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Abstract: The purpose of the present paper is to study the presence of bifurcations of zero-Hopf
type at a generalized Genesio differential equation. More precisely, by transforming such differential
equation in a first-order differential system in the three-dimensional space R3, we are able to prove the
existence of a zero-Hopf bifurcation from which periodic trajectories appear close to the equilibrium
point located at the origin when the parameters a and c are zero and b is positive.
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1. Introduction and Statement of the Main Results

In [1], the authors analyzed the presence of zero-Hopf bifurcations for the ordinary
differential equation of order three

...
x + aẍ + bẋ + cx− x2 = 0, (1)

which is commonly known as the Genesio equation.
In this work, our aim is to study the existence of bifurcations of zero-Hopf type at the

so-called generalized Genesio differential equation

...
x + aẍ + bẋ + cx + h(x) = 0, (2)

where h(x) =
n
∑

k=1
(−1)kx2k, where n is any natural number, and a, b, c ∈ R. Note that the

map h(x) is defined in the maximum domain where the solutions of (2) are defined. Note
that for n = 1, we have the Genesio equation; for n = 2, we have the simplest chaotic jerk
equation and so on. We underline that the results stated in this paper can be mimetically
reproduced for a smooth and even h(x).

By defining of the variables y = ẋ and z = ẏ, the differential Equation (2) can be
written as the system of nonlinear differential equations

ẋ = y,
ẏ = z,

ż = −cx− by− az−
n
∑

k=1
(−1)kx2k,

(3)

Our endeavor is is to analyze the presence of zero-Hopf type equilibria and the
existence of zero-Hopf bifurcations in the system (3).
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Definition 1. An zero-Hopf type equilibrium for a three-dimensional autonomous differential
system of first-order is an isolated equilibrium point of such a system for which its linear part has
eigenvalues one equal to zero and two purely imaginary, see [2] for more details.

The main approach to prove the presence of a zero-Hopf bifurcation is to transform
the system object of our study into the normal form of a zero-Hopf bifurcation. However,
the treatment that we have chosen for the system (3) is via the use of the averaging theory
of dynamical systems. In Section 2, a summary of the main results which play a key role
in our study are stated. The averaging method has already been used to study-Hopf and
zero-Hopf bifurcations for other differential systems, see for instance [3–6]. Our main
results are as follows:

Proposition 1. The differential system (3) has a unique equilibrium of zero-Hopf type located at
the origin when a = c = 0 and b > 0.

Theorem 1. Let us consider for the system (3), the following distribution of parameters a = εα,
b = ω2 + εβ and c = εγ, being ω > 0 and ε a sufficiently small parameter. Then, (3) has a
zero-Hopf type bifurcation at the origin of coordinates in its equilibrium point for ε = 0. In the
case γ2 − α2ω4 > 0, (3) presents a unique periodic trajectory bifurcating from the origin. When
γ = αω2, (3) has at most 6 periodic orbits bifurcating from the origin.

2. Preliminaries
2.1. Results from Averaging Theory

Here, we present the main results on the second-order averaging theory of dynamical
systems that will play a key role in the proof of our main results Theorem 1. For more
information on this interesting theory and its application, see for instance [7] or [8] and
references therein. For a proof of Theorem 2 that we are going to state, see Theorem 3.5.1 of
Sanders and Verhulst [2], or [9] for a formulation in modern terminology.

Consider the differential system

ẋ = εF1(t, x) + ε2F2(t, x) + ε3Q(t, x, ε), x(0) = x0, (4)

where F1, F2 : R×Ω → Rn and Q : [0, ∞]×Ω× (0, ε0] → Rn where Ω is a subset of Rn

open and F1, F2 and Q are maps periodic of period T in the first variable. We set

F10(x) =
1
T

∫ T

0
F1(t, x)dt, (5)

F20(x) =
1
T

∫ T

0
[DxF1(t, x) · y1(t, x) + F2(t, x)]dt,

where

y1(t, x) =
∫ t

0
F1(s, x)ds,

Theorem 2. In the previous conditions, assume that

(i) F1, F2, ∂F1/∂x are locally Lipschitz in x and Q is twice differentiable with respect to ε.

(ii) Let V ⊂ Ω be a bounded and open set, for each ε ∈
(
−ε f , ε f

)
\{0}, there exists aε ∈ V such

that F10(aε) + εF20(aε) = 0 and
dB(F10 + εF20, V, aε) 6= 0.

Thus, for sufficiently small ε > 0 there exists a T-periodic solution ϕ(·, ε) holding ϕ(0, ε) = aε.

Remark 1. When we write dB(F10 + εF20, V, aε) 6= 0 means that the value of the Brouwer degree
of the function F10 : V → Rn at the fixed point aε is not zero. A sufficient condition for having the
previous property is that the Jacobian of the function F10 + εF20 at aε be non-zero. When F10 6= 0,
then the zeros of F10 + εF20 are equivalent to the zeros of F10 for sufficiently small ε. In this case, we
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can apply the so-called averaging theory of first-order dynamical systems. In the case F10 = 0 but
F20 6= 0, the zeros of F10 + εF20 are the ones of F20 for sufficiently small ε. In such cases, we must
apply second-order averaging theory.

3. Proof of Proposition 1 and Theorem 1

Proof of Proposition 1. We are going to see that the linear part of the characteristic poly-
nomial of system (3) at the equilibrium point xc = (c, 0, 0) is q(λ) = λ3 + aλ2 + bλ + c. We
shall find the values of the parameters for which q has an eigenvalue equal to zero and
a pair of purely imaginary roots, i.e., values for which q is of the form −λ

(
λ2 + b

)
with

b > 0.
To simplify, let b = ω2, with ω > 0. Thus, if we assume q(λ) = −λ

(
λ2 + ω2), we

obtain that a = c = 0 and b > 0. Therefore, when a = c = 0 and b > 0, there exists an
equilibrium point at the origin of unique coordinates of zero-Hopf type. Moreover, if we
consider b = ω2, for ω > 0, then the eigenvalues are equal to 0 and ±iω, ending the proof
of Proposition 1.

Proof of Theorem 1. We are going to use the ideas of the second-order averaging theory
of dynamical systems that we have briefly exposed in Section 2.1 (see Theorem 2) for
analyzing the existence of equilibrium points of zero-Hopf type at the origin. Recall
that such zero-Hopf type equilibrium points bifurcate some periodic orbit by moving the
parameters a, b, c of system (3). In this order of ideas, let us consider a = εα, b = ω2 + εβ,
c = εγ with ε > 0 being a sufficiently small parameter. Then, the system (3) becomes

ẋ = y,
ẏ = z,

ż = −εγx−
(
ω2 + εβ

)
y− εαz−

n
∑

k=1
(−1)kx2k,

(6)

The first step in order to write our differential system (6) in the normal form for
applying the averaging theory is to write the linear part at the origin of system (6) when
ε = 0 as its real Jordan normal form, which is of the form 0 −ω 0

ω 0 0
0 0 0

.

Applying this linear change of variables (x, y, z)→ (X, Y, Z) where

x =
Z−ωX

ω2 , y = Y, z = ωX. (7)

In the new variables (X, Y, Z), system (6) becomes
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Ẋ =
(

γ ω11X− α ω13X− γ ω10Z−Yω12β
)

ε/ω13

+
(

ω6X6 − 6 ω5X5Z−Yω14 − 20 ω3X3Z3

+15 ω2X2Z4 + ω10X2 − 2 ω9XZ + ω8Z2

−ω8X4 + 4 ω7X3Z− 6 ω6X2Z2

+4 ω5XZ3 −ω4Z4 − 6 ω XZ5 + 15 ω4X4Z2

+Z6 −
n

∑
k=4

(−1)k
(

Z−ω X
ω2

)2 k
ω12

)
/ω13,

Ẏ = ωX, (8)

Ż =
(

γ ω11X− α ω13X− γ ω10Z−Yω12β
)

ε/ω12

−
(

6 ω5X5Z + 15 ω4X4Z2 − 20 ω3X3Z3

+15 ω2X2Z4 + ω10X2 − 2 ω9XZ + ω8Z2

−ω8X4 + 4 ω7X3Z− 6 ω6X2Z2

+4 ω5XZ3 −ω4Z4 + ω6X6 − 6 ω XZ5

+Z6 −
n

∑
k=4

(−1)k
(

Z−ω X
ω2

)2 k
ω12

)
/ω12.

Doing a re-scale of the variables (X, Y, Z) in the form (X, Y, Z) → (εu, εv, εw), then
system (8) is expressed as follows

u̇ = −ωv +
(

γ ω11u− α ω13u + ω10u2 − γ ω10w− vω12β− 2 ω9uw + ω8w2
)

ε/ω13

+
(
−ω8u4 −ω4w4 + 4 ω7u3w− 6 ω6u2w2 + 4 ω5uw3

)
ε3/ω13

+(ω6u6 − 6 ω5u5w + 15 ω2u2w4 − 6 ω uw5 + 15 ω4u4w2

−20 ω3u3w3 + w6)ε5/ω13− 1
ω

n

∑
k=4

(−1)k
(
(w−ω u)

ω2

)2 k
ε2k−1,

v̇ = ωu,

ẇ =
(

γ ω11u− α ω13u− γ ω10w− vω12β + ω10u2 − 2 ω9uw + ω8w2
)

ε/ω12

+
(
−ω8u4 −ω4w4 + 4 ω7u3w− 6 ω6u2w2 + 4 ω5uw3

)
ε3/ω12

+(ω6u6 − 6 ω5u5w + 15 ω2u2w4 − 6 ω uw5 + 15 ω4u4w2

−20 ω3u3w3 + w6)ε5/ω12 −
n

∑
k=4

(−1)k
(
(w−ω u)

ω2

)2 k
ε2k−1.

The previous system can be written as follows
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u̇ = −ωv + (γ ω11u− α ω13u + ω10u2 − γ ω10w

−vω12β− 2 ω9uw + ω8w2)ε/ω13 + (−ω8u4

−ω4w4 + 4 ω7u3w− 6 ω6u2w2 + 4 ω5uw3)ε3/ω13

+(ω6u6 − 6 ω5u5w + 15 ω2u2w4 − 6 ω uw5

+15 ω4u4w2 − 20 ω3u3w3 + w6)ε5/ω13 + O
(

ε7
)

,

v̇ = ωu, (9)

ẇ = (γ ω11u− α ω13u− γ ω10w− vω12β + ω10u2

−2 ω9uw + ω8w2)ε/ω12 + (−ω8u4 −ω4w4

+4 ω7u3w− 6 ω6u2w2 + 4 ω5uw3)ε3/ω12

+(ω6u6 − 6 ω5u5w + 15 ω2u2w4 − 6 ω uw5

+15 ω4u4w2 − 20 ω3u3w3 + w6)ε5/ω12 + O
(

ε7
)

.

Now, we express the differential system (9) in cylindrical coordinates (r, θ, w) defined
by u = r cos θ and v = r sin θ, and we obtain

ṙ = cos(θ)(γ ω11r cos(θ)− α ω13r cos(θ) + ω10r2(cos(θ))2

−γ ω10w− r sin(θ)ω12β− 2 ω9r cos(θ)w + ω8w2)ε/ω13

+ cos(θ)(−ω8r4(cos(θ))4 −ω4w4 + 4 ω7r3(cos(θ))3w

−6 ω6r2(cos(θ))2w2 + 4 ω5r cos(θ)w3)ε3/ω13

+ cos(θ)(ω6r6(cos(θ))6 − 6 ω5r5(cos(θ))5w

+15 ω2r2(cos(θ))2w4 − 6 ω r cos(θ)w5

+15 ω4r4(cos(θ))4w2 − 20 ω3r3(cos(θ))3w3

+w6)ε5/ω13 + O
(

ε7
)

,

θ̇ = ω− (− sin(θ)ω13α r cos(θ) + sin(θ)ω10r2(cos(θ))2

− sin(θ)γ ω10w + sin(θ)ω8w2 + ω12rβ (cos(θ))2

−ω12rβ− 2 sin(θ)ω9r cos(θ)w + sin(θ)ω11γ r cos(θ))ε/rω13

−(4 sin(θ)ω7r3(cos(θ))3w− 6 sin(θ)ω6r2(cos(θ))2w2 (10)

+4 sin(θ)ω5r cos(θ)w3 − sin(θ)ω4w4

− sin(θ)ω8r4(cos(θ))4)ε3/rω13

−(sin(θ)ω6r6(cos(θ))6 − 6 sin(θ)ω5r5(cos(θ))5w

+15 sin(θ)ω2r2(cos(θ))2w4

+15 sin(θ)ω4r4(cos(θ))4w2 − 20 sin(θ)ω3r3(cos(θ))3w3

+ sin(θ)w6 − 6 sin(θ)ω r cos(θ)w5)ε5/rω13 ++O
(

ε7
)

,

ẇ = (γ ω11r cos(θ)− α ω13r cos(θ) + ω10r2(cos(θ))2 − γ ω10w

−r sin(θ)ω12β− 2 ω9r cos(θ)w + ω8w2)ε/ω12

+(−ω8r4(cos(θ))4 −ω4w4 + 4 ω7r3(cos(θ))3w

−6 ω6r2(cos(θ))2w2 + 4 ω5r cos(θ)w3)ε3/ω12

+(ω6r6(cos(θ))6 − 6 ω5r5(cos(θ))5w + 15 ω2r2(cos(θ))2w4

−6 ω r cos(θ)w5 + 15 ω4r4(cos(θ))4w2

−20 ω3r3(cos(θ))3w3 + w6)ε5/ω12 + O
(

ε7
)

.
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In (10) we consider a new independent variable, and we obtain

dr
dθ

= εF11(θ, r, w) + εF21(θ, r, w) + O
(

ε2
)

, (11)

dw
dθ

= εF12(θ, r, w) + εF22(θ, r, w) + O
(

ε2
)

,

where

F11(θ, r, w) = cos(θ)(γ ω3r cos(θ)− α ω5r cos(θ) + ω2r2(cos(θ))2

−γ ω2w− r sin(θ)ω4β− 2 ω r cos(θ)w + w2)/ω6,

F12(θ, r, w) = γ ω3r cos(θ)− α ω5r cos(θ) + ω2r2(cos(θ))2

−γ ω2w− r sin(θ)ω4β− 2 ω r cos(θ)w + w2)/ω5,

and

F21(θ, r, w) = sin(θ) cos(θ)((cos(θ))4ω4r4 − 2 cos(θ)ω5γ2rw

+(cos(θ))2ω6γ2r2 + 2 sin(θ)ω9r2β cos(θ)α

+6 cos(θ)ω3γ rw2 − 2 (cos(θ))2ω8γ r2α

−6 (cos(θ))2ω4r2γ w + 4 (cos(θ))2ω6α r2w

−2 cos(θ)ω5α rw2 − 2 (cos(θ))3ω7α r3

−4 (cos(θ))3ω3r3w + w4 + ω8r2β2

−4 cos(θ)ω rw3 + ω4γ2w2 + 2 cos(θ)ω7α rγ w

−2 sin(θ)ω4w2rβ− 2 sin(θ)ω6r3β (cos(θ))2

+2 (cos(θ))3ω5γ r3 + (cos(θ))2ω10α2r2

−(cos(θ))2ω8r2β2 + 6 (cos(θ))2ω2r2w2

−2 ω2w3γ− 2 sin(θ)ω7r2β cos(θ)γ

+4 sin(θ)ω5r2β cos(θ)w + 2 sin(θ)ω6γ wrβ)/ω12r

F22(θ, r, w) = sin(θ) cos(θ)((cos(θ))4ω4r4 − 2 cos(θ)ω5γ2rw

+(cos(θ))2ω6γ2r2 + 2 sin(θ)ω9r2β cos(θ)α

+6 cos(θ)ω3γ rw2 − 2 (cos(θ))2ω8γ r2α

−6 (cos(θ))2ω4r2γ w + 4 (cos(θ))2ω6α r2w

−2 cos(θ)ω5α rw2 − 2 (cos(θ))3ω7α r3

−4 (cos(θ))3ω3r3w + w4 + ω8r2β2

−4 cos(θ)ω rw3 + ω4γ2w2 + 2 cos(θ)ω7α rγ w

−2 sin(θ)ω4w2rβ− 2 sin(θ)ω6r3β (cos(θ))2

+2 (cos(θ))3ω5γ r3 + (cos(θ))2ω10α2r2

−(cos(θ))2ω8r2β2 + 6 (cos(θ))2ω2r2w2

−2 ω2w3γ− 2 sin(θ)ω7r2β cos(θ)γ

+4 sin(θ)ω5r2β cos(θ)w + 2 sin(θ)ω6γ wrβ)/ω12r

With the notation introduced in Section 2.1, t = θ, T = 2π, x = (r, w)T and

F1(θ, r, w) =

(
F11(θ, r, w)
F12(θ, r, w)

)
and F2(θ, r, w) =

(
F21(θ, r, w)
F22(θ, r, w)

)
.

F10(r, w) =

(
F101(r, w)
F102(r, w)

)
and F20(r, w) =

(
F201(r, w)
F201(r, w)

)
.
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It can easily be checked that (11) satisfies all the assumptions of Theorem 2.
Computing the integrals (5), we have that

F101(r, w) =
1

2π

∫ 2π

0
F11(θ, r, w)dθ =

r
(
−2 w + γ ω2 − α ω4)

2ω5 ,

F102(r, w) =
1

2π

∫ 2π

0
F12(θ, r, w)dθ = −2 γ ω2w−ω2r2 − 2 w2

2ω5 .

Note that F101(r, w) = F102(r, w) = 0 has only one solution (r, w) with r∗ > 0,
more precisely

r∗ =

√
−2 ω4α2 + 2 γ2ω

2
, w∗ =

ω2(γ− α ω2)
2

The Jacobian evaluated at (r, w) has the form

det
∂(F101, F101)

(r, w)

∣∣∣∣
(r,w)=(r∗ ,w∗)

=
γ2 − α2ω4

2ω6

which is nonzero by hypothesis.
From it, if γ2 − α2ω4 > 0 the system (6) has a unique periodic orbit bifurcating from

the origin.
Note that when γ = αω2, the first-order averaging theory cannot be used. In order to

apply the second-order averaging theory, we compute(
∂F11
∂r

∂F11
∂w

∂F12
∂r

∂F12
∂w

)( ∫ θ
0 F11(s, r, w)ds∫ θ
0 F12(s, r, w)dθ

)
+

(
F21(θ, r, w)
F22(θ, r, w)

)
.

Computing the integral of this expression at the interval [0, 2π] and dividing by 2π,
we have

F201(r, w) = −r
(

r2π − 2 β rω2 − 3 wβ ω− 2 ω2α wπ + α ω5β
)

/ω8.

F202(r, w) = −(7 β r2ω5 + 6 ω3β w2 − 4 ω8α β r + 12 wβ rω4

−8 w3π − 6 ω7β α w− 4 ω8α2wπ + 2 ω6α r2π

+12 ω4α w2π)/4ω10.

Let us now consider the system{
F201(r, w) = 0,
F202(r, w) = 0.

(12)

If we solve the first equation with respect to w, we obtain

w =
r2π − 2 β rω2 + ω5α β

ω (2 α π ω + 3 β)
.

Substituting into the second equation gives
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(
2π4

ω13(2 α π ω + 3 β)3

)
r6 −

(
12π3β

ω11(2 α π ω + 3 β)3

)
r5

+

(
−3

α π3

ω8(2 α π ω + 3 β)2 − 3/2
β π2

ω9(2 α π ω + 3 β)2

+
6α π3β

ω8(2 α π ω + 3 β)3 +
24π2β2

ω9(2 α π ω + 3 β)3

)
r4

+

(
12α π2β

ω6(2 α π ω + 3 β)2 −
3β π

ω7(2 α π ω + 3 β)

− 16π β3

ω7(2 α π ω + 3 β)3 +
6β2π

ω7(2 α π ω + 3 β)2

+ − 24α π2β2

ω6(2 α π ω + 3 β)3

)
r3 +

(
− α π

2ω4

+
α2π2

ω3(2 α π ω + 3 β)
− 15β2α π

ω4(2 α π ω + 3 β)2

− 7β

4ω5 +
3β α π

2ω4(2 α π ω + 3 β)
+

24α π β3

ω4(2 α π ω + 3 β)3

+
6α2π2β2

ω3(2 α π ω + 3 β)3 +
6β2

ω5(2 α π ω + 3 β)

− 6α2π2β

ω3(2 α π ω + 3 β)2 − 6
β3

ω5(2 α π ω + 3 β)2

)
r2

+

(
β α

ω2 −
12π α2β3

ω (2 α π ω + 3 β)3 −
2π α2β

ω (2 α π ω + 3 β)

+
12π α2β2

ω (2 α π ω + 3 β)2 −
6β2α

ω2(2 α π ω + 3 β)

+
6β3α

ω2(2 α π ω + 3 β)2

)
r +

3ω β2α2

4 α π ω + 3 β

− 3ω β3α2

2(2 α π ω + 3 β)2 +
ω2α3π β

2 α π ω + 3 β

− 3ω2α3π β2

(2 α π ω + 3 β)2 +
2ω2α3π β3

(2 α π ω + 3 β)3

= 0.

The maximum number of positive solutions to this equation is 6.
Let r̄ be one of these zeros, and (r̄, w̄) be a solution of system (12). To apply Theorem 2, the
condition below is needed

det
∂(F201, F202)

(r, w)

∣∣∣∣
(r,w)=(r̄,w̄)

6= 0. (13)

Thus, the solutions (r̄, w̄) of the system (12) holding (13) satisfy (i) and (ii) of
Theorem 2. Thus, by the second-order averaging theory (11) has at most 6 periodic orbits.
From it, we state that system (6) has at most 6 periodic orbits bifurcating from the origin
ending the proof.
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4. Numerical Verification of the Analytic Results Obtained

We consider the generalizad Genesio differential equation

...
x + a

..
x + b

.
.
x + c x +

n

∑
k=1

(−1)kx2k = 0

with parameters a = εα, b = ω + εβ, c = εγ. The numerical experiments have been made
for the following parameters

α = 1, ω = 1, β = −0.5, γ = 1, n = 5

and inital conditions x(0),
.
x(0) = y(0),

..
x(0) = z(0).

In the following pictures and tables (see Tables 1–3 and Figures 1 and 2), we obtain
the initial conditions and the period of four periodic solutions for different values of ε with
six decimal number.

Table 1. Initial conditions and periods for ε = 0.0001, 0.01, 0.1 and 0.5.

ε x(0) y(0) z(0) T

Orbit 1 0.0001 0.000035 −0.000029 −0.000024 6.281763
Orbit 2 0.01 0.000080 −0.00061 −0.00006 6.298837
Orbit 3 0.1 0.014919 −0.017764 −0.0116793 6.446567
Orbit 4 0.5 0.32917 −0.0186038 −0.184294 7.293240

On the other hand, we observe period doubling increasing the value of the parameter ε.

Table 2. Initial conditions and periods for ε = 0.735, 0.745, 0.758 and 0.7605.

ε x(0) y(0) z(0) T

Orbit 5 0.735 −0.381394 −0.0267376 0.402723 8.102655
Orbit 6 0.745 0.882003 −0.0312616 −0.305098 16.32508
Orbit 7 0.758 0.929685 −0.0278435 −0.268235 33.10797
Orbit 8 0.7605 0.938029 −0.0243008 −0.260449 66.43312

The existence of a period doubling cascade numerically evidences the existence of
chaos, as can be seen in the pictures of Orbits 5 to 8. We can estimate, by means of the
Feigenbaum constant F ≈ 4.669..., the value of the epsilon parameter ε∗ for which such a
phenomenon can occur. The following numerical calculations are carried out in order to
obtain such estimation.

Table 3. Estimation of the ε parameter.

Bifurcation n εn εn − εn−1 Fn

T → 2T 1 0.745 – –
2T → 4T 2 0.758 0.013 –
4T → 8T 3 0.7605 0.0025 5.2 = F + 0.6

ε∗ ≈ ε1 + (ε2 − ε1)
F

F− 1
= 0.7615.
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(a) Orbit 1 (b) Orbit 2

(c) Orbit 3 (d) Orbit 4
Figure 1. Pictures of Orbits 1 to 4.

(a) Orbit 5 (b) Orbit 6

Figure 2. Cont.
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(c) Orbit 7 (d) Orbit 8
Figure 2. Pictures of Orbits 5 to 8.

5. Conclusions

The application of the averaging theory to study the existence of zero-Hopf bifur-
cations for a generalized Genesio differential equation gave important results about the
periodic structure of these equations. Our future work will be to apply this theory to study
zero-Hopf bifurcations for autonomous or nonautonomous differential equations of order
n, with n ≥ 4.
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