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Abstract: A double Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2, 3}
with the properties that if f (u) = 0, then vertex u is adjacent to at least one vertex assigned 3 or at
least two vertices assigned 2, and if f (u) = 1, then vertex u is adjacent to at least one vertex assigned
2 or 3. The weight of f equals w( f ) = ∑v∈V f (v). The double Roman domination number γdR(G)

of a graph G is the minimum weight of a double Roman dominating function of G. A graph is said
to be double Roman if γdR(G) = 3γ(G), where γ(G) is the domination number of G. We obtain
the sharp lower bound of the double Roman domination number of generalized Petersen graphs
P(3k, k), and we construct solutions providing the upper bounds, which gives exact values of the
double Roman domination number for all generalized Petersen graphs P(3k, k). This implies that
P(3k, k) is a double Roman graph if and only if either k ≡ 0 (mod 3) or k ∈ {1, 4}.

Keywords: double Roman domination; generalized Petersen graph; double Roman graph

1. Introduction

Let G = (V, E) be a graph without loops and multiple edges, where V = V(G) and
E = E(G) are the vertex set and edge set of G, respectively. If uv ∈ E, we say that vertices
u and v are adjacent, and v is a neighbor of u. The neighborhood of u, N(u) is the set of
all neighbors of u, so v ∈ N(u), and u ∈ N(v). The set of consecutive integers between a
and b with a < b is denoted by [a, b] = {a, a + 1, · · · , b} and [0, b− 1] = {0, 1, · · · , b− 1} is
abbreviated to [b] for short. For convenience, we write i = q+ when i ≥ q and, similarly,
i = q− when i ≤ q.

A set D of vertices of G is a dominating set if every vertex in V \ D has at least one
neighbor in D. The domination number γ(G) is the cardinality of a minimum dominating
set of G. A double Roman dominating function (DRDF) on a graph G = (V, E) is a function
f : V → {0, 1, 2, 3} with the properties that

• f (u) = 0, then vertex u is adjacent to at least one vertex assigned 3 or at least two
vertices assigned 2 under f ;

• if f (u) = 1, then vertex u is adjacent to at least one vertex assigned 2 or 3 under f .

In other words, if vertices represent provinces of Roman empire and DRDF represents
roman legions, any province either must have a legion that protects it, or, it has to have at
least two available legions in the neighborhood that may intervene without leaving the
domestic province unprotected. The weight of f equals w( f ) = ∑v∈V f (v). The double
Roman domination number γdR(G) of a graph G is the minimum weight of a double
Roman dominating function of G. A DRDF f is a γdR-function of G if w( f ) = γdR(G).
Given a double Roman dominating function f , we obtain a partition of the vertex set
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V = V0 ∪ V1 ∪ V2 ∪ V3, where Vi = V f
i = {u | f (u) = i}. A vertex u is DR-dominated

if it is either in V2 ∪ V3 or if u ∈ V1 and it has a neighbor in V2 ∪ V3 or if u ∈ V0 and u
has at least one neighbor in V3 or two neighbors in V2. On the other hand, any partition
V = V0 ∪ V1 ∪ V2 ∪ V3 in which every vertex is DR-dominated obviously gives rise to a
double Roman dominating function.

Domination in graphs with its many varieties has been studied extensively in the
past [1,2]. Roman domination and double Roman domination is a rather new variety
of interest [3–11]. Very recently, double Roman domination for cardinal products of
graphs was studied in [12], and double Roman trees were characterized in [13]. Cartesian
products of certain circles are shown to be double Roman in [14]. It is known that the
decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs,
undirected path graphs, chordal bipartite graphs, and circle graphs [15–17]. Closely related
problems to double Roman domination were studied in [18–20].

In this work we will study DRDF on generalized Petersen graphs P(3k, k). More
precisely, we will give exact values of the double Roman domination number for all
generalized Petersen graphs P(3k, k).

Petersen graphs are among the most interesting examples when considering nontrivial
graph invariants. The domination and its variations of generalized Petersen graphs have
attracted considerable attention, see for example [21–28]. Let n and k be integers where
n ≥ 3, k ≥ 1, and k < n

2 . The generalized Petersen graph P(n, k) is a graph with vertex
set U ∪ I and edge set E1 ∪ E2 ∪ E3, where U = {u0, u1, · · · , un−1}, I = {v0, v1, · · · , vn−1},
E1 = {uiui+1 | i ∈ [n]}, E2 = {uivi | i ∈ [n]}, E3 = {vivi+k | i ∈ [n]}, and subscripts are
reduced modulo n. If n = 3k, we define Ti = {ui, vi, ui+k, vi+k, ui+2k, vi+2k}, for any integer
i. Recalling that the subscripts are taken modulo n, it is clear that Ti+k = Ti; hence, the
Petersen graph P(3k, k) has exactly k distinct Ti, i ∈ [k].

The rest of the paper is organized as follows. In the next section, we mention related
previous work, give some more formal definitions, and we formally state our main result.
The following sections provide the proof of Theorem 2. In Section 3, the upper bound
and the small cases are elaborated. Section 4 is devoted to the proof of the lower bound.
Concluding remarks are given in the last section.

2. Preliminaries and Main Result

Beeler et al. [4] initiated the study of the double Roman domination in graphs. They
showed that 2γ(G) ≤ γdR(G) ≤ 3γ(G) and defined a graph G to be double Roman
if γdR(G) = 3γ(G), where γ(G) is the domination number of G. Among other things,
Beeler et al. obtained the following result that we recall for a later reference:

Proposition 1 ([4]). In a double Roman dominating function f of weight γdR(G), no vertex needs
to be assigned the value 1.

Zhao et al. [29] studied the domination number for the generalized Petersen graphs
P(ck, k) for integer constants c ≥ 3. They obtained upper bound on γ(P(ck, k)) for general
c, and showed that

Theorem 1 ([29]). γ(P(3k, k)) = d 5k
3 e for any k ≥ 1.

Note that by Proposition 1, we can restrict attention to the DRDF of a graph G with no
vertex assigned the value 1. Furthermore, it is easy to see that DRDF of a given graph is
not unique. For example, P(3, 1) has DRDF’s with value 3 on two vertices and DRDF’s with
value 2 on three vertices. Here we will, without loss of generality, consider γdR-functions
with minimal |V2|. In Figure 1, a DRDF of P(9, 3) is given that has minimal number of
vertices in V2, in fact |V2| = 0. On the left (a), the usual drawing is given, while on the
right (b), we introduce another way of drawing P(3k, k) that will be used in the sequel.
The vertices are organized according to the triangles, Ti. Vertices of triangle T0 and its
neighbors, {u0, uk, u2k, u0, vk, v2k}, are indicated in Figure 1b.
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Figure 1. A double Roman dominating function (DRDF) of P(9, 3). Standard drawing (a) and alternative drawing used in
this work (b).

In this paper, we provide the double Roman domination numbers of all Petersen
graphs P(3k, k) and characterize the double Roman graphs among them.

Below we prove Propositions 2 and 3 which imply our main result

Theorem 2.

γdR(P(3k, k)) =
{

5k + 1, if k ∈ {1, 2, 4},
5k, otherwise .

and its corollary (using Theorem 1):

Corollary 1. The generalized Petersen graph P(3k, k) is a double Roman graph if and only if either
k ≡ 0 (mod 3) or k ∈ {1, 4}.

In the next section we recall the exact values of γdR(P(3k, k)) for k = 1, 2, 3, 4, 5
(Lemma 1) and give a sharp upper bound for the general case (Proposition 2). In Section 4
we provide a sharp lower bound (Proposition 3). Lemma 1, Proposition 2, and Proposition 3
together clearly imply Theorem 2.

3. The Upper Bound

In this section, we construct double Roman dominating functions establishing upper
bounds for the double Roman dominating numbers. In fact, by Theorem 2 it turns out that
these DRDFs are optimal.

First, let us consider P(3k, k) for k ≤ 5. It is straightforward to check that the DRDF
in Figures 1 and 2 are optimal. We omit the details. For later reference, we state the
observation as

Lemma 1. γdR(P(3, 1)) = 6, γdR(P(6, 2)) = 11, γdR(P(9, 3)) = 15, γdR(P(12, 4)) = 21, and
γdR(P(15, 5)) = 25.
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Figure 2. (a) A DRDF of P(3, 1); (b) A DRDF of P(6, 2); (c) A DRDF of P(12, 4); (d) A DRDF of P(15, 5).

In general, the upper bounds are given by

Proposition 2. For any integer k > 4 it holds γdR(P(3k, k)) ≤
{

5k + 1, if k ∈ {1, 2, 4},
5k, otherwise

.

Proof. By Lemma 1, the statement holds for k ≤ 5. For k > 5 we provide different
constructions depending on k mod 6. We use a pattern with 6 rows and k columns to
represent a DRDF as follows.

f (V(P(3k, k))) =



f (u0) f (u1) · · · f (ui) · · · f (uk−1)
f (v0) f (v1) · · · f (vi) · · · f (vk−1)
f (v2k) f (v2k+1) · · · f (v2k+i) · · · f (v3k−1)
f (vk) f (vk+1) · · · f (vk+i) · · · f (v2k−1)
f (u2k) f (u2k+1) · · · f (u2k+i) · · · f (u3k−1)
f (uk) f (uk+1) · · · f (uk+i) · · · f (u2k−1)


All the constructions below have a part with a repeated pattern and a fixed part at the

end. The symbol “−” means that we repeat the leftmost six (or, in one case three) columns
of the corresponding pattern `− 1 times. Hence, we have ` repetitions of the pattern plus
the rightmost part.

For k = 6`+ 4 with ` ≥ 1, let

f (V(P(3k, k))) =



0 2 0 2 0 2 2 0 2 0
0 0 0 0 0 0 0 0 0 0

− 3 3 3 0 0 0 2 3 2 0
0 0 0 2 3 2 0 0 0 3
0 0 0 2 0 2 0 0 0 2
2 0 2 0 0 0 2 0 2 0

.

It is straightforward to see that f is a DRDF of P(3k, k) (see Figure 3).
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Figure 3. A DRDF of P(3k, k) with k = 6`+ 4
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For k = 3` with ` ≥ 1, let

f (V(P(3k, k))) =



0 3 0
3 0 3

− 0 0 0
0 0 0
0 3 0
0 3 0

.

Then f is a DRDF of P(3k, k).
For k = 6`+ 1 with ` ≥ 1, let

f (V(P(3k, k))) =



0 2 0 2 0 2 0
3 0 0 0 0 0 0

− 0 0 0 0 0 0 3
0 2 3 3 3 2 0
0 2 0 2 0 2 0
2 0 0 0 0 0 2

.

Then f is a DRDF of P(3k, k).
For k = 6`+ 2 with ` ≥ 1, let

f (V(P(3k, k))) =



0 0 0 2 0 2 0 0
2 3 2 0 0 0 3 3

− 0 0 0 0 0 0 0 0
0 0 0 2 3 2 0 0
2 0 2 2 0 2 0 2
2 0 2 0 0 0 2 0

.

Then f is a DRDF of P(3k, k).
For k = 6`+ 5 with ` ≥ 1, let

f (V(P(3k, k))) =



2 0 2 2 0 2 0 0 2 0 2
0 0 0 0 0 0 3 3 0 0 0

− 0 0 0 2 3 2 0 0 0 0 0
2 3 2 0 0 0 0 0 2 3 2
2 0 2 0 0 0 2 0 2 0 2
0 0 0 2 0 2 0 2 0 0 0

.

Then f is a DRDF of P(3k, k).

4. The Lower Bound

Proposition 3. For any integer k > 4 it holds γdR(P(3k, k)) ≥
{

5k + 1, if k ∈ {1, 2, 4},
5k, otherwise

.

We start by some definitions that are used in the proof of the lower bound and in
formulation of the results. Recall that we can restrict our attention to the γdR-functions
with no vertex assigned the value 1, and in addition, consider only γdR-functions with
minimal |V2|.

For a DRDF f , let wi = ∑x∈Ti
f (x) and s(i) = wi−1 + wi + wi+1. Clearly, wi+k = wi

and s(i+k) = s(i) as Ti+k = Ti. In other words, for the Petersen graph P(3k, k) we have
|U| = |I| = 3k and subscripts of vertices ui and vi are taken modulo 3k, but there are
exactly k distinct Ti, and therefore subscripts of Ti, wi and s(i) are taken modulo k. Note
also that we have w( f ) = ∑k−1

i=0 wi and 3w( f ) = ∑k−1
i=0 s(i).

As proof that the lower bound is long, we divide the section in several subsections.
First, we provide algorithms that for k′ ≤ k construct a P(3k′, k′) from P(3k, k). In the
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second subsection, some more definitions and facts are given. Third, fourth, and fifth
subsections provide analyses of three special cases. Finally, the proof of Proposition 3 is
given.

4.1. Constructions of P(3k′, K′) from P(3k, K) for K′ ≤ K

In this subsection, we describe Algorithms 1–3 that construct P(3k′, k′) from P(3k, k)
for k′ ≤ k.

Algorithm 1 (Algorithm A).
Input: the graph P(3k, k), k ≥ 3, integers j ∈ [k] and t ∈ [1, k− 2].
Output: the graph P′.
Step 1: remove the set of vertices Tj, Tj+1, · · · , Tj+t−1 along with their incident edges, and
denote the resulting graph by Q;
Step 2: define the edge set E′ = {uj−1uj+t, uj−1+2kuj+t+2k, uj−1+kuj+t+k} and define the
graph P′ to have the vertex set V(P′) = V(Q) and the edge set E(P′) = E(Q) ∪ E′.
return P′

The following lemma is immediate (see Figure 4), and the proof is omitted.

uj−1

vj−1

vj−1+2k vj−1+k

uj−1+2k uj−1+k

uj

vj

uj+1

vj+1

vj+1+2k vj+1+k

uj+1+2k uj+1+k

uj+t−1

vj+t−1

uj+t

vj+t

vj+t+2k vj+t+k

uj+t+2k uj+t+k

Figure 4. Illustrating Algorithm A for constructing P′ from P(3k, k).

Lemma 2. The graph P′ returned by Algorithm A is isomorphic to P(3k− 3t, k− t).

Algorithm 2 (Algorithm B).
Input: the graph P(3k, k), k ≥ 3, integers j ∈ [k] and t ∈ [k− 1].
Output: the graph P′.
Step 1: if t > 0, remove the set of vertices Tj, Tj+1, · · · , Tj+t−1 along with their incident
edges, and denote the resulting graph by Q;
if t = 0, remove the set of edges between Tj−1 and Tj and let Q be a graf V(Q) = V(P(3k, k))
and E(Q) = E(P(3k, k)) \ {uj−1uj, uj−1+kuj+k, uj−1+2kuj+2k};
Step 2: define the edge set E′ = {uj−1uj+t+k, uj+tuj−1+2k, uj−1+kuj+t+2k} and define the
graph P′ to have the vertex set V(P′) = V(Q) and the edge set E(P′) = E(Q) ∪ E′.
return P′

Lemma 3. The graph P′ returned by Algorithm B is isomorphic to P(3k− 3t, k− t).

Proof. Consider the cycle C′ = u0u1 · · · uj−1 uj+t+k uj+t+k+1 · · · uk−1+k u2k u2k+1 · · ·
· · · uj−1+2k uj+tuj+t+1 · · · uk−1 uk uk+1 · · · uj−1+kuj+t+2k uj+t+2k+1 · · · uk−1+2ku0 (see
Figure 5). Now we relabel the vertices of C′ as C′ = us0 us1 · · · us3k−3t−1 and consider a
function h : V(P′) → V(P(3k − 3t, k − t)) with h(usi ) = ui and h(vsi ) = vi for each
i ∈ [3k− 3t]. It can be verified that h is an isomorphism from P′ to P(3k− 3t, k− t) and the
proof is complete.
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Figure 5. Illustrating Algorithm B for constructing P′ from P(3k, k).

Algorithm 3 (Algorithm C).
Input: the graph P(3k, k), k ≥ 3, integers j1, j2 ∈ [k] and t1 + t2 ∈ [k− 2], where:
for t1 = 0, Tj1 /∈ {Tj2 , Tj2+1, . . . , Tj2+t2}, for t2 = 0, Tj2 /∈ {Tj1 , Tj1+1, . . . , Tj1+t1}, and
for t1, t2 > 0, {Tj1−1, Tj1 , . . . , Tj1+t1} ∩ {Tj2 , Tj2+1, . . . , Tj2+t2−1} = ∅ and {Tj1 , Tj1+1, . . . ,
Tj1+t1−1} ∩ {Tj2−1, Tj2 , . . . , Tj2+t2} = ∅.
Output: the graph P′′.
Step 1: let i ∈ {1, 2}:
for ti > 0, remove the set of vertices Tji , Tji+1, · · · , Tji+ti−1 along with their incident edges,
for ti = 0, remove the set of edges between Tji−1 and Tji , and
denote the resulting graph by Q;
Step 2: define the edge set E′′ = {uj1−1uj1+t1+k, uj1−1+kuj1+t1+2k, uj1−1+2kuj1+t1 ,
uj2−1uj2+t2+2k, uj2−1+kuj2+t2 , uj2−1+2kuj2+t2+k, } and define the graph P′′ to have the vertex
set V(P′′) = V(Q) and the edge set E(P′′) = E(Q) ∪ E′′.
return P′′

Lemma 4. The graph P′′ returned by Algorithm C is isomorphic to P(3k− 3t1− 3t2, k− t1− t2).

Proof. Result of Algorithm C is illustrated on Figure 6. Consider a cycle C′ = u0u1 · · · uj−1
uj+t1+k · · · uj2−2+k uj2−1+kuj2+t2 · · · uk−2 uk−1 ukuk+1 · · · uj−1+k uj+t1+2k · · · uj2−2+2k
uj2−1+2k · · · uj2+t2+k · · · uk−2+k uk−1+ku2k u2k+1 · · · uj−1+2k uj+t1 · · · uj2−2uj2−1 uj2+t2+2k
· · · uk−2+2k uk−1+2ku0 (see Figure 7 with red arrow lines). Now we relabel the vertices
of C′ as C′ = us0 us1 · · · us3k−3t1−3t2−1 and consider a function h : V(P′′) → V(P(3k− 3t1 −
3t2, k− t1 − t2)) with h(usi ) = ui and h(vsi ) = vi for each i ∈ [3k− 3t1 − 3t2]. It can be
verified that h is an isomorphism from P′′ to P(3k− 3t1 − 3t2, k− t1 − t2), and the proof is
complete.

uj1−1 uj1 uj1+1 uj1+t1−1 uj1+t1 uj2−1 uj2 uj2+t2−1 uj2+t2

Figure 6. Illustrating Algorithm C for constructing P′′ from P(3k, k).
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u0 u1 uj−1 uj+t1
uj2−2 uj2−1 uj2+t2 uk−2 uk−1

Figure 7. A cycle containning all vertices of U in P′′.

4.2. Useful Lemmas and Definitions

Lemma 5. Let k ≥ 3 and let f be γdR-function of P(3k, k). Then 3 ≤ wi ≤ 9 for each i ∈ [k], and
if
∣∣∣V f

2

∣∣∣ is minimal then wi 6= 4 for each i ∈ [k].

Proof. Since vertices of Ti ∩ I can only be DR-dominated by vertices of Ti, we have wi ≥ 3.
Assume that wi ≥ 10 for some i ∈ [k]. Then let f ′(ui) = f ′(ui+k) = f ′(ui+2k) = 3,
f ′(vi) = f ′(vi+k) = f ′(vi+2k) = 0 and f ′(x) = f (x) for x ∈ V(P(3k, k)) \ Ti. Clearly, f ′ is
a DRDF with w( f ′) < w( f ); hence, f is not γdR-function, a contradiction. It follows that
wi ≤ 9 for each i ∈ [k].

Let suppose now that
∣∣∣V f

2

∣∣∣ is minimal and wi = 4 for some i ∈ [k]. Then we must have
|Ti ∩ V2 ∩ I| = 2, and by symmetry, we may assume f (vi) = f (vi+k) = 2 and f (x) = 0
for every x ∈ Ti \ {vi, vi+k}. To DR-dominate ui, we must have f (y) = 2+ for some
y ∈ N(ui) \ {vi}. Then we can construct a function f ′ with f ′(y) = f ′(vi+k) = 3, f ′(vi) = 0
and f ′(x) = f (x) for each x ∈ V(P(3k, k)) \ {y, vi, vi+k}. Thus, we have w( f ′) ≤ w( f ) and

|V f ′
2 | < |V

f
2 |, contradicting with the assumption that |V f

2 | is minimum.

Lemma 6. Let k ≥ 3 and let f be a γdR-function of P(3k, k), such that
∣∣∣V f

2

∣∣∣ is minimal. If wi = 8
for some i ∈ [k], then |Ti ∩V2| = 1.

Proof. First we will show that there exists γdR-function f such that at least one vertex of
Ti ∩U is DR-dominated by vertices in Ti for each i ∈ [k]. Clearly, if f (x) = 2+ for some
x ∈ Ti ∩U, or if f (y) = 3 for some y ∈ Ti ∩ I, the statement is true. By Lemma 5, we have
wi 6= 4; therefore, it remains to consider the case f (ui) = f (ui+k) = f (ui+2k) = 0 and
f (vi) = f (vi+k) = f (vi+2k) = 2. We can construct a function f ′ with f ′(ui) = 2, f ′(vi) = 0
and f ′(y) = f (y) for each y ∈ V(P(3k, k)) \ {ui, vi}. Then, f ′ is a DRDF with w( f ′) = w( f ),
as desired. Note that

∣∣∣V f ′
2

∣∣∣ = ∣∣∣V f
2

∣∣∣.
Let k ≥ 3 and let f be γdR-function of P(3k, k), such that

∣∣∣V f
2

∣∣∣ is minimal. Assume
that wi = 8 and |Ti ∩ V2| 6= 1 for some i ∈ [k]. Clearly, then we have |Ti ∩ V2| = 4,
and, without loss of generality, we may assume f (ui) = f (vi) = 2. It is easy to see
that if f (vi+k) = 2 or f (vi+2k) = 2 then f is not minimal because we can define another
function with f ′(vi) = 0 , f ′(vi+k) = 3 (or f ′(vi+2k) = 3, respectively), and f ′(y) = f (y)
elsewhere. It remains to consider the case where f (ui) = f (ui+k) = f (ui+2k) = f (vi) = 2
and f (vi+k) = f (vi+2k) = 0, i.e., |Ti ∩U ∩ V2| = 3 and |Ti ∩ I ∩ V2| = 1. Note that in
the case |Ti ∩U ∩V2| = 3 and |Ti ∩ I ∩V2| = 1 an arbitrary vertex of the set Ti ∩ I can be
assigned 2 under f .

Let x be the vertex of Ti−1 that is DR-dominated by vertices in Ti−1. Without loss of
generality, we may assume x = ui−1, and f (ui) = f (vi) = 2. Clearly, if vertex ui+1 is DR-
dominated by vertices in Ti+1, then f is not minimal because we can define another function
with f ′(vi) = 3, f ′(ui) = 0 and f ′(y) = f (y) elsewhere. It follows that f (ui+1) = 0,
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and f (y) = 2, where either y = vi+1 or y = ui+2. Now we consider DRDF f ′ with
f ′(ui) = 0, f ′(vi) = 3, f ′(y) = 3 and f ′(s) = f (s) for s ∈ V(P(3k, k)) \ {ui, vi, y}. Thus,

we have w( f ′) = w( f ) and |V f ′
2 | < |V

f
2 |, contradicting with the assumption that |V f

2 | is
minimum.

From now on we will assume that all DRDFs have minimal |V2|. Furthermore, on
the basis of the just-proven Lemmas, it is easy to see that we can restrict attention to
γdR-functions f of P(3k, k) with no neighboring vertices in Ti that are assigned values 2 or
more. Formally, for each i ∈ [k] there are no vertices x, y with x, y ∈ Ti, xy ∈ E(P(3k, k))
such that both f (x) = 2+ and f (y) = 2+. It follows, that in each Ti at most one of
vertices vi is assigned 2+ by f . Clearly, the case f (vi) = f (vi+k) = f (vi+2k) = 0 is
possible only in Ti with wi = 9. On the other hand, if wi = 9 then we can assume that
f (vi) = f (vi+k) = f (vi+2k) = 0 and f (ui) = f (ui+k) = f (ui+2k) = 3. Thus, in Ti with
wi 6= 9 exactly one of vertices vi is assigned 2+ and two of them are assigned 0. More
precisely, for each Ti we have exactly nine possible DRDFs listed below (in the first row
are values of vertices of Ti ∩U, in the second row are values of vertices of Ti ∩ I, and each
column represents adjacent vertices):

wi = 3 :
(

0 0 0
0 0 3

)
; wi = 5 :

(
2 0 0
0 0 3

)
;

wi = 6 :
(

3 0 0
0 0 3

)
=: 6(3),

(
2 2 0
0 0 2

)
=: 6(2);

wi = 7 :
(

2 2 0
0 0 3

)
=: 7(3),

(
2 3 0
0 0 2

)
=: 7(2);

wi = 8 :
(

2 3 0
0 0 3

)
=: 8(3),

(
3 3 0
0 0 2

)
=: 8(2); wi = 9 :

(
3 3 3
0 0 0

)
;

Lemma 7. Let k ≥ 3 and let f be a DRDF of P(3k, k). Then for any i ∈ [k] it holds:
(a) if wi = wi+1 = 3, then wi+2 ∈ {8(2), 9};
(b) if wi = 3 and wi+1 ∈ {5, 6(3)}, then wi+2 ∈ {6(3), 7(2), 8+};
(c) if wi = 3 and wi+1 ∈ {6(2), 7(2), 8(2)}, then wi+2 = 5+;
(d) if wi = 5 and wi+1 = 3, then wi+2 ∈ {7(2), 8+};
(e) if wi = 6(3) and wi+1 = 3, then wi+2 ∈ {6(3), 7(2), 8+};
(f) if wi ∈ {6(2), 7(3)} and wi+1 = 3, then wi+2 ∈ {6(2), 7+};
(g) if wi ∈ {7(2), 8(3)} and wi+1 = 3, then wi+2 = 5+;
(h) if wi = 5 and wi+1 ∈ {5, 6(3)}, then wi+2 = 5+ ;
(i) if wi ∈ {6(2), 7(3)} and wi+1 = 5, then wi+2 = 5+;
(j) if wi = wi+2 = 3, then wi+1 ∈ {7(3), 8(3), 9}.

Proof. Let f be a DRDF of P(3k, k), k ≥ 3, and i ∈ [k].
Cases (a,b,c,j). If wi = 3, then vertices of Ti+1 ∩U are DR-dominated by vertices in

Ti+1 ∪ (Ti+2 ∩U). In the case (a), exactly one vertex of Ti+1 ∩U is dominated by vertices
in Ti+1, and two of them are dominated by two corresponding vertices of Ti+2 ∩U which
are assigned 3 under f . It follows |Ti+2 ∩U ∩ V f

3 | ≥ 2 and thus wi+2 ∈ {8(2), 9}. In the
case (b), two vertices of Ti+1 ∩U are dominated by vertices in Ti+1, and one of them is
dominated by the corresponding vertex of Ti+2 ∩U, which is assigned 3 under f . Thus,
|Ti+2 ∩U ∩V f

3 | ≥ 1, and the result follows. Similarly, in the case (c), one vertex of Ti+1 ∩U
is dominated by the corresponding vertex of Ti+2 ∩U, which is assigned 2+ and the result
follows. In the case (j), all vertices of Ti+1 ∩U are DR-dominated by vertices in Ti+1, for
which we have three possibilities, i.e., wi+1 ∈ {7(3), 8(3), 9}.

Cases (d,e,f,g). If wi+1 = 3, then one vertex of Ti+1 ∩U is DR-dominated by a vertex
in Ti+1, and two of them are dominated by the corresponding vertices of (Ti ∪ Ti+2) ∩U.
Consider the values of vertices of Ti ∩U, and the result easily follows.

Cases (h,i). In these cases, observe that one vertex of Ti+1 ∩U is dominated by a vertex
in Ti+2, which is assigned 2+ under f . Hence, wi+2 = 5+ as needed.
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Clearly, by symmetry Lemma 7 holds also in the other direction, i.e., for wi, wi−1 and
wi−2, respectively. For example statement (a) can be read as if wi = 3 and wi−1 = 3, then
wi−2 ∈ {8(2), 9}.

4.3. DRDF with (WI , WI+1, WI+2, WI+3, WI+4) = (5, 7, 3, 5, 6)

In Lemmas from 8–11 we will consider DRDF f of P(3k, k) with given sequence
(wi, wi+1, wi+2, wi+3, wi+4) = (5, 7, 3, 5, 6) for some i ∈ [k]. Without loss of generality, we
can set i = 0, and in addition we may assume that f (v2) = 3 and f (u1+k) = 3. It is easy to

see that f is defined as
(

2 0 0
0 0 3

)(
0 3 2
2 0 0

)(
0 0 0
3 0 0

)(
0 0 2
b a 0

)(
a b 0

)
,

where (a, b) ∈ {(0, 3), (3, 0)}, and exactly one of the vertices of T4 ∩ I is assigned 3.
Note that we can assume that f (vk) = 0 and f (v2k) = 3 because the vertex uk is DR-
dominated by u1+k. Furthermore, by Lemma 7 statement (h) we see w5 = 5+. In particular,
the sequence (5, 7, 3, 5, 6) gives rise to the sequence (wi, wi+1, wi+2, wi+3, wi+4, wi+5) =
(5, 7(2), 3, 5, 6(3), 5+).

In Lemmas 8–10 we suppose that w( f ) < 5k. Clearly, for k = 5 and k = 6 we have
w( f ) > 5k; thus, observations consider the Petersen graphs with k ≥ 7.

Let f be a DRDF of P(3k, k). For integer j taken modulo k we denote A3 = {j | wj = 3}
and A′ = {j ∈ A3 | (wj−1, wj, wj+1) ∈ {(6, 3, 6), (5, 3, 7(2)), (7(2), 3, 5)}}.

Lemma 8. Let k ≥ 7 and let f be a DRDF of P(3k, k) such that (w0, w1, w2, w3, w4) =
(5, 7, 3, 5, 6). If w( f ) < 5k then there exists j ∈ A3 \ A′.

Proof. Let k ≥ 7 and let f be a given DRDF of P(3k, k). Suppose to the contrary, that
w( f ) < 5k and j /∈ A3 \ A′ for each j ∈ [k]. Then, either j /∈ A3 or j ∈ A′. It follows that
either wj = 5+ or s(j) = 15 for each j ∈ [k].

For a DRDF f we have w( f ) = ∑k−1
`=0 w` = ∑k

`=1 w` = ∑3
`=1 w` + ∑k

`=4 w` = 15 +

∑k
`=4 w`. Since w4 = 6 and wk = w0 = 5, we may assume ∑k

`=4 w` ≥ 5(k − 3). Hence,
w( f ) ≥ 15 + 5(k− 3) = 5k, a contradiction with w( f ) < 5k.

Lemma 9. Let k ≥ 7 and let f be a DRDF of P(3k, k) such that (w0, w1, w2, w3, w4) =
(5, 7, 3, 5, 6). Assume that w( f ) < 5k and let j ∈ A3 \ A′. If γdR(P(3t, t)) ≥ 5t for each
t < k then wj+1 6= 8+ and wj−1 6= 8+.

Proof. Let k ≥ 7 and let f be a given DRDF of P(3k, k) with w( f ) < 5k. Let j ∈ A3 \ A′.
Then we have j ∈ [6, k− 1] and wj = 3. Without loss of generality, let j be the minimal
integer such that j ∈ A3 \ A′, thus we may assume [j] ∩ A3 ⊆ A′.

(A) First we will prove that wj+1 6= 8+. Suppose to the contrary there exists j ∈
[6, k− 1] such that (wj, wj+1) = (3, 8+) and [j] ∩ A3 ⊆ A′. Then wj+1 ∈ {8(3), 8(2), 9} and
wj+1 6= w0; therefore, j 6= k− 1, thus we have j ∈ [6, k− 2].

We will consider the following two cases.

• Case 1: Suppose that wj+1 ∈ {8(2), 9}.
We apply Algorithm C with j1 = j + 1, j2 = 1, t1 = 0, t2 = 3 on a graph P(3k, k). For
the resulting graph P′′ we have V(P′′) = V(P(3k, k)) \ {T1, T2, T3}, and by Lemma 4
we have P′′ ∼= P(3k− 9, k− 3) (see Figure 8).
Now we let f ′ = f |P′′ , and furthermore we set (a, b) = (3, 0); hence, f ′(u4) = 3,
f ′(u4+k) = 0, and all vertices of T0 are DR-dominated in a graph P′′. The neighbors of
vertices u4+k and u4+2k are pairwise assigned the same values by f ′ and f in graph
P′′ and in graph P(3k, k), respectively. Hence, all vertices of T4 are DR-dominated in a
graph P′′. Clearly, if wj+1 = 9 then all vertices of Tj and Tj+1 are DR-dominated in
graph P′′. If wj+1 = 8 then there are three different possibilities of assigned values
under f of vertices of Tj+1 (see Figure 9). We can see that in all three cases the vertex in
Tj+1 ∩U ∩V0 has a neighbor in Tj+2 with assigned value 2+ in graph P(3k, k). Clearly,
these vertices are also adjacent in P′′; hence, all vertices of Tj+1 are DR-dominated
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in graph P′′. Furthermore, in all three cases, all vertices of Tj are DR-dominated in
graph P′′ (see Figure 9). Therefore, f ′ is a DRDF of graph P′′ ∼= P(3k− 9, k− 3).
By assuming that γdR(P(3t, t)) ≥ 5t for each t < k, it follows 5(k− 3) ≤ γdR(P(3k−
9, k− 3)) ≤ w( f ′) = w( f )−∑3

`=1 w` = w( f )− 15, hence w( f ) ≥ 5k, contradicting
the assumption w( f ) < 5k.

DR-dominated in graph P′′. Futhermore, in all three cases, all vertices of Tj are DR-dominated in293

graph P′′ (see Fig. 9). Therefore, f ′ is a DRDF of graph P′′ ∼= P(3k− 9, k− 3).294

By assuming that γdR(P(3t, t)) ≥ 5t for each t < k, it follows 5(k − 3) ≤ γdR(P(3k − 9, k −295

3)) ≤ w( f ′) = w( f )−∑3
`=1 w` = w( f )− 15, hence w( f ) ≥ 5k, contradicting the assumption296

w( f ) < 5k.297
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graph P′′. If wj+1 = 8 then there are three different possibilities of assigned values
under f of vertices of Tj+1 (see Figure 9). We can see that in all three cases, the vertex in
Tj+1 ∩U ∩V0 has a neighbor in Tj+2 with assigned value 2+ in graph P(3k, k). Clearly,
these vertices are also adjacent in P′′, hence all vertices of Tj+1 are DR-dominated in
graph P′′. Futhermore, in all three cases, all vertices of Tj are DR-dominated in graph
P′′ (see Figure 9). Therefore, f ′ is a DRDF of graph P′′ ∼= P(3k− 9, k− 3).
By assuming that γdR(P(3t, t)) ≥ 5t for each t < k, it follows 5(k− 3) ≤ γdR(P(3k−
9, k− 3)) ≤ w( f ′) = w( f )−∑3

`=1 w` = w( f )− 15, hence w( f ) ≥ 5k, contradicting
the assumption w( f ) < 5k.

DR-dominated in graph P′′. Futhermore, in all three cases, all vertices of Tj are DR-dominated in293

graph P′′ (see Fig. 9). Therefore, f ′ is a DRDF of graph P′′ ∼= P(3k− 9, k− 3).294

By assuming that γdR(P(3t, t)) ≥ 5t for each t < k, it follows 5(k − 3) ≤ γdR(P(3k − 9, k −295
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• Case 2: Assume that wj+1 = 8(3).298
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• Case 2: Assume that wj+1 = 8(3).
Note that in this case, by Lemma 7 statement (g), we have wj−1 = 5+. From
wj+1 = 8(3) it follows that exactly one of the vertices from {vj+1, vj+k+1, vj+2k+1} is
assigned 3 by f . We consider each of these cases below.
Case 2.1: Let f (vj+1+k) = 3. Then f (vj+1) = f (vj+1+2k) = f (uj+1+k) = 0 and
( f (uj+1), f (uj+1+2k)) ∈ {(2, 3), (3, 2)}.
We apply Algorithm B with j′ = 1 and t′ = j on a graph P(3k, k), and by Lemma 3,
for the resulting graph P′ we have P′ ∼= P(3k− 3j, k− j) (see Figure 10). Now we let
f ′ = f |P′ , and in addition we set f ′(uj+1) = 2 and f ′(uj+1+2k) = 3, hence all vertices
of T0 and Tj+1 are DR-dominated in a graph P′. Even more, we can set f ′(vj+1+k) = 2,
and all vertices remain DR-dominated in a graph P′. Therefore f ′ is a DRDF of P′ with
w( f ′) = w( f |P′)− 1 = w( f )− 1−∑

j
`=1 w` = w( f )− 1− (∑4

`=1 w`+∑
j−1
`=5 w`+wj) =
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and wj−1 = 5+, it follows that ∑
j−1
`=5 w` ≥ 5(j − 5). By assumption, we have
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• Case 2: Assume that wj+1 = 8(3).
Note that in this case, by Lemma 7 statement (g), we have wj−1 = 5+. From
wj+1 = 8(3) it follows that exactly one of the vertices from {vj+1, vj+k+1, vj+2k+1} is
assigned 3 by f . We consider each of these cases below.
Case 2.1: Let f (vj+1+k) = 3. Then, f (vj+1) = f (vj+1+2k) = f (uj+1+k) = 0 and
( f (uj+1), f (uj+1+2k)) ∈ {(2, 3), (3, 2)}.
We apply Algorithm B with j′ = 1 and t′ = j on a graph P(3k, k), and by Lemma 3,
for the resulting graph P′ we have P′ ∼= P(3k− 3j, k− j) (see Figure 10). Now we let
f ′ = f |P′ , and in addition we set f ′(uj+1) = 2 and f ′(uj+1+2k) = 3; hence, all vertices
of T0 and Tj+1 are DR-dominated in a graph P′. Even more, we can set f ′(vj+1+k) = 2,
and all vertices remain DR-dominated in a graph P′. Therefore, f ′ is a DRDF of P′ with
w( f ′) = w( f |P′)− 1 = w( f )− 1−∑

j
`=1 w` = w( f )− 1− (∑4

`=1 w`+∑
j−1
`=5 w`+wj) =

w( f ) − 25− ∑
j−1
`=5 w`. Because of the condition [j] ∩ A3 ⊆ A′, and since w5 = 5+

and wj−1 = 5+, it follows that ∑
j−1
`=5 w` ≥ 5(j − 5). By assumption, we have

5(k − j) ≤ γdR(P(3k − 3j, k − j)) ≤ w( f ′) ≤ w( f ) − 25− 5(j − 5) = w( f ) − 5j, a
contradiction.
Case 2.2: Let f (vj+1) = 3. Then f (vj+1+k) = f (vj+1+2k) = f (uj+1) = 0 and
( f (uj+1+k), f (uj+1+2k)) ∈ {(2, 3), (3, 2)}.
We apply Algorithm A with j′ = 1 and t′ = j on a graph P(3k, k), and by Lemma 2,
for the resulting graph P′ we have P′ ∼= P(3k− 3j, k− j) (see Figure 11). Now we let
f ′ = f |P′ , and additional we set f ′(uj+1+k) = 3 and f ′(uj+1+2k) = 2; hence, all vertices
of T0 and Tj+1 are DR-dominated in a graph P′. Similarly as in Case 2.1, we can see that
there exists a DRDF f ′ of P′ with f ′(vj+1) = 2 and w( f ′) = w( f |P′)− 1 ≤ w( f )− 5j,
a contradiction.
Case 2.3: Let f (vj+1+2k) = 3. Then f (vj+1) = f (vj+1+k) = f (uj+1+2k) = 0 and
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( f (uj+1), f (uj+1+k)) ∈ {(2, 3), (3, 2)}.
We apply Algorithm A with j′ = 4 and t′ = j− 3 on a graph P(3k, k), and by Lemma 2,
for the resulting graph P′ we have P′ ∼= P(3k − 3j + 9, k − j + 3) (see Figure 12).
Now we let f ′ = f |P′ , additional we set either ( f ′(uj+1), f ′(uj+1+k)) = (3, 2) if
(a, b) = (3, 0), or ( f ′(uj+1), f ′(uj+1+k)) = (2, 3) if (a, b) = (0, 3) (see Figure 12, cases
a,b); hence, all vertices of T3 and Tj+1 are DR-dominated in a graph P′. Similarly as
before, in both possibilities, there exists a DRDF f ′ of P′ with f ′(vj+1+2k) = 2; hence,

w( f ′) = w( f |P′) − 1 = w( f ) − 1− ∑
j
`=4 w` = w( f ) − 1− (w4 + ∑

j−1
`=5 w` + wj) =

w( f ) − 10− ∑
j−1
`=5 w` ≤ w( f ) − 10− 5(j − 5) = w( f ) + 15− 5j. Recalling the as-

sumption that γdR(P(3t, t)) ≥ 5t for each t < k, it follows 5(k − j + 3) ≤ w( f ′) ≤
w( f ) + 15− 5j, leading to contradiction.
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Figure 10. Case 2.1 of Lemma 9: f (vj+1+k) = 3.
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Figure 11. Case 2.2 of Lemma 9: f (vj+1) = 3.

(B) Now assume that there exists j ∈ [6, k − 1] such that (wj−1, wj) = (8+, 3) and
[j] ∩ A3 ⊆ A′.

First assume that j = k − 1. Then w( f ) = ∑
j
`=0 w` = ∑4

`=0 w` + ∑
j−2
`=5 w` + wj−1 +

wj = 37 + ∑
j−2
`=5 w`, where ∑

j−2
`=5 w` = 0 if j = 6.

Because of the condition [j] ∩ A3 ⊆ A′, it follows that wj−2 = 5+; therefore, we have

∑
j−2
`=5 w` ≥ 5(j− 6). Hence, w( f ) ≥ 7 + 5j = 5k + 2, which is in contradiction with the

assumption w( f ) < 5k. So, we can restrict attention to j ∈ [6, k− 2].
In continuation, the reasoning is analogous to the proof of Case (A). Instead of Tj+1

we consider Tj−1, and similarly, we apply algorithms on graph P(3k, k); Algorithm C with
j1 = j, j2 = 1, t1 = 0 and t2 = 3 in Case 1, Algorithm B and Algorithm A with j′ = 1 and
t′ = j− 2 in Cases 2.1 and 2.2, respectively; and Algorithm A with j′ = 4 and t′ = j− 5 in
Case 2.3.



Mathematics 2021, 9, 336 13 of 18

2

00

ba

0

32

0

00

3

00

0

02

b

a0

a

b0

0

00 0

0

03

0

02

0

30

3

20

0

03

0

02

3

00

2

30

0

03

(a) (b)

u0 u1 u2 u3 u4 uj uj+1 u3 uj+1 u3 uj+1

2 2

u2k

Figure 12. Case 2.3 of Lemma 9: f (vj+1+2k) = 3.

Lemma 10. Let k ≥ 7 and let f be a DRDF of P(3k, k) such that (w0, w1, w2, w3, w4) =
(5, 7, 3, 5, 6). Suppose that w( f ) < 5k and let j ∈ A3 \ A′. If γdR(P(3t, t)) ≥ 5t for each
t < k then wj+1 6= 7(3) and wj−1 6= 7(3).

Proof. Let k ≥ 7 and let f be a given DRDF of P(3k, k) with w( f ) < 5k. Let j ∈ A3 \ A′.
Then we have j ∈ [6, k− 1] and wj = 3. Without loss of generality, let j be the minimal
integer such that j ∈ A3 \ A′; thus, we may assume [j] ∩ A3 ⊆ A′.

(A) Assume that (wj, wj+1) = (3, 7(3)). Then wj+1 6= w0; therefore, j 6= k − 1, and
it follows that j ∈ [6, k− 2]. By Lemma 7 statement (f), we have wj−1 ∈ {6(2), 7+}, and
thus s(j) = 16+. Note also that wj−2 = 5+. Namely, if wj−1 ∈ {6(2), 7(2)} then wj−2 = 5+

because of statement (c) of Lemma 7 and if wj−1 ∈ {7(3), 8+} then wj−2 = 5+ because of
the condition [j] ∩ A3 ⊆ A′.

We first observe that we have to consider only j ∈ [6, k− 3]. The argument is as follows.
If j = k − 2, then w( f ) = ∑

j+1
`=0 w` = ∑3

`=0 w` + ∑
j−1
`=4 w` + wj + wj+1 = 30 + ∑

j−1
`=4 w`.

Because of the condition [j] ∩ A3 ⊆ A′, and because of w4 = 6 and wj−1 = 6+, it follows

that ∑
j−1
`=4 w` ≥ 5(j− 4). Thus, w( f ) ≥ 30 + 5(j− 4) = 5j + 10 = 5k, but by assuming

w( f ) < 5k, it is a contradiction. Therefore j ∈ [6, k− 3]. We will consider the following two
cases.

• Case 1: Suppose that f (uj+1) = 2. Then ( f (uj+1+k), f (uj+1+2k)) ∈ {(2, 0), (0, 2)}.
We apply Algorithm A with j′ = 1 and t′ = j + 1 on graph P(3k, k), and by Lemma 2,
for the resulting graph P′ we have P′ ∼= P(3k− 3j− 3, k− j− 1).
Now we let f ′ = f |P′ , and in addition we set either ( f ′(uk) = 2 if f (uj+1+k) = 2),
or ( f ′(u2k) = 2, f ′(v2k) = 0 and f ′(vk) = 3 if f (uj+1+2k) = 2). Then, in both cases,
all vertices of T0 are DR-dominated in a graph P′. The neighbors of vertices of
Tj+2 ∩U have pairwise the same assigned values by f ′ and f in a graph P′ and in
a graph P(3k, k), respectively. hence all vertices of Tj+2 are DR-dominated in graph

P′. Therefore f ′ is a DRDF of P′ with w( f ′) = w( f |P′) + 2 = w( f ) + 2−∑
j+1
`=1 w` =

w( f )+ 2− (∑4
`=1 w`+∑

j−2
`=5 w`+ s(j)) ≤ w( f )− 35−∑

j−2
`=5 w`, where ∑

j−2
`=5 w` is equal

to 0 if j = 6.
Because of the condition [j] ∩ A3 ⊆ A′, and because of w5 = 5+ and wj−2 = 5+, it

follows, that ∑
j−2
`=5 w` ≥ 5(j− 6).

By assuming, γdR(P(3t, t)) ≥ 5t for each t < k, it follows 5(k− j− 1) ≤ γdR(P(3k−
3j− 3, k− j− 1)) ≤ w( f ′) ≤ w( f )− 5j− 5, but w( f ) < 5k, a contradiction.

• Case 2. It remains consider the case when f (uj+1) = 0. Then f (uj+1+k) = f (uj+1+2k) =
2. We apply Algorithm A with j′ = 4 and t′ = j − 2 on graph P(3k, k), and by
Lemma 2, for the resulting graph P′ we have P′ ∼= P(3k − 3j + 6, k − j + 2). Now
we let f ′ = f |P′ , and in addition we set f ′(u3+k) = 2, f ′(v3) = 3, and f ′(v3+k) = 0.
Similarly as in Case 1, it follows, that f ′ is a DRDF of P′ with w( f ′) = w( f |P′) + 2,
and thus, 5(k− j + 2) ≤ w( f ′) = w( f ) + 2−∑

j+1
`=4 w` ≤ w( f ) + 2− (22 + 5(j− 6)) =

w( f )− 5j + 10, a contradiction.
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(B) Now assume (wj−1, wj) = (7(3), 3). We will consider the following two cases.

• Case 1. Suppose that f (uj−1+k) = 2. Then ( f (uj−1), f (uj−1+2k)) ∈ {(2, 0), (0, 2)}. We
apply Algorithm A with j′ = 1 and t′ = j− 2 on a graph P(3k, k), and by Lemma 2,
for the resulting graph P′ we have P′ ∼= P(3k− 3j + 6, k− j + 2).
Now we let f ′ = f |P′ , and in addition we set f ′(uj−1+k) = 3. Then, in both cases,
all vertices of T0 and Tj−1 are DR-dominated in a graph P′. Therefore f ′ is a DRDF

of P′ with w( f ′) = w( f |P′) + 1 = w( f ) + 1−∑
j−2
`=1 w`. Similarly as before, it follows

5(k − j + 2) ≤ w( f ′) ≤ w( f ) − 20− 5(j − 6) = w( f ) − 5j + 10, but w( f ) < 5k, a
contradiction.

• Case 2. It remains consider the case when f (uj−1+k) = 0. Then f (uj−1) = f (uj−1+2k) =
2. We apply Algorithm B with j′ = 1 and t′ = j − 2 on a graph P(3k, k), and by
Lemma 3, for the resulting graph P′ we have P′ ∼= P(3k− 3j + 6, k− j + 2). Now we
let f ′ = f |P′ , and in addition we set f ′(uj−1+2k) = 3. Similarly as in Case 1, it follows,
that f ′ is a DRDF of P′ with w( f ′) = w( f |P′) + 1 ≤ w( f )− 5j + 10, a contradiction.

Lemma 11. Let k ≥ 6 and let f be a DRDF of P(3k, k) such that (wi, wi+1, wi+2, wi+3, wi+4) =
(5, 7, 3, 5, 6) for any i ∈ [k]. If γdR(P(3t, t)) ≥ 5t for each t < k then w( f ) ≥ 5k.

Proof. Let k ≥ 6 and let f be a DRDF of P(3k, k) as given. Observe that if k = 6 then
wi+5 = 5+ and w( f ) > 5k = 30.
Let k ≥ 7 and assume that w( f ) < 5k. By Lemma 8, there exists j ∈ [k] such that wj = 3
and (wj−1, wj, wj+1) /∈ {(6, 3, 6), (5, 3, 7(2)), (7(2), 3, 5)}. By Lemmas 9 and 10 we have
{wj−1, wj+1} ∩ {7(3), 8+} = ∅. It follows that either wj−1 = 3 or wj+1 = 3, without loss of
generality, say wj−1 = 3. Then, using Lemma 7 statement (a), we have wj+1 ∈ {8(2), 9}, a
contradiction. Thus w( f ) ≥ 5k.

4.4. DRDF with (WI−1, WI , WI+1, WI+2, WI+3) = (3, 8, 3, 5, 6)

Lemma 12. Let k ≥ 6 and let f be a DRDF of P(3k, k) such that (wi−1, wi, wi+1, wi+2, wi+3) =
(3, 8, 3, 5, 6) for some i ∈ [k]. If γdR(P(3t, t)) ≥ 5t for each t < k, then w( f ) ≥ 5k.

Proof. Let k ≥ 6 and let f be a DRDF of P(3k, k) such that (wi−1, wi, wi+1, wi+2, wi+3) =
(3, 8, 3, 5, 6) for some i ∈ [k]. By Lemma 7, statements (b) and (j), we have wi = 8(3) and
wi+3 = 6(3). Furthemore, by Lemma 7, statements (g) and (h), we have wi−2 = 5+ and
wi+4 = 5+. Therefore, the given sequence gives rise to the sequence (wi−2, wi−1, wi, wi+1,
wi+2, wi+3, wi+4) = (5+, 3, 8(3), 3, 5, 6(3), 5+).

If k = 6 then Ti+4 = Ti−2 and w( f ) ≥ 30.
Let k > 6 and, without loss of generality, we set i = 0. Then, w0 = 8(3), and by

symmetry we may assume that f (u0) = 2, f (uk) = f (v2k) = 3 and f (v0) = f (vk) =
f (u2k) = 0. It is easy to see that f (v1+2k) = 3 and f (u2) = 2, otherwise some vertices
of T1 are not DR-dominated. In particular, f of vertices of T0 ∪ T1 ∪ T2 ∪ T3 is given by(

2 3 0
0 0 3

)(
0 0 0
0 0 3

)(
2 0 0
0 a b

)(
0 b a
· · ·

)
, where (a, b) ∈ {(0, 3), (3, 0)} and

exactly one vertex of T3 ∩ I is assigned 3. Note that we have either ( f (v3) = 0 and
f (u4) = 2+) or f (v3) = 3, otherwise vertex u3 is not DR-dominated. We will consider the
following two cases.

• Case 1. Assume that f (u4) = 2+. Then f (v4) = 0. We apply Algorithm B with
j = 1 and t = 3 on graph P(3k, k). For the resulting graph P′ we have V(P′) =
V(P(3k, k)) \ {T1, T2, T3}, and by Lemma 3, we have P′ ∼= P(3k− 9, k− 3). Now we
define f ′ as follows; we set f ′(v2k) = 2, f ′(v4+k) = 3, f ′(v4+2k) = 0, and f ′(x) = f (x)
for each x ∈ V(P′) \ {v2k, v4+k, v4+2k}. It is straightforward to check that in P′, all
vertices are DR-dominated by f ′, hence f ′ is a DRDF of P′. As f ′(v2k) = f (v2k)− 1,
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it follows that w( f ′) = w( f |P′)− 1 = w( f )− 1− s(2) = w( f )− 15. Hence, assuming
that γdR(P(3t, t)) ≥ 5t for each t < k, we have w( f ) ≥ 5k, as needed.

• Case 2. Assume now that f (u4) = 0. Then f (v3) = 3, otherwise vertex u3 is not
DR-dominated, and hence f (v3+k) = f (v3+2k) = 0. Furthermore, if b = 0 = f (u3+k)
then f (u4+k) = 3, and if a = 0 = f (u3+2k) then f (u4+2k) = 3, otherwise vertices u3+k
and u3+2k, respectively, are not DR-dominated. We apply Algorithm A with j = 3 and
t = 1 on graph P(3k, k). For the resulting graph P′ we have V(P′) = V(P(3k, k)) \ T3,
and by Lemma 2, we have P′ ∼= P(3k − 3, k − 1). Now we define f ′ as follows;
f ′(x) = f (x) for each x ∈ V(P′) \ {T2, T4}. On T2, we set f ′(u2) = 3, f ′(v2+k) = b,
f (v′2+2k) = a, and f ′(y) = f (y) = 0 for each y ∈ {v2, u2+k, u2+2k}. On T4, we set
f ′(v4) = 0, f ′(v4+k) = b, f ′(v4+2k) = a, and f ′(y) = f (y) for each y ∈ T4 ∩U. It
is straightforward to check that in P′, all vertices are DR-dominated by f ′, hence
f ′ is a DRDF of P′. As f ′(u2) = f (u2) + 1, it follows that w( f ′) = w( f |P′) + 1 =
w( f ) + 1− w3 = w( f )− 5. Hence, assuming that γdR(P(3t, t)) ≥ 5t for each t < k,
we have w( f ) ≥ 5k, as needed.

4.5. DRDF with (WI−1, WI , WI+1) = (3, 7, 3)

Lemma 13. Let k ≥ 6 and f be a DRDF of P(3k, k) such that (wi−1, wi, wi+1) = (3, 7, 3) for
some i ∈ [k]. If γdR(P(3t, t)) ≥ 5t for each t < k, then w( f ) ≥ 5k.

Proof. Let k ≥ 6 and let f be a DRDF of P(3k, k) such that (wi−1, wi, wi+1) = (3, 7, 3) for
some i ∈ [k]. By Lemma 7, statements (f,j), we have wi = 7(3), wi−2 ∈ {6(2), 7+}, and
wi+2 ∈ {6(2), 7+}.

Without loss of generality, we set i = 2. Then w2 = 7(3) and by symmetry we may
assume that f (u2) = f (u2+k) = 2, f (v2+2k) = 3, and f (v2) = f (v2+k) = f (u2+2k) = 0.
Furthermore, we have w1 = w3 = 3; therefore, exactly one vertex of T1 ∩ I and exactly one
vertex of T3 ∩ I are assigned 3, and all other vertices of T1 ∪ T3 are assigned 0 by f .

Now we will observe values of vertices of T0 ∩U. If f (v1+2k) = 3 then f (u0) = 2+

and f (uk) = 2+, otherwise vertices u1 and u1+k are not DR-dominated. If f (v1+2k) 6= 3
then either f (v1) = 3 or f (v1+k) = 3, and in both cases f (u2k) = 3 otherwise vertex u1+2k
is not DR-dominated. More precisely, if f (v1+k) = 3 then f (u0) = 2+ and f (u2k) = 3, and
if f (v1) = 3 then f (uk) = 2+ and f (u2k) = 3.

Similarly, for vertices of T4 ∩U we have the next two possibilities; if f (v3+2k) = 3,
then f (u4) = 2+ and f (u4+k) = 2+ and if f (v3+2k) 6= 3 then f (u4+2k) = 3 and either
f (u4) = 2+ or f (u4+k) = 2+.

First we will consider the case where either f (v1+2k) = 3 or f (v3+2k) = 3. Then it only
remains to consider the case where f (u2k) = f (u4+2k) = 3.

• Case 1. Assume that f (v1+2k) = 3 or f (v3+2k) = 3. Without loss of generality, let
f (v1+2k) = 3. Then f (u0) = 2+ and f (uk) = 2+. Furthermore, if f (v3+2k) = 3 then
f (u4) = 2+ and f (u4+k) = 2+, if f (v3+k) = 3 then f (u4) = 2+ and f (u4+2k) = 3, if
f (v3) = 3 then f (u4+k) = 2+ and f (u4+2k) = 3.
We apply Algorithm A with j = 1 and t = 2 on graph P(3k, k). For the resulting
graph P′ we have V(P′) = V(P(3k, k)) \ {T1, T2}, and by Lemma 2, we have P′ ∼=
P(3k− 6, k− 2). Let f ′ = f |P′ . It is straightforward to check that in P′ (in all three
cases), all vertices are DR-dominated by f ′, therefore f ′ is a DRDF of P′, where
w( f ′) = w( f |P′) = w( f )− 10. Hence, assuming that γdR(P(3t, t)) ≥ 5t for each t < k,
we have w( f ) ≥ 5k, as needed.

• Case 2. Assume now that f (v1+2k) = f (v3+2k) = 0. Then f (u2k) = f (u4+2k) = 3.
We apply Algorithm B with j = 1 and t = 2 on graph P(3k, k). For the resulting
graph P′ we have V(P′) = V(P(3k, k)) \ {T1, T2}, and by Lemma 3, we have P′ ∼=
P(3k − 6, k − 2). Now we define f ′ as follows; we set f ′(v3) = 0, f ′(v3+k) = 3,
and f ′(x) = f (x) for each x ∈ V(P′) \ {v3, v3+k}. It is straightforward to check
that in P′, all vertices are DR-dominated by f ′, hence f ′ is a DRDF of P′ where
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w( f ′) = w( f |P′) = w( f )− 10. Hence, assuming that γdR(P(3t, t)) ≥ 5t for each t < k,
we have w( f ) ≥ 5k, as needed.

4.6. Last Subcase in the Proof of Proposition 3

Lemma 14. Let k ≥ 6 and let f be a DRDF of Petersen graph P(3k, k), such that, for each i ∈ [k],
(wi−1, wi, wi+1, ) 6= (3, 7, 3) and (wi−1, wi, wi+1, wi+2, wi+3) /∈ {(5, 7, 3, 5, 6), (3, 8, 3, 5, 6)}.
Then w( f ) ≥ 5k.

Proof. Let k ≥ 6 and let f be a DRDF of Petersen graph P(3k, k), such that for each i ∈ [k],
(wi−1, wi, wi+1, ) 6= (3, 7, 3) and (wi−1, wi, wi+1, wi+2, wi+3) /∈ {(5, 7, 3, 5, 6), (3, 8, 3, 5, 6)}.
We will prove that the average weight wi is at least 5, i.e., that w( f ) = ∑ wi ≥ 5k or,
equivalently, that ∑ si ≥ 15k.

Clearly, if si = 15+ for each i, then w( f ) ≥ 5k. By Lemma 7, we know that
there are exactly five possible sequences (wi−1, wi, wi+1) for which si < 15, in particular:
(wi−1, wi, wi+1) ∈ {(3, 3, 8(2)), (3, 5, 6(3)), (3, 6(2), 5), (3, 7(3), 3), (3, 8(3), 3)}. By assumption,
there is no subsequence (3, 7(3), 3). Below we will show that for every Ti with si < 15 we
can define a set of Tj such that their average s is at least 15. More formally, for each i with
si < 15 we define a set of indices Hi such that i ∈ Hi and the average si in Hi is 15+. As it
will be easy to see that by construction, the sets Hi are pairwise disjoint, it will follow that

the average s is at least 15, more precisely
1
|Hi| ∑

j∈Hi

sj = 15+.

• Case 1. Assume (wi−1, wi, wi+1) = (3, 3, 8(2)).
In this case si = 14. By Lemma 7, statement (c), we have wi+2 = 5+, hence si+1 = 16+

and si+2 = 16+. Furthermore, by Lemma 7, statement (a), it follows that wi−2 ∈
{8(2), 9}.
If wi−2 = 9 then si−1 = 15 and si−2 = 15+, which implies si + si+1 = 14 + 16+ = 30+

and we define Hi = {i, i + 1}.
If wi−2 = 8(2) then by Lemma 7, statement (c), wi−3 = 5+, thus si−1 = 14, si−2 = 16+

and si−3 = 16+. Hence si + si+1 = 14+ 16+ = 30+ and si−1 + si−2 = 14+ 16+ = 30+,
so we can define Hi = {i− 2, i− 1, i, i + 1} (and Hi−1 = Hi = {i− 2, i− 1, i, i + 1}).

• Case 2. Assume (wi−1, wi, wi+1) = (3, 6(2), 5), thus si = 14. By Lemma 7, statement
(i), we have wi+2 = 5+, thus si+1 = 16+. By Lemma 7, statement (f), we have
wi−2 ∈ {6(2), 7+}, thus si−1 = 15+.
If si+2 = 15+, then si + si+1 = 14 + 16+ = 30+ and we can define Hi = {i, i + 1}.
Assume now that si+2 < 15. It is easy to see there is only one possible continuation
of the sequence: (wi−1, wi, wi+1, wi+2, wi+3) = (3, 6(2), 5, 6(2), 3). Then si+1 = 17,
si+2 = 14, and by Lemma 7, statement (f), we have si+3 = 15+, and we define
Hi = Hi+2 = {i, i + 1, i + 2}.

• Case 3. Assume (wi−1, wi, wi+1) = (3, 5, 6(3)),
thus si = 14. By Lemma 7, statement (h), we have wi+2 = 5+, hence si+1 = 16+.
Furthermore, by Lemma 7, statement (d), wi−2 ∈ {7(2), 8+}, thus si−1 = 15+.
If si+2 = 15+, then let Hi = {i, i + 1}.
Assume now that si+2 < 15. It is easy to see that there exists only one case: (wi−1,
wi, wi+1, wi+2, wi+3) = (3, 5, 6(3), 5, 3). By Lemma 7, statement (d), we have wi+4 ∈
{7(2), 8+}.
If k = 6, then Ti+4 = Ti−2. Note that wi−1 = wi+3 = 3 and because of Lemma 7,
statement (j), we have wi+4 ∈ {8(3), 9}, and thus w( f ) ≥ 30.
Let k > 6. By symmetry, it is enough to consider wi−2. There are three possibilities.

(a) Assume first that wi−2 = 9. Then we have (si−2, si−1, si, si+1, si+2, si+3) = (15+,
17, 14, 16, 14, 15+), and Hi = Hi+2 = {i− 1, i, i + 1, i + 2}.

(b) Suppose now that wi−2 = 7(2). Then, by Lemma 7, statement (c), we have wi−3 =
5+. If wi−3 = 5, then we obtain the sequence (5, 7, 3, 5, 6) which is not possible
by assumption. Therefore wi−3 = 6+, and we have (si−3, si−2, si−1, si, si+1, si+2,
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si+3) = (16+, 16+, 15, 14, 16, 14, 15+), so we can define Hi = Hi+2 = {i− 2, i−
1, i, i + 1, i + 2}.

(c) It remains to consider the case when wi−2 = 8. We can assume wi−3 6= 3 because
otherwise we have the sequence (3, 8, 3, 5, 6), which is not possible. Therefore
wi−3 = 5+, thus we have (si−3, si−2, si−1, si, si+1, si+2, si+3) = (16+, 16+, 16, 14,
16, 14, 15+). So we can define Hi = Hi+2 = {i− 1, i, i + 1, i + 2}.

• Case 4. Finally, let (wi−1, wi, wi+1) = (3, 8(3), 3).
In this case si = 14. By Lemma 7, statement (g), we have wi−2 = 5+ and wi+2 = 5+,
thus si−1 = 16+ and si+1 = 16+.
If si−2 = 15+ or si+2 = 15+, then Hi = {i, i− 1} or Hi = {i, i + 1}. Assume now that
si−2 < 15 and si+2 < 15. It is easy to see that there is exactly one case with si+2 < 15
that is left to be considered: (wi−1, wi, wi+1, wi+2, wi+3) = (3, 8(3), 3, 6(2), 5). Hence,
by Lemma 7, statement (i), we have wi+4 = 5+, implying (si−1, si, si+1, si+2, si+3) =
(16+, 14, 17, 14, 16+), so we can define Hi = Hi+2 = {i, i + 1, i + 2}.
To conclude the proof, recall that by definitions we know that for each Hi and Hj we

have either Hi ∩ Hj = ∅ or Hi = Hj. We omit the details.

4.7. Section Summary

In all cases, elaborated in previous subsections it was proven that a DRDF must
have weight at least 5k under various assumptions that cover all possible cases (recall
Lemmas 11–14). Therefore, Proposition 3 follows.

5. Conclusions

We established the double Roman domination numbers of all Petersen graphs P(3k, k).
In addition, the double Roman graphs are characterized among them. In our future work,
we plan to explore similar statements for some other families such as P(ck, k) for c ≥ 4.
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