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Abstract: In this paper, a new method of measurement matrix optimization for compressed sensing
based on alternating minimization is introduced. The optimal measurement matrix is formulated in
terms of minimizing the Frobenius norm of the difference between the Gram matrix of sensing matrix
and the target one. The method considers the simultaneous minimization of the mutual coherence
indexes including maximum mutual coherence µmax, t-averaged mutual coherence µave and global
mutual coherence µall , and solves the problem that minimizing a single index usually results in the
deterioration of the others. Firstly, the threshold of the shrinkage function is raised to be higher than
the Welch bound and the relaxed Equiangular Tight Frame obtained by applying the new function
to the Gram matrix is taken as the initial target Gram matrix, which reduces µave and solves the
problem that µmax would be larger caused by the lower threshold in the known shrinkage function.
Then a new target Gram matrix is obtained by sequentially applying rank reduction and eigenvalue
averaging to the initial one, leading to lower. The analytical solutions of measurement matrix are
derived by SVD and an alternating scheme is adopted in the method. Simulation results show that
the proposed method simultaneously reduces the above three indexes and outperforms the known
algorithms in terms of reconstruction performance.

Keywords: compressed sensing; measurement matrix; Equiangular Tight Frame; mutual coherence

1. Introduction

Compressed sensing (CS) [1] can sample the sparse or compressible signals at a sub-
Nyquist rate, which brings great convenience for data storage, transmission, and processing.
By adopting the reconstruction algorithms, the signal can be exactly reconstructed from
the sampled data. As a marvel way of signal processing, CS is applied in different fields
such as image encryption [2], wideband spectrum sensing [3], wireless sensor network
data processing [4], etc.

The original signal x ∈ RN×1 is assumed to have a sparse representation in a known
domain Ψ ∈ RN×L

N (N ≤ L) as x = Ψs where Ψ is the dictionary matrix and s is a K-sparse
signal. The incomplete measurement y ∈ RM×1 is obtained through the linear model

y = Φx = Ds (1)

where Φ ∈ RM×N(M < N) is called the measurement matrix and D = ΦΨ is the
sensing matrix.

Some specific properties of Φ have great impacts on the reconstruction performance.
In [5,6], spark and restricted isometric property (RIP) are respectively proposed as the
sufficient conditions on Φ to recovery guarantee. However, computing the spark of a
matrix has combinatorial complexity and certifying RIP for a matrix requires combinatorial
search, that is to say, these tasks are NP-hard and difficult to accomplish. To a large extent,
the coherence between Φ and Ψ reflects the performance of meeting the above conditions.
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Actually, the coherence is equivalent to the mutual coherence of D. Since the mutual
coherence can be easily manipulated to provide recovery guarantees, it is commonly used
to measure the performance of Φ. The frequently-used mutual coherence indexes include
the maximum mutual coherence µmax [7], t-averaged mutual coherence µave [8] and global
mutual coherence µall [9], which respectively represent the maximum, the average and the
sum of squares of the correlation between any distinct pair of columns in D.

The first attempt to consider the optimal design of Φ is given in [8]. The simulation
results carried out in [8] show that the optimized Φ leads to smaller µave and a substantially
better CS reconstruction performance is obtained. Then the optimization of Φ becomes
an important issue in CS. The recent works try to find the optimal Φ which has excellent
performance in reducing the mutual correlation by minimizing the Frobenius norm of the
difference between the Gram matrix G = D

′
D and the target Gram matrix Gt. The main

work focuses on designing Gt and finding the best Φ.
In [8], Gt is obtained by shrinking the off-diagonal entries in G. The shrinkage tech-

nique reduces µave but it is time-consuming. Furthermore, µmax is still large, which ruins
the worst-case guarantees of the reconstruction algorithms. A suitable point between the
current solution and the one obtained using a new shrinkage function is chosen to design
the Gt in [10]. It is of very strong competitiveness in µave and µmax. However, the optimal
point is hard to determine and the unsuitable point may seriously degrade the algorithm’s
performance. In [9], Gt is obtained by averaging the eigenvalues of G. Simulation results
show that µall is reduced effectively but reducing µave and µmax is hard to be guaranteed,
which means µave and µmax may maintain large values. Duarte-Carajalino and Sapiro [11]
set Gt as an identity matrix. Since D is overcomplete and G cannot be an identity ma-
trix, simply minimizing the difference between G and Gt does not imply low µmax [12].
In [13–17], Gt is chosen from a set of relaxed Equiangular Tight Frames (ETF) [18]. The

set can be formulated as S =

{
Gt ∈ RL×L : Gt = Gt

′, diagGt = 1, max
i 6=j
|Gt(i, j)| ≤ µwelch

}
where µwelch denotes the Welch bound [19] and Gt(i, j) denotes the (i, j)th entry of Gt.
However, the maximum absolute value of off-diagonal entries in G is almost always greater
than µwelch. In this case, the optimization usually implies a solution D with low µave but
high µmax. In summary, the target Gram matrices mentioned above only focus on a certain
mutual coherence index, and fail to take into account µave, µmax and µall simultaneously.
When a certain index is targeted, the other indexes may not decrease significantly or even
increase. Therefore, Φ is not ‘good’ enough and the reconstruction performance is well
below par.

After designing Gt, the next step is to find the ‘best’ Φ by approaching G to Gt.
In [8–11,17], G is obtained by applying SVD to Gt primarily and then the square root

D̂ of G is built as D̂
′
D̂ = G. At last, Φ is obtained by Φ = D̂Ψ† where † denotes the

Moore Penrose pseudoinverse. This kind of method is intuitive, but the generalized
pseudoinverse poses problems of calculation accuracy and robustness [15]. In [14,15],
gradient algorithm and quasi-Newtonian algorithm are respectively utilized to attain Φ.
Firstly, the cost function F(Φ) with Φ as the variable is constructed. Then the search
direction is determined by the derivative of F(Φ). Finally, Φ is obtained with a fixed step
size. However, choosing a suitable step size which has a great influence on the accuracy
of the solution requires a lot of comparison work. Moreover, the gradient algorithm
and quasi-Newtonian algorithm cannot converge until a certain number of iterations is
accomplished, resulting in high computational cost. In [11,16], the method for designing Φ

shares the same concept as K-SVD [20], that is to update a matrix row by row. Eigenvalue
decomposition is required to find the square root of the maximum eigenvalue for each row,
which results in a significant increase in the calculation. For solving this problem, Hong
et al. [16] utilize the power method instead of eigenvalue decomposition. However, the
eigenvalue obtained by power method is the one with the largest absolute value. When the
eigenvalue is negative, eigenvalue decomposition is still necessary.

The primary contributions of this paper are threefold:
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• The new target Gram matrix Gt targets µave, µmax, and µall of D simultaneously is
designed. Firstly, a new shrinkage function whose threshold exceeds µwelch is utilized
to determine the initial target Gram matrix. Then Gt is obtained by sequentially
applying rank reduction and eigenvalue averaging to the initial matrix.

• Analytical solutions of the measurement matrix Φ to minimize the difference between
G = Ψ

′
Φ
′
ΦΨ and Gt are derived by SVD.

• Based on alternating minimization, an iterative method is proposed to optimize the
measurement matrix. The simulation results confirm the effectiveness of the proposed
method in decreasing the mutual coherence indexes and improving reconstruction
performance.

The remainder of this paper is organized as follows. Some basic definitions related to
mutual coherence indexes and frames are described in the next section. The main results
are presented in Section 3, where the solutions to the Gt design are characterized and a
class of the solutions to the optimal Φ is derived in detail. The procedure of our method
and the discussion can be also found in Section 3. In Section 4, simulations are carried out
to confirm the effectiveness of the proposed method. In the end, the conclusion is drawn.

2. Mutual Coherence Indexes and ETFs
2.1. Mutual Coherence Indexes

Rewrite D = [d1, d2 · · · dL] ∈ RM×L where di ∈ RM×1 and ‖di‖2 = 1. Denote
gij = d

′
idj the entry at the position of row i and column j in G, where i, j = 1, 2 · · · L. Here,

we quote the definitions of the mutual coherence indexes as that presented by Donoho [7],
Elad [8], and Zhao [9].

Definition 1. For a matrix D, the maximum mutual coherence µmax is defined as the largest
absolute and normalized inner product between all columns in D that can be described as

µmax = max
i 6=j

∣∣∣d′ idj

∣∣∣ = max
i 6=j

∣∣gij
∣∣ (2)

Definition 2. For a matrix D, the t-averaged mutual coherence µave is defined as the average of all
absolute and normalized inner products between different columns in D that are above t and can be
described as

µave =

∑
i 6=j

(∣∣gij ≥ t
∣∣)∣∣gij

∣∣
∑
i 6=j

(∣∣gij ≥ t
∣∣) (3)

Definition 3. For a matrix D, the global mutual coherence µall is defined as the sum of squares of
normalized inner products between all columns in D that can be described as

µall = ∑
i 6=j

g2
ij (4)

As shown in [5], the original signal can be exactly reconstructed as long as
K < (1 + 1/µmax)/2. The conclusion is true from a worst-case standpoint which means
that µmax does not do justice to the actual behavior of sparse representations. Therefore,
Elad considers that an “average” measure of mutual coherence, namely µave, is more likely
to describe its true behavior. Different from the previous two indexes, µall reflects the
overall property of D.

In fact, the purpose of reducing the mutual coherence indexes of D is to attain G that
meets the following requirements: (1) The maximum absolute value of off-diagonal entries
in G is sufficiently small; (2) The number of off-diagonal entries with large absolute value
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is minimized; (3) The average of off-diagonal entries with large absolute value is as small
as possible. However, when a certain mutual coherence index is targeted solely, we cannot
guarantee that the obtained G will fully meet the requirements. Therefore, the decrease of
a certain index does not always mean better Φ and improved reconstruction performance.
When the three indexes are reduced simultaneously, the requirements are better satisfied
and better performance is obtained.

2.2. ETFs

It is shown in [19] that µmax of D ∈ RM×L
M is lower bounded by

µmax ≥ µwelch =

√
L−M

M(L− 1)

The bound is achievable for ETF. Here, we recall the definition of ETF [18].

Definition 4. Let F be a M× L matrix whose columns are f1, f2 · · · fL. The matrix F is called an
equiangular tight frame if it satisfies three conditions

(1) Each column has a unit norm: ‖fi‖2 = 1 for i = 1, 2 · · · L.
(2) The columns are equiangular. For some nonnegative θ, we have f

′
ifj = θ when i, j = 1, 2 · · · L

and i 6= j.
(3) The columns form a tight frame. That is, FF

′
= (L/M)IM where IM is an M × M

identity matrix.

Sustik et al. [18] show that a real M × L (1 < M < L − 1) ETF exists on if L ≤
min{M(M + 1)/2, (L−M)(L−M + 1)/2} holds. Furthermore,

√
M(L− 1)/(L−M)

and
√
(L−M)(L− 1)/M must be odd integers when L 6= 2M, M, and 2M − 1 must

be an odd number and the sum of two squares respectively when L = 2M. Fickus et al. [21]
surveys some known construction of ETFs and tabulates existence for sufficiently small
dimensions. The above studies show that M and L must meet some exacting requirements
when an ETF is available for D. However, it is really difficult to meet the requirements
in practice, which means the maximum absolute value of the off-diagonal entries in G is
usually significantly larger than µwelch.

3. The Proposed Method

The off-diagonal entries in G actually are the inner products between different columns
in D. Reducing those entries is likely to lead to lower mutual coherence indexes and better
performance. The most straightforward approach is to replace large off-diagonal values
with small ones. However, it is impossible to solve Φ from a certain G because of the
inequality of rank between Ψ

′
Φ
′
ΦΨ and G when the approach is adopted. Therefore, a

feasible approach is to minimize the difference between G and Gt that can be formulated as

min‖Gt −G‖2
F (5)

where G = Ψ
′
Φ
′
ΦΨ. This problem can be solved by alternating minimization strategy [14,16],

which iteratively minimizes (5) to find the desired Φ. The idea is to update Gt and Φ

alternatively and repeat this proceeding until a stop criterion is reached. In this section, we
design Gt firstly and then derive the analytical solutions of Φ. Finally, an iterative method
is proposed to optimize the measurement matrix based on alternating minimization.
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3.1. The Design of Gt

It can be seen from (5) that Gt plays an important role in measurement matrix opti-
mization. In recent works, Gt is frequently set as the relaxed ETF matrix, which is obtained
by applying the following shrinkage function

Gt(i, j) =
{

gij,
∣∣gij
∣∣ ≤ ς

sign
(

gij
)
ς, otherwise

(6)

where ς = µwelch for i, j = 1, 2 · · · L and i 6= j. Such a scheme in designing Gt guarantees
that the off-diagonal entries with large value of G will be intensively constrained, which
means lower µave and µmax.

Recall from Section 2.2 that the Welch bound is not achievable for G in most cases.
As shown in [14,16], different ς yields different results and µwelch is not the optimal value.
Li [22] et al. found that a smaller µmax is available when ς is slightly larger than µwelch.
Inspired by [22], we propose an improved shrinkage function which divides the entries
in G into three segments through two thresholds. One of the thresholds is µwelch and the
other is larger than µwelch. The function is as follows

Gt(i, j) =


sign

(
gij
)
Thr,

∣∣gij
∣∣ ≥ Thr

sign
(

gij
)
µwelch, µwelch ≤

∣∣gij
∣∣ < Thr

gij,
∣∣gij
∣∣ < µwelch

(7)

where Thr = µwelch + c and 0 < c < µwelch. As can be seen from Equation (7), the maximum
absolute value of off-diagonal entries in Gt is raised from µwelch to Thr. According to the
previous analysis, the new function is likely to lead to a further reduction in µmax while
maintaining the advantage of Equation (6) with respect to µave.

After shrinkage, Gt becomes full rank generally [8], that is Rank(Gt) = L. However,
the rank of G is identically equal to M. Thus, we consider mending this by forcing a rank
M. A new target Gram matrix, denoted as Gt_M, is obtained by solving

min‖Gt −Gt_M‖2
F, s.t. Rank(Gt_M) = M (8)

The solutions to this problem are given by Theorem 1 below.

Theorem 1. Let Gt ∈ RL×L
L be the matrix obtained by applying the shrinkage operation shown

as Equation (7) to G and Gt = PΛP
′

be the eigendecomposition of Gt. P is orthonormal with
dimension L and Λ = diag(λ1, λ2 · · · λL) with |λ1| ≥ |λ2| ≥ · · · ≥ |λL|. The solutions of the
minimization problem defined by (8) are characterized by

Gt_M = PAΛP
′

(9)

where A =

[
IM 0
0 0

]
∈ RL×L.

Proof. Denote Gt_M = X
′
X where X ∈ RM×L

M . Let X = UX
[

ΣX 0
]
V
′
X be an SVD of X,

where UX ∈ RM×M and VX ∈ RL×L are unitary. Then Gt_M can be rewritten as

Gt_M = VX

[
Σ2

X 0
0 0

]
V
′
X (10)
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Denote f = ‖Gt −Gt_M‖2
F. By substituting Gt_M with Gt_M = X

′
X, can be rewritten

as a function of matrix X. Let ∂ f /∂X be the derivative of f with respect to X. The optimal
X should satisfy ∂ f /∂X = 0. Equivalently, we have

XX
′
X = XGt (11)

It then follows from X = UX
[

ΣX 0
]
V
′
X that[

Σ2
X 0

0 0

]
= AV

′
XGtVX (12)

Substituting Equation (12) into Equation (10), we obtain

Gt_M = VXAV
′
XGt (13)

It turns out from the unitary invariance with Equation (13) that

f =
∥∥∥(IL − VXAV

′
X

)
Gt

∥∥∥2

F
(14)

With a few manipulations, we conclude that the solution of (8) is equivalent to solving

maxtr
(

Gt
′VXAV

′
XGt

)
(15)

where tr() denotes the matrix trace operation. Noting that A = A
′
A and Gt = PΛP

′
, the

problem in (15) is equivalent to

max
∥∥∥AV

′
XPΛ

∥∥∥2

F
(16)

Denote B = V
′
XP and rewrite B as B = [b1, b2 · · · bL] where bi ∈ RL×1 for i = 1, 2 · · · L.

Rewrite A as A = [e1, e2 · · · eM, 0, 0 · · · 0]′, where ej ∈ RL×1 denotes a unit vector with the
ith entry is equal to 1 for j = 1, 2 · · ·M. Then, it is easy to obtain that

AV
′
XPΛ =



λ1e
′
1b1 λ2e

′
1b2 · · · λLe

′
1bL

λ1e
′
2b1 λ2e

′
2b2 · · · λLe

′
2bL

...
λ1e

′
Mb1 λ2e

′
Mb2 · · · λLe

′
MbL

0 0 · · · 0
...
0 0 · · · 0


Let bji = e

′
jbi be the jth entry of bi. It can be shown with some manipulations that the

problem in (16) is equivalent to

max
L

∑
i=1

M

∑
j=1

λ2
i b2

ji (17)

With |λ1| ≥ |λ2| ≥ · · · ≥ |λL| and
L
∑

i=1

M
∑

j=1
b2

ji = M, it is straightforward that
L
∑

i=1

M
∑

j=1
λ2

i b2
ji

reaches the maximum value λ2
1 + λ2

2 + · · · + λ2
M only if

M
∑

j=1
b2

ji = 1 for i = 1, 2 · · ·M.

In this case,
M
∑

j=1
b2

ji = 0 and
M
∑

j=1
b2

ij = 0 hold for i = M + 1, M + 2 · · · L. Rewrite B as
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B =

[
B1 B2
B3 B4

]
where B1 ∈ RM×M. Accordingly, all of the entries in both B2 and B3 are

zero. Noting that B is unitary, it can be shown that B1 and B4 are unitary. Hence, we have

Gt_M = VXAV
′
XPΛP

′

= PB
′
ABΛP

′

= PAΛP
′

(18)

As can be seen, the rank of Gt_M is equal to M. The proof is then completed. �
After the operation of rank reduction, the rank of Gt_M is equal to that of G. Addition-

ally, Gt_M is most similar to Gt in terms of Frobenius norm. Inspired by [9], we reduce the
sum of squares of all off-diagonal values of Gt_M, namely µ̂all , by eigenvalue averaging.
When minimizing the difference between G and Gt_M, a smaller µ̂all is more likely to lead
to a smaller µall . µ̂all can be formulated as

µ̂all =
L

∑
i,j=1

ĝ2
ij −

L

∑
i=1

ĝ2
ii (19)

where ĝij denotes the (i, j)th entry of Gt_M and ĝii = 1 holds for i = 1, 2 · · · L.

Noting that
L
∑

i,j=1
g2

ij =
∥∥Ĝt

∥∥2
F and Gt_M = PΛ̂P

′
where Λ̂ = diag(λ1, λ2 · · · λM, 0 · · · 0),

µ̂all can be rewritten as

µ̂all =
M

∑
i=1

λ2
i −

L

∑
i=1

ĝ2
ii (20)

Assuming that
M
∑

i=1
λi is invariable, it then follows from the Cauchy BuniakowskySchwarz

Inequality that
M
∑

i=1
λ2

i takes the minimum value only if λi =
1
M

M
∑

i=1
λi for i = 1, 2 · · ·M. Let

λ̂ = 1
M

M
∑

i=1
λi and Λ̂ = diag

λ̂, λ̂ · · · λ̂︸ ︷︷ ︸
M

, 0 · · · 0

, a new target Gram matrix denoted as Gt_opt

with M equal all non-zero eigenvalues is given by

Gt_opt = PΛ̂P
′

(21)

Recall that Gt_M is most similar to Gt in terms of Frobenius norm, it means that Gt_M is
of good competitiveness in µave and µmax. Furthermore, as a variant of Gt_M, Gt_opt reduces
the sum of squares of all off-diagonal values of Gt_M, leading to a better performance in
minimizing µall . Therefore, Gt_opt is more likely to be an ideal solution of target Gram
matrix which leads to better µave, µmax, and µall simultaneously.

3.2. The Analytical Solutions of Φ

After obtaining the target Gram matrix Gt_opt, the next step of the optimization is to
find the best Φ. To handle the problem, we try to find the optimal solution by minimizing
the difference between Ψ

′
Φ
′
ΦΨ and Gt_opt as

min
∥∥∥Gt_opt −Ψ

′
Φ
′
ΦΨ

∥∥∥2

F
(22)

Let D = UD
[

ΣD 0
]
V
′
D be an SVD of D, where UD ∈ RM×M and VD ∈ RL×L are

unitary. Similarly, Let Ψ = UΨ

[
ΣΨ 0

]
V
′
Ψ be an SVD of Ψ, where UΨ ∈ RN×N and

VΨ ∈ RL×L are unitary. The solutions to this problem are given by Theorem 2 below.



Mathematics 2021, 9, 329 8 of 19

Theorem 2. Let Gt_opt be the matrix shown as Equation (21) and ΛM ∈ RM×M be the Mth
principal submatrix of Λ̂. Then the solutions of the minimization problem defined by (22) are
characterized by

Φopt = UZ

[
(ΛM)

1
2 0

]
P
′
VΨ

[
Σ−1

Ψ 0
]′U′Ψ (23)

where UZ ∈ RM×M is an arbitrary unitary matrix.

Proof. Assume that the off-diagonal values of ΣD and ΣΨ are non-zero, Φ can be written as

Φ = UD
[

ΣD 0
]
V
′
DVΨ

[
Σ−1

Ψ 0
]′U′Ψ (24)

By substituting Φ in (22) with Equation (24), it can be shown with some manipulations
that the solutions of the problem in (22) are equivalent to the solutions of

min
∥∥∥∥V

′
DPΛ̂P

′
VD −

[
Σ2

D 0
0 0

]∥∥∥∥2

F
(25)

Let Z = V
′
DPΛ̂P

′
VD and zi be the ith diagonal entry of Z. Denote ΛZ = diag(z1, z2 · · · zM).

With further manipulations, we simplify (25) to

min
∥∥Gt_opt

∥∥2
F +

∥∥∥ΛZ − Σ2
D

∥∥∥2

F
− ‖ΛZ‖2

F (26)

Obviously, the minima are achievable only if ΛZ = Σ2
D holds and ‖ΛZ‖2

F takes the
maximum value. Let U = V

′
DP and uij be the (i, j)th entry of U where i, j = 1, 2 · · · L.

Noting that the top M diagonal entries of Λ̂ are all equal to λ̂, we have

zi = λ̂
(

u2
i1 + u2

i2 + · · ·+ u2
iM

)
(27)

It is worth noting that ‖ΛZ‖2
F =

M
∑

i=1
z2

i and
L
∑

i=1
zi = Mλ̂ where 0 ≤ zi ≤ λ̂. Hence,

it is clear that the maxima of
M
∑

i=1
z2

i are reached when zi takes the maximum value λ̂ for

i = 1, 2 · · ·M. Rewrite U as U =

[
U1 U2
U3 U4

]
where U1 ∈ RM×M. Since zi = λ̂ holds for

i = 1, 2 · · ·M, we have u2
i1 + u2

i2 + · · ·+ u2
iM = 1 and U2 = 0, U3 = 0 accordingly. As UZ

is a unitary matrix, it is easy to verify that U1 and U4 are both unitary matrices. Then it
follows that

V
′
D =

[
U1 0
0 U4

]
P
′

(28)

Substituting Equation (28) into Equation (24), the optimal solution is obtained by

Φopt = UZ

[
(ΛM)

1
2 0

]
P
′
VΨ

[
Σ−1

Ψ 0
]′U′Ψ (29)

The proof is then completed. �

3.3. Comments

According to Sections 3.1 and 3.2, the procedure for measurement matrix optimization
has been summarized in Algorithm 1.
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Algorithm 1. The proposed optimization method.

Input: Dictionary matrix Ψ ∈ RN×L
N which has an SVD form of Ψ = UΨ

[
ΣΨ 0

]
V
′
Ψ, number

of iterations Iter, constant c, Welch bound µwelch.
Output: Measurement matrix Φopt.
Initialization: Initialize Φ0 ∈ RM×N to a random matrix, initial UZ ∈ RM×M to a unitary matrix.
For l = 1 to Iter do

1. Compute the sensing matrix D = ΦlΨ and normalize the columns in D.
2. Compute Gram matrix G = D

′
D.

3. Shrink G and obtain Gt by

Gt(i, j) =


sign

(
gij

)
(µwelch + c),

∣∣∣gij

∣∣∣ ≥ µwelch + c

sign
(

gij

)
µwelch, µwelch ≤

∣∣∣gij

∣∣∣ < µwelch + c

gij,
∣∣∣gij

∣∣∣ < µwelch

4. Apply eigenvalue decomposition to Gt and obtain Gt = PΛP
′
.

5. Compute the average of the top M diagonal entries in Λ, denoted as λ̂.
6. Construct ΛM ∈ RM×M as ΛM = diag

(
λ̂, λ̂ · · · λ̂

)
.

7. Update Φ by Φl = UZ

[
(ΛM)

1
2 0

]
P
′
VΨ

[
Σ−1

Ψ 0
]′

U
′
Ψ.

end
return ΦIter

Noting that Gt plays an important role in measurement matrix optimization, Algo-
rithm 1 takes µave, µmax and µall into consideration simultaneously when designing the Gt.
By minimizing (5), the Gram matrix is most similar to Gt in terms of Frobenius norm, lead-
ing to maintain the advantage of Gt in reducing the mutual coherence indexes. Therefore,
Algorithm 1 is effective in reducing µave, µmax, and µall .

In the shrinkage function, a different threshold yields different results. Inspired by [22],
we propose a shrinkage function shown as (7) which has a new threshold µwelch + c. We
have not derived the optimal value of c in theory, but setting c to a proper value can also
lead to a moderate result.

After averaging the eigenvalues of Gt_M, the first term on the right part of (20) is
minimized. However, the diagonal entries of Gt_M change accordingly. Hence, we can’t
assure that µ̂all reaches the minima, that is to say, Gt_opt may not be the optimal solution

in terms of µall . Fortunately, we find that the change of
M
∑

i=1
λ2

i is much greater than that of

L
∑

i=1
ĝ2

ii in (20), which means our approach is effective in reducing µall .

The proposed algorithm is an iterative one. The main complexity of Algorithm 1
for each iteration is located at steps 1, 2, 4, and 7. For those steps, the flops required are
O(MNL), O

(
ML2), O

(
L3), and O

(
L3) respectively. Hence, the complexity of Algorithm

1 is approximate to be O
(

IterL3). Since the complexity for similar algorithms in [8,16,17]
which apply eigenvalue decomposition or SVD is no less than O

(
IterL3), the proposed

algorithm has not increased the complexity significantly.

4. Simulation Results and Discussion

In this section, we conduct simulations to predetermine a suitable c firstly. Then, we
examine the mutual coherence indexes and reconstruction performance of the proposed
method and compare them with the well-established similar algorithms given in [8,16,17]
by presenting the empirical results. Last, we verify the effectiveness of our method with
various measurement matrices and dictionary matrices. The iteration number Iter is set
to 100 and t is set to µwelch. For a given dictionary matrix Ψ ∈ R80×120, x ∈ R120×1 has a
sparse representation as x = Ψs where s is K-sparse and each non-zero entry is randomly
positioned with a Gaussian distribution of i.i.d. zero-mean and unit variance. Orthogonal
Matching Pursuit (OMP) [23] algorithm is employed in signal reconstruction. Denote
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ε = ‖xe − x‖2/‖x‖2 the reconstruction error where xe is the reconstructed signal. The
reconstruction is identified as a success, called exact reconstruction, provided ε ≤ 10−6.
Denote Psuc the percentage of successful reconstruction. In Sections 4.1–4.3, Φ0 and Ψ are
both Gaussian random matrices.

4.1. The Choice of c

Since the analytical solution of c is extremely difficult, here, we conduct a serious
of simulations to find a suitable c. Figure 1 illustrates the change tendency of mutual
coherence indexes and Psuc with argument c. We fix the row number of M to 28, the
sparsity to 8, and varies c from 0 to 0.16. The experiment is performed for 1000 random
sparse ensembles and the results are recorded.

When c = 0, the shrinkage function shown as (7) is the same as (6). As can be seen
from the graphs, when c increases, µave increases, µmax and µall decrease first and then
increase, Psuc increases firstly and then decreases. µmax and µall reach the minima when
c = 0.02 and c = 0.03 respectively. It is worth noting that appropriate increase of c leads
to decrease of µmax and µall but increase of µave. When c = 0.01, better µmax and µall are
obtained and the loss in µave is tolerable. Moreover, Psuc reaches the maxima. Therefore,
0.01 may be a moderate value for c and c is set to 0.01 in the simulations in Sections 4.2–4.4.

4.2. Comparing the Mutual Coherence Indexes

This section presents a series of simulations to compare our method with algorithms
given in [8,16,17] on the three mutual coherence indexes of D obtained by D = ΦoptΨ

where Φopt is the optimized measurement matrix. For convenience, each method is denoted
as Propose, Elad, Hong, and Entezari. The down-scaling factor for Elad is set to 0.95. The
inner iteration number for Hong is set to 2, which means K-SVD is applied twice in every
updating of Φ. The point is set to 0.5 to update the Gt in Entezari.

Figure 2 illustrates the change tendency of mutual coherence indexes with iteration
number for M = 28. As can be seen from the figure, the indexes corresponding to different
algorithms all change monotonously with the iteration number. When µmax and µave
converge, the number of iterations required by our method is almost equal to that of Hong
and significantly less than that of Elad. When µall converges, the number of iterations
required by our method is equivalent to that of Entezari and significantly less than that of
Hong and Elad.

Figure 3 presents the histogram of the absolute off-diagonal values of
(
ΦoptΨ

)′
ΦoptΨ

for M = 28. It is seen from the figure that Elad and Entezari have long tails, showing that
the number of off-diagonal values that exceed 0.34 is relatively large. The tail of Hong is
shorter than that of Elad and Entezari, and reaches the maximum of 0.34. Compared with
Hong, our method has a shorter tail which reaches the maximum of 0.32 and has more
off-diagonal values below the µwelch (0.1662).

In conclusion, while effectively reducing µmax and µall , our method can maintain a
small µave at the same time. Additionally, the number of iterations required for the conver-
gence of each index of our method is significantly less than that of Elad. Therefore, from
the view of mutual coherence indexes, the measurement matrix obtained by our method
has better properties than the other three methods. This coincides with the theoretical
results obtained in the Section 3.

4.3. Comparing the Reconstruction Performance

Case 1. Comparison of the Psuc in the noiseless case.

In this case, we conduct two separate CS experiments, first by fixing K = 8 and varying
M from 12 to 44 and second by fixing M = 28 and varying K from 4 to 20. Each experiment
is performed for 1000 random sparse ensembles and the number of exact reconstruction
is recorded.
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Figures 4 and 5 reveal that the Psuc of our method is the highest, which indicates its
superiority over the other three methods.

Figure 1. (a) µmax and Psuc versus c; (b) µave and Psuc versus c; (c) µall and Psuc versus c, both with
M = 28 and K = 8.
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Figure 2. The convergence results: (a) evolution of µmax, (b) µave and (c) the evolution of µall , all
versus iteration number, where M = 28.
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Figure 3. Histogram of the absolute off-diagonal values of
(
ΦoptΨ

)′
ΦoptΨ for M = 28.

Table 1. µmax by Elad, Hong, Entezari, and proposed method versus measurement dimension M.

M Elad Hong Entezari Propose µwelch

12 0.8971 0.8884 0.8465 0.8072 0.2750

16 0.8157 0.6488 0.7517 0.5211 0.2337

20 0.7610 0.4625 0.6710 0.4218 0.2050

24 0.6972 0.3920 0.5874 0.3618 0.1833

28 0.6186 0.3403 0.5351 0.3223 0.1662

32 0.5460 0.3069 0.4911 0.2919 0.1520

36 0.4879 0.2804 0.4472 0.2659 0.1400

40 0.4454 0.2591 0.4177 0.2487 0.1296

44 0.3802 0.2404 0.3927 0.2302 0.1205

Table 2. µave by Elad, Hong, Entezari, and proposed method versus measurement dimension M.

M Elad Hong Entezari Propose µwelch

12 0.4168 0.4528 0.4141 0.3608 0.2750

16 0.3507 0.2964 0.3532 0.2979 0.2337

20 0.3016 0.2566 0.3111 0.2581 0.2050

24 0.2431 0.2272 0.2772 0.2288 0.1833

28 0.2212 0.2042 0.2512 0.2060 0.1662

32 0.2056 0.1854 0.2302 0.1879 0.1520

36 0.1937 0.1700 0.2118 0.1727 0.1400

40 0.1841 0.1567 0.1961 0.1600 0.1296

44 0.1760 0.1454 0.1824 0.1491 0.1205



Mathematics 2021, 9, 329 14 of 19

Table 3. µall by Elad, Hong, Entezari, and proposed method versus measurement dimension M.

M Elad Hong Entezari Propose

12 1220.20 2638.47 1081.18 1080.19

16 898.80 802.77 780.92 780.16

20 721.41 630.91 605.72 600.13

24 571.34 512.24 480.67 480.12

28 474.76 425.25 394.86 394.39

32 404.35 358.49 330.55 330.11

36 353.96 307.11 280.55 280.10

40 315.03 265.40 240.55 240.10

44 285.51 231.43 207.79 207.38

Figure 4. The change tendency of Psuc with M while K = 8 in the noiseless case.

Figure 5. The change tendency of Psuc with K while M = 28 in the noiseless case.
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Case 2. Comparison of the ε in the noisy case.

To show the robustness of the proposed method in noisy cases we consider the noisy
model y = Φx + v where v is the vector of additive Gaussian noise with zero means. We
conduct the experiment by fixing M = 28, K = 8, and varying SNR from 10 to 50 dB. The
experiment is performed for 1000 random sparse ensembles and the average reconstruction
error is recorded. From Figure 6, we can see that the reconstruction errors decrease with the
increase of SNR, and the error of the proposed method is smaller than that of the others.

Figure 6. The change tendency of ε with SNR while M = 40 and K = 8.

Table 3 presents that µall of the Entezari is slightly larger than that of our method. It
is interesting to note that the number of off-diagonal entries with smaller absolute values
in the Entezari is significantly larger than that of our method from Figure 3. Moreover,
it can be seen from Table 2 that µave of Hong is slightly lower than that of our method.
However, the simulation results show that our method outperforms the others in terms of
reconstruction performance. It is also worthy noting that our method reduces µave, µmax,
and µall simultaneously, leading to better reconstruction performance in CS. This implies
that a single mutual coherence index cannot accurately reflect the actual performance
of the methods, and verifies the necessity of using multiple indexes simultaneously in
measurement matrix optimization.

4.4. Different Kinds of Φ and Ψ Optimized by the Proposed Methods

To analyze the performance of our method with various measurement matrices and
dictionary matrices, a serious of simulations are carried out in this section. We choose the
measurement matrix as a Gaussian random matrix and a Bernoulli random matrix, and
choose the dictionary matrix as a Gaussian random matrix and the DCT matrix, respectively.
We compare the mutual coherence indexes and the reconstruction performance before and
after optimization. When Ψ is the Gaussian random matrix, Φ belongs to RM×80 and Ψ

belongs to R80×120. When Ψ is the DCT matrix, Φ belongs to RM×120 and Ψ belongs to
R120×120. Each experiment is performed for 1000 random sparse ensembles.

The mutual coherence indexes of different measurement matrices Φ with different
dictionary matrices Ψ are shown in Figure 7. As seen from the simulations, all the optimized
measurement matrices produce smaller µmax, µave, and µall than the random ones.
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Figure 7. The evolution of (a) µmax, (b) µave and (c) µall , all versus measurements number with
different D.
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Figures 8 and 9 present the reconstruction performance of OMP with the optimized
measurement matrices and the random ones. It is seen from the graphs in these figures
that all the optimized matrices outperform the random ones in terms of the percentage of
exact reconstruction.

Figure 8. The change tendency of Psuc with M while K = 8 in the noiseless case.

Figure 9. The change tendency of Psuc with K while M = 28 in the noiseless case.

5. Conclusions

This paper focused on the optimization of measurement matrix for compressed sens-
ing. To decrease µmax, µave, and µall simultaneously, we designed a new target Gram matrix
which was obtained by applying a new shrinkage function to the Gram matrix and up-
dated by performing rank reduction and eigenvalue averaging. Then, we characterized the
analytical solutions of the measurement matrix by SVD. Based on alternating minimization,
we proposed an iterative method to optimize the measurement matrix. The simulation
results show that the proposed method reduces µmax, µave, and µall simultaneously and
outperforms the existing algorithms in terms of reconstruction performance. In addition,
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the proposed method is computationally less expensive than some existing algorithms in
the literature.

As detailed, we gave the optimal value of c under a fixed matrix scale through simu-
lation. When the scale changes, the value of c in Section 4.1 may no longer be applicable.
Therefore, it is meaningful to find the theoretical ‘optimal value’ of c. Furthermore, noting
that lower mutual coherence indexes mean potentially higher reconstruction performance,
further efforts are needed to decrease the indexes simultaneously.
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