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Abstract: The paper investigates and explains a new simple analytical tuning of proportional-
integrative-derivative (PID) controllers. In combination with nth order series binomial low-pass
filters, they are to be applied to the double-integrator-plus-dead-time (DIPDT) plant models. With
respect to the use of derivatives, it should be understood that the design of appropriate filters is not
only an implementation problem. Rather, it is also critical for the resulting performance, robustness
and noise attenuation. To simplify controller commissioning, integrated tuning procedures (ITPs)
based on three different concepts of filter delay equivalences are presented. For simultaneous
determination of controller + filter parameters, the design uses the multiple real dominant poles
method. The excellent control loop performance in a noisy environment and the specific advantages
and disadvantages of the resulting equivalences are discussed. The results show that none of them is
globally optimal. Each of them is advantageous only for certain noise levels and the desired degree
of their filtering.

Keywords: filtration; multiple real dominant pole method; PID control; derivative action

1. Introduction

The range of methods suitable for controlling time-delayed systems is very large
and growing (see, e.g., [1–7]). A particular area of interest concerns higher-order (HO)
generalizations of traditional proportional-integral-derivative (PID) control. This moti-
vation follows from the intensive research in fractional-order PID (FO-PID) control [8].
In this concept, the non-integer derivative and integrative solutions are in the end approx-
imated by HO filters. In contrast, in the concept of PIDm

n control [9,10] (generalized PID
control with mth-order derivatives and nth-order low-pass filters), possibly including con-
trollers with HO derivatives such as proportional-integral-derivative-accelerative (PIDA)
control [11–16], the HO controllers are designed directly. As the main motivation for the
FO-PID control, one can say that one tries to find more degrees of freedom. These should
be used to specify the resulting control performance, robustness and measurement noise
attenuation [8,10]. Mostly, application areas are mentioned in which the acquisition of a
more detailed plant model is not possible or not reasonable. In particular, these are areas
that are extremely attractive because even small improvements in performance result in
large economic gains: e.g., vehicle attitude control when driving on a road with a variable
profile, control of highly nonlinear robotic systems and load frequency control of power
plants. In this context, all these innovative solutions are typically implemented by embed-
ded controllers. Before extending the design to controllers with HO derivatives and to
controlled systems approximated by second-order time-delay models, it seems useful to
show and analyze its essence and problems using the example of a PID controller with
first-order derivatives.
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An example of the control system under consideration is shown in Figure 1. Here,
y represents the plant output, r the reference setpoint, u the control signal (manipulated
variable), di an input disturbance and δ a measurement noise. The task of control loop
design is not only to find the parameters of the control blocks C(s) and the low-pass filter
Qn(s) to suppress the measurement noise, but may also involve the selection of the most
appropriate model of the system F(s). It is often advantageous to work with the simplest
possible model F(s) and to include all resulting inaccuracies and uncertainties of the plant
modeling in the acting disturbance di.

Figure 1. Considered control loop with an output y, a reference setpoint r, an input disturbance di

and a measurement noise δ. The possibly improper PID controller with transfer function C(s) is
combined with a low-pass filter Qn(s) and the plant model F(s).

For the approximation of more complex real plant dynamics (models based on first-
order time-delayed systems are commonly used to control simpler (lower-order) sys-
tems [2]), the double integrator plus dead time (DIPDT) model

F(s) = Kse−Tds/s2 (1)

will be used. Note that model (1) also represents the simplest possible second order process
transfer function. Additionally, the total dead-time Td may consist of an estimate of the
plant delay Tm (which includes, for example, an actuator dead-time Ta and a communica-
tion delay Tc) and an intentionally introduced equivalent filter delay estimate Te.

Td = Tm + Te (2)

In this work, Te is used to approximate dynamics of the low-pass filters Qn(s) required
in terms of implementing and achieving sufficiently smooth and robust transients.

Note that the estimated plant gain substituted for Ks in controller tuning is Km.
DIPDT models have already been used in the work [17,18] to design constraint con-

trollers for potentially unstable higher order plants. Motivations for working with DIPDT
models are well described, for example, in [19]. In [20] the “half rule” was presented, which
allows one to obtain a simplified DIPDT model of the plant even from a more complex
plant transfer function. The advantages of “ultra-local” integral models (1) are also widely
used in the so-called model-free control [21]. Although they can be expected to achieve a
required accuracy only in the close neighborhood of an operating point, they are preferred
because of their simplicity and easier identification. Purely integral models are also behind
“active disturbance rejection control” (ADRC), which is based on linear extended state
observer (LESO) [22–24]. ADRC approximates the potentially complex and nonlinear feed-
back dynamics by an additional state corresponding to an equivalent input disturbance,
and fuses external and internal disturbances corresponding to modeling uncertainties. The
possible combination of ADRC with dead time compensation is considered in [4,5].

This paper develops further the results of the design of the HO-PID controller, which
focus on the control of systems approximated by the integrator-plus-dead-time (IPDT)
models [10] and the conference paper [25], which compares the controller design for
DIPDT systems using the performance portrait method with the multiple real dominant
poles method.

The rest of the paper is organized as follows. Section 2 presents the performance
measures used and their applications in optimal controller design. Section 3 deals with
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the optimal PID controller tuning using the multiple real dominant poles (MRDP) method.
Tuning considering the unavoidable implementation and noise reduction filters is described
in Section 4. Section 5 introduces the simulation experiments proposed to check properties
of the different time delay equivalents used to tune the filters. The main results of the work
are evaluated in Section 6 followed by the Discussion in Section 7 and summarized in the
Conclusions, along with suggestions for possible further research.

2. Time and Shape Related Performance Measures

One of the main drawbacks of numerous optimal control methods is that they
narrow the problem to evaluating the speed of transients. Among the many different
alternatives [26,27], this can be quantified as the settling time, integral of squared error
(ISE), or more frequently [28], using the integral of the absolute error (IAE).

IAE =
∫ ∞

0
|e(t)|dt ; r = w− y , (3)

Here, r can be a piecewise constant reference setpoint, y the plant output and e
the control error. However, IAE-based controller optimization usually leads to a global
optimum with a slight overshoot of the output, which is not acceptable in numerous
applications. For the sake of brevity, this paper only addresses the evaluation of the
behavior with respect to the input disturbance steps. It should be noted that any inaccuracy
of the model manifests itself as equivalent input disturbance. Therefore, such an evaluation
is also crucial for the case of reference setpoint steps.

Since IAE-optimal control can also lead to reduced robustness, additional optimiza-
tion constraints must be applied. These are predominantly represented by peaks in the
maximum sensitivity and complementary sensitivity functions (Ms and Mt). Although
the use of sensitivity functions is widespread, we are driven to replace them by several
serious reasons:

(a) No connection to real-time control: by evaluating data obtained from experiments
on real processes, we cannot determine the actual values of the sensitivity functions;

(b) Unsuitability for unstable systems: when controlling unstable systems, we are not
content with the recommended ranges Ms ∈ [1.2, 2] (suitable only for controlling sta-
ble systems) [27], but the required values may be much higher (see, for example, [29],
who recommends Ms ≈ 10, or [30], who works even with Ms ≈ 20);

(c) Potential counterproductivity: in terms of robust control design, the use of sensitivity
functions can lead to counterproductive results [10].

In this work, they are replaced by more effective [10] shape-based constraints.

2.1. Monotonicity-Based Shape Related Measures

Often, whether the author explicitly declares it or not, we are interested in smooth
transient shapes. The question, however, is how we can quantify their smoothness in order
to account for them. On the other hand, the history of using shape-based constraints is
very long. Already Ziegler and Nichols [31] worked with quarter-amplitude-damping
in their seminal work defining shape constraints for the disturbance response. In the
era of relay time optimal control of nth-order systems, the requirement to terminate the
process in n (rectangular) control intervals was used dominantly. It was first formulated
in work by Feldbaum [32] and later modified by the formulated maximum/minimum
principle [33] only for the case of complex poles of the system and a large distance between
the initial and final states. Although the relay time optimal controllers disappeared from the
literature over time (with some exceptions such as [34], which continued to use Feldbaum’s
theorem on n intervals of control), the shape requirements appeared in a different form
in the formulation of the dead-beat behavior of linear discrete responses [35]. However,
despite this clear historical evidence, the use of shape-based performance measures can be
considered neglected. The works [26,27] in this direction represent one of the first attempts
to unify all previous usages.
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Moreover, although also not always used in controller design, the need to limit the
total control effort measured, for example, by the total input variation (TV, [20]), is well
known. The value TV, defined as the sum of the absolute values of all signal increments,
depends dominantly on the shape of the signal under consideration. The drawback of
working with a performance measure TV is that it presents unstructured information: the
“useful” control interventions required to achieve the control objective are mixed with
excessive interventions resulting from model or measurement inaccuracies. Therefore, in
the work [26], it was proposed to use modified criteria based on deviations of a given
transient from monotonicity instead of the performance measure TV. Monotonicity is not
only one of the fundamental mathematical concepts, but also closely related to several
important physical properties and the shape of control transients.

Although the other derived performance measures are primarily intended for the eval-
uation of quasi-continuous-time responses, we consider evaluation with digital computers
in the derived formulas. However, we consider the sampling period to be short enough
not to affect the evaluations. Based on TV, a modified performance measure TV0(y) works
with samples yi, i ∈ [0, ∞) obtained from the signal y(t) with an initial value y0 and a final
value y∞, whereby

TV0(y) =
∞

∑
i=0
|yi+1 − yi| − |y∞ − y0| (4)

TV0(y) can be interpreted as a deviation from monotonicity. TV0(y) = 0 only for
monotonic (non-increasing or non-decreasing) responses y(t). Otherwise TV0(y) > 0.

To further combine the requirement of monotonicity with the Feldbaum’s theorem
and its modification for smooth signal transients, we recall that the inversion of the dy-
namics of a simple integrator implies that the monotone output transient requires an input
signal consisting of two monotone intervals [36]. Similarly, when considering dynamics
inversion for higher order integrators, it may be useful to introduce the notion of n-pulse
(nP) function.

Definition 1 (nP function u(t)). Consider a function of time u(t) that is continuous for t ∈
[0, T], T > 0, with possible discontinuity at t = 0+ and with initial value u0 = u(0−) and final
value uT = u(T). Suppose that for t > 0 there are at least n extreme points satisfying

um,i = u(tm,i) 6∈ [u0, uT ]; i = 1, 2, ..., n for 0 < tm,1 < ... < tm,n
(um,i − uT) (um,i+1 − uT) < 0; i = 1, 2, ..., n− 1

(5)

If u(t) is monotonic on each interval that does not contain one of these extreme points um,i,
u(t) is called an n-Pulse (nP) function. By allowing discontinuity at t = 0, the first extreme point
can also move to t = 0+, shrinking the first monotonic interval before this extreme point to zero.
Following this terminology, the monotonic transients can also be referred to as 0P and the periodic
responses as ∞P functions.

In this way, we have unified the terminology based on shape requirements for a wide
range of piecewise monotonic responses, which include the oscillatory loop transients. On
this basis, it is then possible to design performance measures based on deviations from nP
shapes, which we obtain by applying (4) n times.

For a one-pulse (1P) shape [36] consisting of two monotonic intervals separated by an
extreme point ym /∈ (y0, y∞) lying outside the interval formed by the initial and final output
values y0 and y∞, the deviations from an ideal 1P behavior summarize the deviations from
monotonicity on these two intervals:

TV1(y) = ∑
i
|yi+1 − yi| − |2ym − y∞ − y0| (6)

The computation of TV1(y), which is essentially used to evaluate disturbance step re-
sponses in this paper, requires finding the extreme point lying outside the strip y ∈ (y0, y∞).
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In the case of multiple extreme points, the maximum deviation must be chosen
as ym.

Geometrically, an ideal 2P input shape of a piece-wise continuous control signal
u(t), t ∈ [0−, ∞) is specified by two extreme points um1, um2 that occur at times t1, t2 ∈ (0, ∞),
lie between the initial and final values u0 and u∞ and satisfy

(um1 − u∞)(um2 − u∞) < 0 (7)

Ideally, these extreme points separate the control signal into three monotonic control
intervals. If there are multiple extreme points, again the extreme points must satisfy (7) and
all less important other extreme points can be neglected. Excessive control effort can then
be evaluated by summing up the deviations from monotonicity on these three intervals
according to

TV2(u) = ∑
i
(|ui+1 − ui|)− |2um1 − 2um2 + (u∞ − u0)sign(um1 − u∞)| (8)

Remark 1 (Fundamental difference from traditional optimization). As mentioned above,
simultaneously with the shape of the transients, we also try to optimize the speed of the transients.
Since in this work, the requirement of the bounded total control effort is refined by minimizing the
excessive control effort (exceeding the unavoidable acceleration and deceleration during the input
step responses), this focus is one of the most important differences from the traditional quadratic
optimal control, which is concerned with minimizing the total controller activity. It can also be
considered as one of the cornerstones of the success of the presented approaches.

When evaluating responses restricted to the step changes of the input disturbance di
(since all model uncertainties of the system appear as disturbances [37], the optimization
of the disturbance behavior is also important for optimal setpoint tracking of systems with
uncertain models), leading to one-pulse (1P) transients at the plant output and two-pulse
(2P) transients at the input (given by the inversion of the plant model dynamics [38,39]),
we will use TV modified to evaluate deviations from these shapes.

2.2. Optimization Problem

Different cost functions and different optimization constraints have already been
defined and used for loop optimization. A loop optimization that requires a fast output
with minimal excessive control effort, as measured by the shape-related deviations, can
search for a minimal value of the cost function

Jk(u) = IAEk TV2(u) (9)

To achieve a fast output but with minimal output wobbling, the disturbance response
cost function can be modified to

Jk(y) = IAEk TV1(y) (10)

By using a different exponent k, it is possible to define a different weight ratio of the
speed of transients and the considered shape deviations within the optimization.

The trade-off between the speed of the control transients and the shape-related de-
viations at the input and output can be represented by different types of characteristics.
They can be based on above two cost functions, thereby expressing effect of a chosen
tuning parameter.

2.3. Speed-Effort and Speed-Wobbling Characteristics

In order to relate the shape-related deviations at the input with the speed of the
control deviation (IAE), we can define the speed-effort characteristic curve (SE). Thereby,
the excessive control effort measured in terms of TV2(u) will be considered as the variable
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ξ. The speed of the control error attenuation (IAE) will be considered as the variable η and
the characteristic parameter may be chosen as the equivalent filter delay Te.

Similarly, to relate excessive output wobbling to IAE, the speed-wobbling (SW) charac-
teristic may be used. Its variable ξ will then be represented by TV1(y) (for the disturbance
steps), when

SE : ξ = TV2(u), η = IAE, or
SW : ξ = TV1(y), η = IAE

(11)

3. PID Controller According to the MRDP Method

The history of the multiple real dominant poles (MRDP) method dates back to one of
the first textbooks in control engineering [40], which cites even older sources on the subject
used to design simple controllers. To this day, many authors resort to it (see, e.g., [41–43]
and the references therein, but the requirement of the double real dominant pole is also
found in the SIMC method [20]). The essence of this method is to find the controller setting
that gives multiple real dominant (stable) poles in the closed loop. By analyzing simpler
control loops, e.g., with a P controller and an integrator-plus-dead-time (IPDT) system [44],
it can be shown that a multiple real pole represents the limiting case between the existence
of oscillatory transients corresponding to a complex pole pair and the existence of different
real poles leading to slower and faster transient modes. Since the resulting transient speed
is determined by a slower mode, the optimal setting again corresponds to a compromise
represented by the multiple real poles. The existence of the searched solution must be
ensured by an appropriate choice of the controller structure. The multiplicity of the sought
poles must ensure a sufficient number of equations to determine the controller parameters.
We achieve the dominance of multiple poles in the presence of several possible roots by
choosing the slowest stable solution.

The initial steps of writing this paper were inspired by the modified (improved)
SIMC controller [19,20]. Some preliminary results dedicated to the position servo control
were published in [45]. This work focuses on the analysis of the influence of different
equivalences of time delays used in setting the controllers, with respect to the low-pass
filters used. The MRDP approach first deals with the setting of an ideal PID controller.

Definition 2 (Ideal PID controller). By an ideal PID controller we will understand the controller
given by the improper transfer function

C(s) =
U(s)
E(s)

= Kc

(
1 +

1
sTi

+ sTD

)
(12)

whereby Kc is the controller gain, Ti the integral and TD the derivative time constant.

We cannot directly implement such a controller, but its concept simplifies further
considerations. From the closed loop transfer functions corresponding to the feedback
combination of the ideal controller (12) and DIPDT plant (1) we get (with Qn(s) = 1 in
Figure 1) the transfer functions

Fr0(s) =
Y(s)
R(s)

=
KcKm(1 + Tis + TiTDs2)

Tis3eTds + KcKm(1 + Tis + TiTDs2)

Fi(s) =
Y(s)
Di(s)

=
KmTis

Tis3eTds + KcKm(1 + Tis + TiTDs2)

(13)

Theorem 1 (Optimal controller tuning). For the parameters Td > 0, Km 6= 0 of the model (1),
the “optimal” controller parameters Kco, Tio and TDo guaranteeing a quadruple real dominant pole
(QRDP) so of the characteristic quasi-polynomial

P(s) = Tis3eTds + KcKm(1 + Tis + TiTDs2) (14)
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may be expressed by dimensionless (normed) parameters κo, τio and τDo as

κo = KcoKmT2
d = 0.125

τio = Tio/Td = 10.324
τDo = TDo/Td = 4.043

(15)

Proof. The required pole multiplicity results from the number of unknown parameters of
the controller (three), to which the unknown value so is added. To guarantee a quadruple
pole, so has to fulfill conditions[

P(s);
dP(s)

ds
;

dP2(s)
ds2 ;

d3P(s)
ds3

]
s=so

= 0 (16)

From d3P(s)/ds3 = TieTds(6 + 18Tds + 9s2T2
d + s3T3

d ) = 0 we get roots

s1 = −0.416/Td; s2 = −2.294/Td; s3 = −6.290/Td (17)

The dominant pole is the solution which is the closest to the imaginary axis and thus
corresponds to the slowest stable transients, i.e., so = s1.

Definition 3 (Low-pass filters). For implementation and to achieve an appropriate noise filtration,
the ideal controller (12) (see Figure 1) will be combined with a series binomial low-pass filter Qn(s)

Qn(s) =
1(

Tf s + 1
)n ; n = 1, 2, ... (18)

For a given sampling period Ts used for a quasi-continuous-time control implementation, Tf
has to be chosen to fulfill Ts << Tf .

4. Equivalent Delay Based Controller Tuning

The application of the control requires solving several problems:

• The ideal PID controller may not be realized—to be causal, it must be extended by at
least a first-order low-pass filter (18);

• A more effective attenuation of the measurement noise can be achieved by the filter
order n > 1;

• The included filters Qn(s) modify the loop dynamics, which must be taken into
account in the controller tuning.

A direct application of the MRDP method to control loops containing the filter dy-
namics in combination with the dead-time leads to complex formulas that are usually
analytically incomprehensible. Therefore, similar to [10,20,46], simplified approaches
based on replacing the filter transfer function by an equivalent dead time Te that can be
simply added to the identified system delay Tm (2) are used. This requires the use of the
following approach:

1. After identifying the system model parameters Km and Tm, select an appropriate value
of the tuning parameter Te > 0 corresponding to the required degree of filtration;

2. Specify the controller parameter (15) corresponding to the total loop delay Td (2);
3. Select a filter order n and specify the filter time constant Tf by a suitable delay

equivalence described below, defined as

Tf /Te = f (n) (19)

4. Check that the computed value Tf satisfies the requirement Tf >> Ts in (18) , where
Ts represents the sampling period used for the quasi-steady control implementation.

5. If not, either decrease Ts, or n, which must still fulfill the condition n ≥ 1.
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6. By experimentally evaluating the noise attenuation characteristics for different n,
choose an optimal controller that guarantees the optimal control loop performance.

4.1. Half-Rule Equivalence (HRE)

A simple delay equivalence was proposed by Skogestad [20] in the form of a “half
rule.” When applied to the filter (18) in combination with the integrating plant model (1) it
may be expressed as

Tf /Te = fHRE = 2/n (20)

4.2. Average Residence Time Equivalence (ARTE)

ARTE is based on the comparison of areas bounded by the normalized unit step
response of the filter and the asymptote to its steady-state value [47]. It can be expressed as

Tf /Te = fARTE = 1/n (21)

4.3. Dominant Poles Equivalence (DPE)

The closed-loop transfer functions considering the double integrator plant in combi-
nation with Qn(s), Td = 0 and ideal PID control (12) lead to the characteristic polynomial

Pn(s) = Tis3(1 + Tf s)n + KcKs(1 + Tis + TiTDs2) (22)

In denoting its roots as sn, the requirement of an equal position of the two considered
multiple real dominant poles

so = sn , n = 1, 2, 3, ... (23)

an equivalence between the time constants Tf and the equivalent dead time Td considered
in (15) is obtained. The corresponding values Tf /Te = fDPE can be found in Table 1.

Table 1. PID control: equivalent time delay ratios f (n) = Tf /Te, n ∈ [1, 7].

n 1 2 3 4 5 6 7

fHRE 2 1 0.667 0.5 0.4 0.333 0.286

fARTE 1 0.5 0.333 0.25 0.2 0.167 0.143

fDPE 0.601 0.373 0.271 0.213 0.176 0.149 0.130

Numerically, the comparison with the HRE (20) and ARTE (21) shows significant
differences that need to be verified by simulation. Here, the resulting IAE values (whether
the equivalence leads to an overly conservative loop tuning) and the shape deviations at
the input and output (whether excessively oscillating transients occur) must be compared,
e.g., with the cost Functions (9) and (10).

5. Evaluation of the Results

In order to explain all the details important for practical applications, idealized shapes
undistorted by noise should be analyzed prior to considering realistic noise applications
for the vector of the tuning parameters:

Te = {0.02, 0.05, 0.2, 0.4, 0.8, 1.5, 3.0, 5.0}Td
n ∈ [1, 5]

(24)
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As the differences between the individual equivalences are observable only for larger
Te values, the visualization in Figure 2 shows just a reduced sample of the analyzed
responses corresponding to

T′e = {0.4, 0.8, 1.5, 3.0, 5.0}Td
n ∈ [1, 5]

(25)

They document that for all values of the tuning parameter, DPE yields nearly ideal
1P step responses at the output and 2P step responses at the input. Especially for shorter
Te, the responses corresponding to the different values of n are very close to each other.
Therefore, from a practical point of view, they can be considered equivalent.
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Figure 2. Dominant pole equivalence: input disturbance step responses corresponding to parame-
ters (25), no noise.

A similar set of input disturbance step responses corresponding to HRE (Figure 3) shows
that this equivalence yields much more oscillatory and only slowly damped transients, at
least for longer equivalent delays.
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Figure 3. Half rule equivalence: input disturbance step responses corresponding to parameters (25),
no noise.

Finally, ARTE shows results almost equivalent to DPE, with homogeneous shapes of
the responses over the whole set of Te values considered (Figure 4) and with only slightly
increased maximum amplitude of the disturbance step responses. Visually, the differences
between the responses corresponding to the different values of n are even smaller than
for DPE.
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Figure 4. Average residence time equivalence: input disturbance step responses corresponding to
parameters (25), no noise.

5.1. Holistic Cost Functions versus Equivalent Delay

Without measurement noise, the combined cost functions as functions of Te (Figure 5
above) increase much faster with increasing Te for HRE than for DPE and ARTE. The
introduction of measurement noise (Figure 5 middle) significantly changes not only the
shapes of the characteristics, but also their vertical distribution: the DPE characteristics,
which were lowest without noise consideration, rise above the other two characteristics
when noise is taken into account; for the HRE characteristics, the situation is reversed in
the range of smaller Te values. The use of higher order filters significantly increases noise
attenuation. To illustrate the influence of noise amplitude, we can repeat the same analyzes
again for Te values (24) with significantly increased |δ| ≤ 0.2. It can be seen from Figure 5
that the inflection points with the optima of the cost functions J(u) and J(y) shift slightly
to higher Te values, without any significant change in the characteristics.
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Figure 5. Cost Functions (9) (left) and (10) (right) as functions of the equivalent time Te (25), n ∈ [1, 5];
DPE (full curves), HRE (dashed) and ARTE (dotted); no noise (above), noise |δ| ≤ 0.01 (middle) and
|δ| ≤ 0.2 (below); k = 1.

The experience gained can be summarized in the conclusion that while DPE leads to
the most advantageous dependencies of the combined functions Ju and Jy on Te in loops
without measurement noise, the opposite is true in loops with measurement noise. The
most advantageous properties, but only in a limited range of Te values, are given by HRE. If
it is nevertheless necessary to work with relatively large values of Te, ARTE must be used.

5.2. Interpretation Is SE/SW Planes

The comparison of individual equivalences or the suitability of the selection of filter
parameters is made possible by the features fo SE and SW characteristics. The following
requirements can be formulated for their use.

Remark 2 (Performance requirements in SE and SW planes). For the least possible excessive
effort or wobbling, the operating points corresponding to some Te should be as left as possible in
the SE and SW planes [10]. At the same time, they should be as low as possible for the fastest
possible transients.

In this sense, in terms of excessive control effort, filters with n = 1 (see Figure 6)
represent the worst solution. Their SE characteristics are located furthest to the right.
The excessive control effort can be significantly reduced by choosing n = 2. Significant
improvements can still be achieved by n ≥ 3. Here, HRE provides the least excessive effort
for the relatively short Te values and the relatively high speed of transients (specified by
low IAE). However, for longer Te values with higher IAE, the excessive effort may actually
increase (due to the control imperfections). The inflection point in the HRE performance
is even better seen in the SW -characteristics. Here the choice of filter order has a much
smaller impact. These conclusions regarding the SE and SW characteristics hold without
significant changes for both lower (|δ| < 0.01) and higher (|δ| < 0.2) noise amplitudes.



Mathematics 2021, 9, 328 12 of 14

100 102 104

---> TV
2
(u

d
)

100

101

102

--
->

 I
A

E
d

PID
1

PID
2

PID
3

PID
4

PID
5

10-3 10-2 10-1 100 101

---> TV
1
(y

d
)

100

101

102

--
->

 I
A

E
d

PID
1

PID
2

PID
3

PID
4

PID
5

100 102 104 106

---> TV
2
(u

d
)

100

101

102

--
->

 I
A

E
d

PID
1

PID
2

PID
3

PID
4

PID
5

10-1 100 101

---> TV
1
(y

d
)

100

101

102

--
->

 I
A

E
d

PID
1

PID
2

PID
3

PID
4

PID
5

Figure 6. Speed-effort (SE) (left) and speed-wobbling (SW) characteristics (right) corresponding for
Te (25) to DPE (full curves), HRE (dashed) and ARTE (dotted); noise |δ| < 0.01 (above) and |δ| < 0.2
(below); k = 1.

6. Discussion

The analysis of individual delay equivalences has shown that, in an idealized loop,
the dominant-pole-equivalence (DPE) gives the best results, being generally more accurate
than the average-residence-time-equivalence (ARTE) and the half-rule-equivalence (HRE).
However, the differences obtained are largely lost compared to measurement noise. Thus,
excellent results can be obtained with a simple HRE known for many years. However,
this is only true for filter delays that do not exceed a certain threshold. Above this the
loop characteristics deteriorate severely. Therefore, for a wide choice range of Te values,
working with ARTE can be recommended.

7. Conclusions and Future Work

The paper has shown that analytical tuning of PID controllers for time delayed double
integrator systems may be reliably applied in a wide range of filter delays and noise
amplitudes. The method retains its simplicity by including possible additional dynamic
loop elements (series filters) in an equivalent delay added to the identified system delay. In
doing so, it can easily include other inertial elements of the loop.

The detailed analysis we performed of the control of the DIPDT system by PID con-
trollers opens the way to the control of this system with the use of higher order controllers
and the generalization of some preliminary results from [16,25]. This also makes various
applications possible, similarly to the control of first-order time-delayed systems [10,45].
However, before that, some issues concerning the design of controllers with two degrees of
freedom [41–43] with the optimization of transients after setpoint steps and the issues of a
suitable anti-windup and bumpless transfer [10,47] have to be resolved.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-Pulse, response with 2 monotonic segments (1 extreme point)
2P Two-Pulse, response with 3 monotonic segments (2 extreme points)
ADRC Active Disturbance Rejection Control
DIPDT Double Integrator Plus Dead-Time
FO Fractional Order
HO Higher Order
IAE Integral Absolute Error
IPDT Integrator Plus Dead-Time
ISE Integral Square Error
LESO Linear Extended State Observer
MRDP Multiple Real Dominant Pole
nP n-Pulse, response with n + 1 monotonic segments (n extreme points)
PID Proportional-Integrative-Derivative
PIDm

n generalized PID with mth order derivative action and nth order low-pass filter
SE Speed-Effort
SW Speed-Wobbling
TV Total Variation
TV0 Deviation from monotonicity (0P shape)
TV1 Deviation from 1P shape
TV2 Deviation from 2P shape
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