required to perform post-planning tasks are similar.

Table 4. RRT*-Smart results for test cases (A), (B) and (C).

Test Case s(x) J (m)

(A) 8 3334.5370
(B) 12 3562.2011
(C) 15 4559.8692

If J is taken into account, there are appreciable differences regarding the path lengths
achieved by VLV-DE and RRT*-Smart. For cases (A) and (C), where there is a more dense
distribution of obstacles than in case (B), the performance of RRT*-Smart regarding J is
comparable to that of A*, and VLV-DE found noticeable shorter alternatives, even in the
worst run. When there is a more limited number of feasible path alternatives, as in case (B),
the paths of VLV-DE and RRT*-Smart have similar lengths.

The advantages of VLV-DE over RRT*-Smart regarding J are attributed to the former’s
exploitative capacity. In this way, VLV-DE can refine the paths found so far with a local
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search. Moreover, VLV-DE can also combine normalized paths with the original DE opera-
tors to enhance the current point positions of the candidate alternatives in the population.

The best solutions found by VLV-DE for the three study cases can be observed in
Figure 5, and correspond to the numerical values described in the best block in Table 2.
In the case of A*, the best deterministic paths are displayed in Figures 6 and 7, and match
the information in Tables 3 and 4, respectively.

(A) (B) (C)

Figure 5. Best paths achieved by VLV-DE for test cases (A), (B) and (C), respectively.

(A) (B) (C)

Figure 6. Paths achieved by A* when w = 1 for test cases (A), (B) and (C), respectively.

(A) (B) (C)

Figure 7. Paths achieved by RRT*-Smart for test cases (A), (B) and (C), respectively.
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DE-VLV refines and improves the initial set of candidate solutions given by A*,
through the evolutionary process. Still, it can also explore and exploit regions that A* does
not consider through compression and decompression procedures. The above results in
an enhanced path as observed in the test case (A) of Figures 5 and 6. In those figures,
substantial differences between the best path found by A* and the best one found by
VLV-DE are observed.

Graphically, the paths obtained by A* are less smooth than those of VLV-DE. This is
attributed to the difference in the number of control points. Moreover, the solutions of A*
are somewhat distant from the path that could be estimated as optimal, contrary to what
happens with the paths of VLV-DE, for which it is difficult to identify a better alternative.

Finally, it is important to comment that the computational complexity of VLV-DE is
at most the same of any original variant of DE [72], i.e., O(c(Lmax) · Gmax · NP) in a “big
O” notation, where c(Lmax) is the complexity of the objective function that depends on
the maximum dimension of the search space Lmax. The proposal’s computation time is
strongly related to c(Lmax) which also hangs on the number of obstacles and their shapes.
In scenario (A), which has a dense distribution of obstacles, the mean computation time of
the proposal is 278.95 (s). Since most of the consumed time is associated with the collision
detection task in the proposal, the overall execution time could be reduced using a more
efficient collision detection approach such as divide and conquer [73] and exploiting the
parallelizable features of DE [74].

5. Conclusions and Future Work

This work proposes a path-planning approach based on VLV optimization for mobile
robots. The VLV-OP aims to find the number of control points and their values in a
continuous search space to minimize an objective function related to the total path length
and meet a single equality constraint for collision avoidance. A novel variant of DE named
VLV-DE is proposed to solve the VLV-OP in the path-planning. This optimizer can deal
with actual variable-length candidate solutions that interact with each other to enhance
their fitness.

One of the main advantages of the proposed VLV-OP in the path-planning is the no
necessity of the a priori knowledge of the number of control points, such that human actors
do not affect the robot autonomy.

The proposal’s main feature is the capability of improving the exploration and exploita-
tion of the search space through the evolutionary process by including the normalization
procedure for the homogeneity of the solution sizes and incorporating the local search pro-
cedure. Therefore, the proposed VLV-DE can find suitable solutions to the multimodality
problem of the mobile robot path-planning.

Comparative results of the VLV-DE with the deterministic node-based technique A*
through three complex test cases indicate that the proposal finds shorter and smoother
paths with a notably smaller number of control points. The above leads to potential benefits
in terms of energy consumption and lower cost post-planning processing. Compared to
the sampling-based planning method RRT*-Smart, VLV-DE can find shorter paths with a
similar number of control points.

The improvement of the computational time required by this proposal is suggested
as the future work by using a divide and conquer approach with high-performance par-
allel computing. Moreover, other computational intelligence approaches such as neural
networks can speed up the convergence and provide it with adaptability to handle dy-
namic scenarios.
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