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Abstract: In this work, we present new oscillation conditions for the oscillation of the higher-order
differential equations with the middle term. We obtain some oscillation criteria by a comparison
method with first-order equations. The obtained results extend and simplify known conditions in
the literature. Furthermore, examining the validity of the proposed criteria is demonstrated via
particular examples.
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1. Introduction

Neutral equations contribute to many applications in physics, engineering, biology,
non-Newtonian fluid theory, and the turbulent flow of a polytrophic gas in a porous
medium. Also, oscillation of neutral equations contribute to many applications of problems
dealing with vibrating masses attached to an elastic bar, see [1].

In this paper, we investigate the oscillatory properties of solutions of the higher-order
neutral differential equation(

α1(x)
(

v(`−1)(x)
)(p−1)

)′
+ α2(x)

(
v(`−1)(x)

)(p−1)
+ ζ(x)δ(p−1)(β2(x)) = 0, x ≥ x0, (1)

where
v(x) := δ(x) + c(x)δ(β1(x)). (2)

The main results are obtained under the following conditions:
α1 ∈ C1([x0, ∞)), α1(x) > 0, α′1(x) ≥ 0, 1 < p < ∞,

c, α2, ζ ∈ C([x0, ∞)), α2(x) > 0, ζ(x) > 0, 0 ≤ c(x) < c0 < 1,

β1 ∈ C1([x0, ∞)), β2 ∈ C([x0, ∞)), β′1(x) > 0, β1(x) ≤ x, limx→∞ β1(x) = limx→∞ β2(x) = ∞,

` ≥ 4 is an even natural number, ζ is not identically zero for large x.

Moreover, we establish the oscillatory behavior of (1) under the conditions

β2(x) < β1(x), β′2(x) ≥ 0 and
(

β−1
1 (x)

)′
> 0 (3)

and ∫ ∞

x0

(
1

α1(s)
exp

(
−
∫ s

x0

α2(v)

α1(v)
dv

))1/(p−1)
ds = ∞. (4)
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Over the past few years, there has been much research activity concerning the oscil-
lation and asymptotic behavior of various classes of differential equations; see [2–11]. In
particular, the study of the oscillation of neutral delay differential equations is of great
interest in the last three decades; see [12–23].

Bazighifan et al. [2] examined the oscillation of higher-order delay differential equa-
tions with damping of the form
(

α1(x)Φp[v(`−1)(x)]
)′

+ α2(x)Φp[ f
(

v(`−1)(x)
)
] + ∑

j
i=1 ζi(x)Φp[g(v(βi(x)))] = 0,

Φp[s] = |s|p−2s, j ≥ 1, x ≥ x0 > 0.

This time, the authors used the Riccati technique.
Zhang et al. in [3] considered a higher-order differential equationL′v + α2(x)

∣∣∣v(`−1)(x)
∣∣∣p−2

v(`−1)(x) + ζ(x)|δ(β2(x))|p−2δ(β2(x)) = 0,

1 < p < ∞, x ≥ x0 > 0, v(x) = δ(x) + c(x)δ(β1(x)),

where
Lv =

∣∣∣v(`−1)(x)
∣∣∣p−2

v(`−1)(x).

Bazighifan and Ramos [4] considered the oscillation of the even-order nonlinear
differential equation with middle term of the form

(
α1(x)

(
v(`−1)(x)

)p−1
)′

+ α2(x)
(

v(`−1)(x)
)p−1

+ ζ(x)v(β(x)) = 0,

x ≥ x0 > 0,

where 1 < p < ∞.
Liu et al. [5] investigated the higher-order differential equations

(
α1(x)Φ

(
v(`−1)(x)

))′
+ α2(x)Φ

(
v(`−1)(x)

)
+ ζ(x)Φ(v(β(x))) = 0,

Φ = |s|p−2s, x ≥ x0 > 0, ` is even,

where n is even and used integral averaging technique.
The authors in [6,7] discussed oscillation criteria for the equations

(
α1(x)

∣∣∣v(`−1)(x)
∣∣∣p−2

v(`−1)(x)
)′

+ ∑
j
i=1 ζi(x)g(v(βi(x))) = 0,

j ≥ 1, x ≥ x0 > 0,

where ` is even and p > 1 is a real number, the authors used comparison method with first
and second-order equations.

Li et al. [8] studied the oscillation of fourth-order neutral differential equations
(

α1(x)|v′′′(x)|p−2
v′′′(x)

)′
+ ζ(x)|δ(β2(x))|p−2δ(β2(x)) = 0,

1 < p < ∞, x ≥ x0 > 0,

where v(x) = δ(x) + c(x)δ(β1(x)).
In [9,10], the authors considered the equation

v(`)(x) + ζ(x)δ(β2(x)) = 0 (5)
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by using the Riccati method, they proved that this equation is oscillatory if

lim inf
x→∞

∫ x

β2(x)
z(s)ds >

(`− 1)2(`−1)(`−2)

e
(6)

and

lim inf
x→∞

∫ x

β2(x)
z(s)ds >

(`− 1)!
e

, respectively, (7)

where z(x) := β`−1
2 (x)(1− α2(β2(x)))ζ(x).

We can easily apply conditions (6) and (7) to the equation(
δ(x) +

1
2

δ

(
1
2

x
))(4)

+
ζ0

x4 δ

(
9

10
x
)
= 0, x ≥ 1, (8)

then we get that (8) is oscillatory if

The condition (6) (7)
The criterion ζ0 > 1839.2 ζ0 > 59.5

Hence, [10] improved the results in [9].
Thus, the main purpose of this article is to extend the results in [9,10,23]. An example

is considered to illustrate the main results.
We mention some important lemmas:

Lemma 1 ([11]). Let δ ∈ C`([x0, ∞), (0, ∞)), δ(`−1)(x)δ(`)(x) ≤ 0 and limx→∞ δ(x) 6= 0, then

δ(x) ≥ µ

(`− 1)!
x`−1

∣∣∣δ(`−1)(x)
∣∣∣ for x ≥ xµ, µ ∈ (0, 1).

Lemma 2 ([16]). If δ(i)(x) > 0, i = 0, 1, ..., `, and δ(`+1)(x) < 0, then

δ(x)
x`/`!

≥ δ′(x)
x`−1/(`− 1)!

.

Lemma 3 ([13]). Let (30) hold and

δ be an eventually positive solution of (1). (9)

Then, we have these cases:

(I1) : v(x) > 0, v′(x) > 0, v′′(x) > 0, v(`−1)(x) > 0 and v(`)(x) < 0,
(I2) : v(x) > 0, v(j)(x) > 0, v(j+1)(x) < 0 for all odd integer

j ∈ {1, 2, ..., `− 3}, v(`−1)(x) > 0 and v(`)(x) < 0,

for x ≥ x1, where x1 ≥ x0 is sufficiently large.

2. Oscillation Criteria

Theorem 1. If the differential equation

φ′(x) + (1− c(β2(x)))(p−1)ζ(x)
yx0 (x)

yx0 (β2(x))

(
µβ`−1

2 (x)

(`− 1)!α1/(p−1)
1 (β2(x))

)(p−1)

φ(β2(x)) = 0 (10)
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is oscillatory for some constant µ ∈ (0, 1), where

yx0(x) := exp
(∫ x

x0

α2(t)
t1(t)

dt
)

,

then (1) is oscillatory.

Proof. Let (9) hold. Then, we see that δ(x), δ(β1(x)) and δ(β2(x)) are positive for all
x ≥ x1 sufficiently large. It is not difficult to see that

1
yx0 (x)

d
dx

(
yx0 (x)α1(x)

(
v(`−1)(x)

)(p−1)
)

= 1
yx0 (x)

(
yx0 (x)

(
α1(x)

(
v(`−1)(x)

)(p−1)
)′

+ y′x0
(x)α1(x)

(
v(`−1)(x)

)(p−1)
)

=

(
α1(x)

(
v(`−1)(x)

)(p−1)
)′

+
y′x0

(x)
yx0 (x) α1(x)

(
v(`−1)(x)

)(p−1)

=

(
α1(x)

(
v(`−1)(x)

)(p−1)
)′

+ α2(x)
(

v(`−1)(x)
)(p−1)

.

(11)

Taking into account (2) and v′(x) > 0, we get that δ(x) ≥ (1− c(x))v(x).
Thus, from (1) and (11), we have that(

yx0 (x)α1(x)
(

v(`−1)(x)
)(p−1)

)′
+ yx0 (x)ζ(x)(1− c(β2(x)))(p−1)v(p−1)(β2(x)) ≤ 0, (12)

for c0 < 1.
Using Lemma 1, we get that

v(x) ≥ µ

(`− 1)!
x`−1v(`−1)(x), (13)

for some µ ∈ (0, 1). From (1), (12) and (13), we see that

(
yx0 (x)α1(x)

(
v(`−1)(x)

)(p−1)
)′

+ yx0 (x)ζ(x)(1− c(β2(x)))(p−1)

(
µβ`−1

2 (x)
(`− 1)!

)(p−1)(
v(`−1)(β2(x))

)(p−1)
≤ 0.

Then, if we set φ(x) = yx0 (x)α1(x)
(

v(`−1)(x)
)(p−1)

, then we have that φ > 0 is a solution of the
delay inequality

φ′(x) + (1− c(β2(x)))(p−1)ζ(x)
yx0 (x)

yx0 (β2(x))

(
µβ`−1

2 (x)

(`− 1)!α1/(p−1)
1 (β2(x))

)(p−1)

φ(β2(x)) ≤ 0.

It is clear that the equation (10) has a positive solution (see [17], Theorem 1), this is a
contradiction. The proof is complete.

Theorem 2. Assume that (3) and (30) hold. If the differential equations

z′(x) + ζ(x)
yx0 (x)

yx0

(
β−1

1 (β2(x))
)
 µ

(
β−1

1 (β2(x))
)`−1

c`(β2(x))

(`− 1)!α1/(p−1)
1

(
β−1

1 (β2(x))
)


(p−1)

z
(

β−1
1 (β2(x))

)
= 0 (14)

and
ω′(x) + β−1

1 (β2(x))ỹ`−3(x)ω
(

β−1
1 (β2(x))

)
= 0 (15)
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are oscillatory, where

ỹ0(x) : =

(
1

yx1(x)α1(x)

∫ ∞

x
ζ(s)yx1(s)c

(p−1)
2 (β2(s))ds

)1/(p−1)
,

ỹk(x) : =
∫ ∞

x
ỹk−1(s)ds, k = 1, 2, ..., `− 2

and

cm(x) :=
1

c
(

β−1
1 (x)

)
1−

(
β−1

1

(
β−1

1 (x)
))m−1

(
β−1

1 (x)
)m−1

c
(

β−1
1

(
β−1

1 (x)
))
, m = 2, `,

then (1) is oscillatory.

Proof. Let (9) hold. Then, we see that δ(x), δ(β1(x)) and δ(β2(x)) are positive.

Let (I1) hold, from Lemma 2, we find v(x) ≥ 1
(`−1) xv′(x) and then

(
x1−`v(x)

)′
≤ 0.

Hence, since β−1
1 (x) ≤ β−1

1

(
β−1

1 (x)
)

, we obtain

v
(

β−1
1

(
β−1

1 (x)
))
≤

(
β−1

1

(
β−1

1 (x)
))`−1

(
β−1

1 (x)
)`−1 v

(
β−1

1 (x)
)

. (16)

From (2), we obtain

c
(

β−1
1 (x)

)
δ(x) = v

(
β−1

1 (x)
)
− δ
(

β−1
1 (x)

)
= v

(
β−1

1 (x)
)
−

v
(

β−1
1

(
β−1

1 (x)
))

c
(

β−1
1

(
β−1

1 (x)
)) − δ

(
β−1

1

(
β−1

1 (x)
))

c
(

β−1
1

(
β−1

1 (x)
))


≥ v
(

β−1
1 (x)

)
− 1

c
(

β−1
1

(
β−1

1 (x)
))v

(
β−1

1

(
β−1

1 (x)
))

, (17)

which with (1), (11) and (17) give

(
yx0 (x)α1(x)

(
v(`−1)(x)

)(p−1)
)′

+
yx0 ζ(x)

c(p−1)
(

β−1
1 (β2(x))

)
v

(
β−1

1 (β2(x))
)
−

v
(

β−1
1

(
β−1

1 (β2(x))
))

c
(

β−1
1

(
β−1

1 (β2(x))
))
(p−1)

≤ 0. (18)

We have that (18), which (16) gives(
yx1 (x)α1(x)

(
v(`−1)(x)

)(p−1)
)′

+ yx1 (x)ζ(x)c(p−1)
` (β2(x))v(p−1)

(
β−1

1 (β2(x))
)
≤ 0. (19)

From Lemma 1, we get (13). Therefore, from (19), we obtain(
yx1(x)α1(x)

(
v(`−1)(x)

)(p−1)
)′

≤ −yx1(x)ζ(x)
(

µc`(β2(x))
(`− 1)!

(
β−1

1 (β2(x))
)`−1

)(p−1)(
v(`−1)

(
β−1

1 (β2(x))
))(p−1)

.
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Then, if we set z(x) = yx0(x)α1(x)
(

v(`−1)(x)
)(p−1)

, then we have that z > 0 is a
solution of the delay inequality

z′(x) + ζ(x)
yx1(x)

yx1

(
β−1

1 (β2(x))
)
 µ

(
β−1

1 (β2(x))
)`−1

c`(β2(x))

(`− 1)!α1/(p−1)
1

(
β−1

1 (β2(x))
)


(p−1)

z
(

β−1
1 (β2(x))

)
≤ 0.

It is clear (see [17] Theorem 1) that the Equation (14) also has a positive solution, this
is a contradiction.

Let (I2) hold, from Lemma 2, we obtain

v(x) ≥ xv′(x) (20)

and then
(

x−1v(x)
)′ ≤ 0. Hence, since β−1

1 (x) ≤ β−1
1

(
β−1

1 (x)
)

, we get

v
(

β−1
1

(
β−1

1 (x)
))
≤

β−1
1

(
β−1

1 (x)
)

β−1
1 (x)

v
(

β−1
1 (x)

)
, (21)

which with (18) yields(
yx1 (x)α1(x)

(
v(`−1)(x)

)(p−1)
)′

+ ζ(x)yx1 (x)c(p−1)
2 (β2(x))v(p−1)

(
β−1

1 (β2(x))
)
≤ 0. (22)

Integrating (22) from x to ∞, we obtain

−v(`−1)(x) ≤ −
(

1
yx1 (x)α1(x)

∫ ∞

x
ζ(s)yx1 (s)c

(p−1)
2 (β2(s))v(p−1)

(
β−1

1 (β2(s))
)

ds
)1/(p−1)

≤ −ỹ0(x)v
(

β−1
1 (β2(x))

)
.

Integrating this inequality `− 3 times from x to ∞, we find

v′′(x) + ỹ`−3(x)v
(

β−1
1 (β2(x))

)
≤ 0, (23)

which with (20) gives

v′′(x) + β−1
1 (β2(x))ỹ`−3(x)v′

(
β−1

1 (β2(x))
)
≤ 0.

Thus, if we put ω(x) := v′(x), then we conclude that ω > 0 is a solution of

ω′(x) + β−1
1 (β2(x))ỹ`−3(x)ω

(
β−1

1 (β2(x))
)
≤ 0. (24)

It is clear (see [17] Theorem 1) that the equation (15) also has a positive solution, this
is a contradiction. The proof is complete.

Next, we establish new oscillation conditions for Equation (1) according to the results
obtained some related contributions to the subject.

Corollary 1. Assume that c0 < 1 and (30) hold. If

lim inf
x→∞

∫ x

β2(x)
(1− c(β2(s)))

(p−1)ζ(s)
yx0 (s)

yx0 (β2(s))

(
µβ`−1

2 (s)

α
1/(p−1)
1 (β2(s))

)(p−1)

ds >
((`− 1)!)(p−1)

e
(25)

is oscillatory, then (1) is oscillatory.
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Corollary 2. Let (3) and (30) hold. If

lim inf
x→∞

∫ x

β−1
1 (β2(x))

ζ(s)
yx0 (s)

yx0

(
β−1

1 (β2(s))
)
µ

(
β−1

1 (β2(s))
)`−1

c`(β2(s))

α
1/(p−1)
1

(
β−1

1 (β2(s))
)


(p−1)

ds >
((`− 1)!)(p−1)

e
(26)

and
lim inf

x→∞

∫ x

β−1
1 (β2(x))

β−1
1 (β2(s))ỹ`−3(s)ds >

1
e

(27)

are oscillatory, then (1) is oscillatory.

3. Applications

This section presents some interesting application which are addressed based on
above hypothesis to show some interesting results in this paper.

Example 1. Let the equation(
δ(x) +

1
2

δ
( x

3

))(4)
(x) +

1
x

v(3)(x) +
ζ0

x4 δ
( x

2

)
= 0, (28)

where ζ0 > 0 is a constant. Let p = 2, ` = 4, α1(x) = 1, α2(x) = 1/x, ζ(x) = ζ0/x4, β2(x) =
x/2 and β1(x) = x/3. So, we get

yx0(x) = x, yx0(β2(x)) = x/2.

Thus, we find

lim inf
x→∞

∫ x

β2(x)
(1− c(β2(s)))

(p−1)ζ(s)
yx0(s)

yx0(β2(s))

(
µβ`−1

2 (s)

α
1/(p−1)
1 (β2(s))

)(p−1)

ds

= lim inf
x→∞

∫ x

x/2

ζ0

x4

(
x3

8

)
ds =

ζ0

8
ln 2.

Hence, the condition becomes

ζ0 >
48

e ln2
. (29)

Therefore, by Corollary 1, every solution of (28) is oscillatory if ζ0 > 25.5.

Remark 1. Consider the equation (8), by Corollary 1, all solution of (8) is oscillatory if ζ0 > 57.5.
Whereas, the criterion obtained from the results of [9,10] are ζ0 > 1839.2 and ζ0 > 59.5. So, our
results extend the results in [9].

4. Conclusions

In this paper, we obtain sufficient criteria for oscillation of solutions of higher-order
differential equation with middle term. We discussed the oscillation behavior of solutions
for Equation (1). We obtain some oscillation criteria by comparison method with first
order equations. Our results unify and improve some known results for differential
equations with middle term. In future work, we will discuss the oscillatory behavior of
these equations using integral averaging method and under condition

∫ ∞

x0

(
1

α1(s)
exp

(
−
∫ s

x0

α2(v)

α1(v)
dv

))1/(p−1)
ds < ∞. (30)
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For researchers interested in this field, and as part of our future research, there is a nice
open problem which is finding new results in the following cases:

(F1) v(x) > 0, v′(x) > 0, v′′(x) > 0, v(`−1)(x) > 0, v(`)(x) < 0,
(F2) v(x) > 0, v(j)(x) > 0, v(j+1)(x) < 0 for all odd integers

j ∈ {1, 3, ..., `− 3}, v(`−1)(x) > 0, v(`)(x) < 0.
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