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Abstract: The main objective of our paper is to focus on the study of sequences (finite or countable)
of groups and hypergroups of linear differential operators of decreasing orders. By using a suitable
ordering or preordering of groups linear differential operators we construct hypercompositional
structures of linear differential operators. Moreover, we construct actions of groups of differential
operators on rings of polynomials of one real variable including diagrams of actions–considered as
special automata. Finally, we obtain sequences of hypergroups and automata. The examples, we
choose to explain our theoretical results with, fall within the theory of artificial neurons and infinite
cyclic groups.

Keywords: hyperstructure theory; linear differential operators; ODE; automata theory

1. Introduction

This paper discusses sequences of groups, hypergroups and automata of linear dif-
ferential operators. It is based on the algebraic approach to the study of linear ordinary
differential equations. Its roots lie in the work of Otakar Borůvka, a Czech mathemati-
cian, who tied the algebraic, geometrical and topological approaches, and his successor,
František Neuman, who advocated the algebraic approach in his book [1]. Both of them
(and their students) used the classical group theory in their considerations. In several
papers, published mainly as conference proceedings such as [2–4], the existing theory
was extended by the use of hypercompositional structures in place of the usual algebraic
structures. The use of hypercompositional generalizations has been tested in the automata
theory, where it has brought several interesting results; see, e.g., [5–8]. Naturally, this ap-
proach is not the only possible one. For another possible approach, investigations of
differential operators by means of orthognal polynomials, see, e.g., [9,10].

Therefore, in this present paper we continue in the direction of [2,4] presenting results
parallel to [11]. Our constructions, no matter how theoretical they may seem, are motivated
by various practical issues of signal processing [12–16]. We construct sequences of groups
and hypergroups of linear differential operators. This is because, in signal processing (but
also in other real-life contexts), two or more connecting systems create a standing higher
system, characteristics of which can be determined using characteristics of the original
systems. Cascade (serial) and parallel connecting of systems of signal transfers are used in
this. Moreover, series of groups motivated by the Galois theory of solvability of algebraic
equations and the modern theory of extensions of fields, are often discussed in literature.
Notice also paper [11] where the theory of artificial neurons, used further on in some
examples, has been studied.

Another motivation for the study of sequences of hypergroups and their homomor-
phisms can be traced to ideas of classical homological algebra which comes from the
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algebraic description of topological spaces. A homological algebra assigns to any topo-
logical space a family of abelian groups and to any continuous mapping of topological
spaces a family of group homomorphisms. This allows us to express properties of spaces
and their mappings (morphisms) by means of properties of the groups or modules or their
homomorphisms. Notice that a substantial part of homology theory is devoted to the study
of exact short and long sequences of the above mentiones structures.

2. Sequences of Groups and Hypergroups: Definitions and Theorems
2.1. Notation and Preliminaries

It is crucial that one understands the notation used in this paper. Recall that we
study, by means of algebra, linear ordinary differential equations. Therefore, our notation,
which follows the original model of Borůvka and Neuman [1], uses a mix of algebraic and
functional notation.

First, we denote intervals by J and regard open intervals (bounded or unbounded).
Systems of functions with continuous derivatives of order k on J are denoted by Ck(J); for
k = 0 we write C(J) instead of C0(J). We treat Ck(J) as a ring with respect to the usual
addition and multiplication of functions. We denote by δij the Kronecker delta, i, j ∈ N, i.e.,
δii = δjj = 1 and δij = 0, whenever i 6= j; by δij we mean 1− δij. Since we will be using
some notions from the theory of hypercompositional structures, recall that by P(X) one
means the power set of X while (P)∗(X) means P(X) \∅.

We regard linear homogeneous differential equations of order n ≥ 2 with coefficients,
which are real and continuous on J, and–for convenience reasons–such that p0(x) > 0 for
all x ∈ J, i.e., equations

y(n)(x) + pn−1(x)y(n−1)(x) + · · ·+ p0(x)y(x) = 0. (1)

By An we, adopting the notation of Neuman [1], mean the set of all such equations.

Example 1. The above notation can be explained on an example taken from [17], in which Neuman
considers the third-order linear homogeneous differential equation

y′′′(x)−
q′1(x)

q1(−x)
y′′(x) + (q1(x)− 1)2y′(x)−

q′1(x)
q1(x)

y(x) = 0

on the open interval J ∈ R. One obtains this equation from the system

y′1 = y2

y′2 = −y1 + q1(x)y3

y′3 = −q1(x)y2

Here q1 ∈ C+(J) satisfies the condition q1(x) 6= 0 on J. In the above differential equation we

have n = 3, p0(x) = − q′1(x)
q1(x) , p1(x) = (q1(x)− 1)2 and p2(x) = − q′1(x)

q1(−x) . It is to be noted that
the above three equations form what is known as set of global canonical forms for the third-order
equation on the interval J.

Denote Ln(pn−1, . . . , p0) : Cn(J) → Cn(J) the above linear differential operator de-
fined by

Ln(pn−1, . . . , p0)y(x) = y(n)(x) +
n−1

∑
k=0

pk(x)y(k)(x), (2)

where y(x) ∈ Cn(J) and p0(x) > 0 for all x ∈ J. Further, denote by LAn(J) the set of all
such operators, i.e.,

LAn(J) = {L(pn−1, . . . , p0) | pk(x) ∈ C(J), p0(x) > 0}. (3)
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By LAn(J)m we mean subsets of LAn(J) such that pm ∈ C+(J), i.e., there is pm(x) > 0
for all x ∈ J. If we want to explicitly emphasize the variable, we write y(x), pk(x), etc.
However, if there is no specific need to do this, we write y, pk, etc. Using vector notation
~p(x) = (pn−1(x), . . . , p0(x)), we can write

Ln(~p)y = y(n) +
n−1

∑
k=0

pky(k). (4)

Writing L(~p) ∈ LAn(J) (or L(~p) ∈ LAn(J)m) is a shortcut for writing Ln(~p)y ∈ LAn(J)
(or, Ln(~p)y ∈ LAn(J)m).

On the sets of linear differential operators, i.e., on sets LAn(J), or their subsets
LAn(J)m, we define some binary operations, hyperoperations or binary relations. This is
possible because our considerations happen within a ring (of functions).

For an arbitrary pair of operators L(~p), L(~q) ∈ LAn(J)m, where ~p = (pn−1, . . . , p0),
~q = (qn−1, . . . , q0), we define an operation “◦m” with respect to the m-th component by
L(~p) ◦m L(~q) = L(~u), where ~u = (un−1, . . . , u0) and

uk(x) = pm(x)qk(x) + (1− δkm)pk(x) (5)

for all k = n− 1, . . . , 0, k 6= m and all x ∈ J. Obviously, such an operation is not commuta-
tive.

Moreover, apart from the above binary operation we can define also a relation “≤m”
comparing the operators by their m-th component, putting L(~p) ≤m L(~q) whenever, for all
x ∈ J, there is

pm(x) = qm(x) and at the same time pk(x) ≤ qk(x) (6)

for all k = n− 1, . . . , 0. Obviously, (LAn(J)m,≤m) is a partially ordered set.
At this stage, in order to simplify the notation, we write LAn(J) instead of LAn(J)m

because the lower index m is kept in the operation and relation. The following lemma is
proved in [2].

Lemma 1. Triads (LAn(J), ◦m,≤m) are partially ordered (noncommutative) groups.

Now we can use Lemma 1 to construct a (noncommutative) hypergroup. In order
to do this, we will need the following lemma, known as Ends lemma; for details see,
e.g., [18–20]. Notice that a join space is a special case of a hypergroup–in this paper we
speak of hypergroups because we want to stress the parallel with groups.

Lemma 2. Let (H, ·,≤) be a partially ordered semigroup. Then (H, ∗), where ∗ : H × H → H is
defined, for all a, b ∈ H by

a ∗ b = [a · b)≤ = {x ∈ H | a · b ≤ x},

is a semihypergroup, which is commutative if and only if “·” is commutative. Moreover, if (H, ·) is
a group, then (H, ∗) is a hypergroup.

Thus, to be more precise, defining

?m : LAn(J)×LAn(J)→ P(LAn(J)), (7)

by
L(~p) ?m L(~q) = {L(~u) | L(~p) ◦m L(~q) ≤m L(~u)} (8)

for all pairs L(~p), L(~q) ∈ LAn(J)m, lets us state the following lemma.

Lemma 3. Triads (LAn(J), ?m) are (noncommutative) hypergroups.
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Notation 1. Hypergroups (LAn(J), ?m) will be denoted by HLAn(J)m for an easier distinction.

Remark 1. As a parallel to (2) and (3) we define

L(qn, . . . , q0)y(x) =
n

∑
k=0

qk(x)y(k)(x), q0 6= 0, qk ∈ C(J) (9)

and
LAn(J) = {qn, . . . , q0) | q0 6= 0, qk(x) ∈ C(J)} (10)

and, by defining the binary operation “◦m” and “≤m” in the same way as for LAn(J)m, it is easy to
verify that also (LAn(J), ◦m,≤m) are noncommutative partially ordered groups. Moreover, given a
hyperoperation defined in a way parallel to (8), we obtain hypergroups (LAn(J)m, ?m), which will
be, in line with Notation 1, denoted HLAn(J)m.

2.2. Results

In this subsection we will construct certain mappings between groups or hypergroups
of linear differential operators of various orders. The result will have a form of sequences
of groups or hypergroups.

Define mappings Fn : LAn(J)→ LAn−1(J) by

Fn(L(pn−1, . . . , p0)) = L(pn−2, . . . , p0)

and φn : LAn(J)→ LAn−1(J) by

φn : (L(pn−1, . . . , p0)) = L(pn−2, . . . , p0).

It can be easily verify that both Fn and φn are, for an arbitrary n ≥ 2, group homomor-
phisms.

Evidently, LAn(J) ⊂ LAn(J),LAn−1(J) ⊂ LAn(J) for all admissible n ∈ N. Thus
we obtain two complete sequences of ordinary linear differential operators with linking
homomorphisms Fn and φn :

LA0(J)
id0,1 // LA1(J)

id1,2 // LA2(J)
id2,3 // . . .

LA0(J)

id0

OO

LA1(J)

id1

OO

F1oo

φ1

ii

LA2(J)

id2

OO

F2oo

φ2
hh

. . .
F3oo

φ3
gg

. . .LAn−2(J)
idn−2,n−1 // LAn−1(J)

idn−1,n // LAn(J)
idn,n+1 // . . .

. . .LAn−2(J)

idn−2

OO

LAn−1(J)

idn−1

OO

Fn−1oo

φn−2
ii

LAn(J)

idn

OO

Fnoo

φn
hh

. . .
Fn+1oo

φn+1
gg

(11)

where idk,k+1, idk are corresponding inclusion embeddings.
Notice that this diagram, presented at the level of groups, can be lifted to the level

of hypergroups. In order to do this, one can use Lemma 3 and Remark 1. However, this
is not enough. Yet, as Lemma 4 suggests, it is possible to show that the below presented
assignment is functorial, i.e., not only objects are mapped onto objects but also morphisms
(isotone group homomorphisms) are mapped onto morphisms (hypergroup homomor-
phisms). Notice that Lemma 4 was originally proved in [4]. However, given the minimal
impact of the proceedings and its very limited availability and accessibility, we include it
here with a complete proof.
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Lemma 4. Let (Gk, ·k,≤k), k = 1, 2 be preordered groups and f : (G1, ·1,≤1) → (G2, ·2,≤2)
a group homomorphism, which is isotone, i.e., the mapping f : (G1,≤1) → (G2,≤2) is order-
preserving. Let (Hk, ∗k), k = 1, 2 be hypergroups constructed from (Gk, ·k,≤k), k = 1, 2 by
Lemma 2, respectively. Then f : (H1, ∗1) → (H2, ∗2) is a homomorphism, i.e., f (a ∗1 b) ⊆
f (a) ∗2 f (b) for any pair of elements a, b ∈ H1.

Proof. Let a, b ∈ H1 be a pair of elements and c ∈ f (a ∗1 b) be an arbitrary element. Then
there is d ∈ a ∗1 b = [a ·1 b)≤1 , i.e., a ·1 b ≤1 d such that c = f (d). Since the mapping
f is an isotone homomorphism, we have f (a) ·2 f (b) = f (a ·1 b) ≤ f (d) = c, thus c ∈
[ f (a) ·2 f (b))≤2 . Hence

f (a ∗1 b) = f ([a ·1 b)≤1) ⊆ [ f (a) ·2 f (b))≤ = f (a) ∗2 f (b).

Consider a sequence of partially ordered groups of linear differential operators

LA0(J)
F1←− LA1(J)

F2←− LA2(J)
F3←− . . .

. . .
Fn−2←−− LAn−2(J)

Fn−1←−− LAn−1(J) Fn←− LAn(J)
Fn+1←−− LAn+1(J)← . . .

given above with their linking group homomorphisms Fk : LAk(J) → LAk−1(J) for
k = 1, 2, . . . . Since mappings Fn : LAn(J)→ LAn−1(J), or rather

Fn : (LAn(J), ◦m,≤m)→ (LAn−1(J), ◦m,≤m),

for all n ≥ 2, are group homomorphisms and obviously mappings isotone with respect to
the corresponding orderings, we immediately get the following theorem.

Theorem 1. Suppose J ⊆ R is an open interval, n ∈ N is an integer n = 2, m ∈ N such
that m 5 n. Let (HLAn(J)m, ∗m) be the hypergroup obtained from the group (LAn(J)m, ◦m) by
Lemma 2. Suppose that Fn : (LAn(J)m, ◦m)→ (LAn−1(J)m, ◦m) are the above defined surjective
group-homomorphisms, n ∈ N, n = 2. Then Fn : (HLAn(J)m, ∗m) → HLAn−1(J)m, ∗m) are
surjective homomorphisms of hypergroups.

Proof. See the reasoning preceding the theorem.

Remark 2. It is easy to see that the second sequence from (11) can be mapped onto the sequence
of hypergroups

HLA0(J)m
F1←− HLA1(J)m

F2←− HLA2(J)m
F3←− . . .

. . .
Fn−2←−− HLAn−1(J)m

Fn−1←−− HLAn(J)m ← . . .

This mapping is bijective and the linking mappings are surjective homomorphisms Fn. Thus
this mapping is functorial.

3. Automata and Related Concepts
3.1. Notation and Preliminaries

The concept of an automaton is mathematical interpretation of diverse real-life systems
that work on a discrete time-scale. Various types of automata, called also machines, are
applied and used in numerous forms such as money changing devices, various calculating
machines, computers, telephone switch boards, selectors or lift switchings and other
technical objects. All the above mentioned devices have one aspect in common–states are
switched from one to another based on outside influences (such as electrical or mechanical
impulses), called inputs. Using the binary operation of concatenation of chains of input
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symbols one obtains automata with input alphabets in the form of semigroups or a groups.
In the case of our paper we work with input sets in the form of hypercompositional
structures. When focusing on the structure given by transition function and simultaneously
neglecting the output functions and output sets, one reaches a generalization of automata–
quasi-automata (or semiautomata); see classical works such as, e.g., [3,18,21–24].

To be more precise, a quasi-automaton is a system (A, S, δ) which consists of a non-
void set A, an arbitrary semigroup S and a mapping δ : A× S→ A such that

δ(δ(a, r, s)) = δ(a, r, s) (12)

for arbitrary a ∈ A and r, s ∈ S. Notice that the concept of quasi-automaton has been
introduced by S. Ginsberg as quasi-machine and was meant to be a generalization of the
Mealy-type automaton. Condition (12) is sometimes called Mixed Associativity Condition
(MAC). With most authors it is nameless, though.

For further reading on automata theory and its links to the theory of hypercomposi-
tional structures (also known as algebraic hyperstructures), see, e.g., [24–26]. Furthermore,
for clarification and evolution of terminology, see [8]. For results obtained by means of
quasi-multiautomata, see, e.g., [5–8,27].

Definition 1. Let A be a nonempty set, (H, ·) be a semihypergroup and δ : A × H → A a
mapping satisfying the condition

δ(δ(s, a), b) ∈ δ(s, a · b) (13)

for any triad (s, a, b) ∈ A × H × H, where δ(s, a · b) = {δ(s, x); x ∈ a · b}. Then the triad
(A, H, δ) is called quasi-multiautomaton with the state set A and the input semihypergroups (H, ·).
The mapping δ : A × H → A is called the transition function (or the next-state function) of
the quasi-multiautomaton (A, H, δ). Condition (13) is called Generalized Mixed Associativity
Condition (or GMAC).

In this section, Rn[x] means, as usually, the ring of polynomials of degree at most n.

3.2. Results

Now, consider linear differential operators L(m, pn−1, . . . , p0) : C∞(R) → C∞(R)
defined by

L(m, pn−1, . . . , p0) f = m
dn f (x)

dxn +
n−1

∑
k=0

pk(x)
dk f (x)

dxk . (14)

Denote byLA1An(R) the additive abelian group of differential operators L(m, pn−1, . . . ,
p0), where for L(m, pn−1, . . . , p0), L(k, qn−1, . . . , q0) ∈ LA1An(R) we define

L(m, pn−1, . . . , p0) + L(k, qn−1, . . . , q0) = L(m + k, pn−1 + qn−1, . . . , p0 + q0), (15)

where

L(m + k, pn−1 + qn−1, . . . , p0 + q0) f = (m + k)
dn f (x)

dxn +
n−1

∑
k=0

(pk(x) + qk(x))
dk f (x)

dxk . (16)

Suppose that pk ∈ Rn−1[x] and define

δn : Rn[x]× LA1An(R)→ Rn[x] (17)

by

δn( f , L(m, pn−1, . . . , p0)) = m
dn f (x)

dxn + f (x) + m +
n−1

∑
k=0

pk(x), f ∈ Rn[x]. (18)
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Theorem 2. Let LA1An(R), Rn[x] be structures and δn : Rn[x] × LA1An(R) → Rn[x] the
mapping defined above. Then the triad (Rn[x],LA1An(R), δn) is a quasi-automaton, i.e., an action
of the group LA1An(R) on the group Rn[x].

Proof. We are going to verify the mixed associativity condition (MAC) which should
satisfy the above defined action:

Suppose f ∈ Rn[x], f (x) = ∑n
k=0 akxk, L(m, pn−1, . . . , p0), L(k, qn−1, . . . , q0)

∈ LA1An(R). Then

δn(δn( f , L(m, pn−1, . . . , p0)), L(k, qn−1, . . . , q0)) =

= δn

(
m

dn f (x)
dxn + f (x) + m +

n−1

∑
k=0

pk(x), L(k, qn−1, . . . , q0)

)
=

= δn

(
m · n! · an + m + f (x) +

n−1

∑
k=0

pk(x), L(k, qn−1, . . . , q0)

)
=

= k
dn f (x)

dxn + m · n! · an + m + f (x) +
n−1

∑
k=0

pk(x) +
n−1

∑
k=0

qk(x) + k =

= (m + k)n! · an + (m + k) + f (x) +
n−1

∑
k=0

(pk(x) + qk(x)) =

= (m + k)(n! · an + 1) + f (x) +
n−1

∑
k=0

(pk(x) + qk(x)) =

= (m + k)
dn f (x)

dxn + f (x) + (m + k) +
n−1

∑
k=0

(pk(x) + qk(x)) =

= δn( f , L(m + k, pn−1 + qn−1, . . . , p0 + q0)) =

= δn( f , L(m, pn−1, . . . , p0) + L(k, qn−1, . . . , q0)), (19)

thus the mixed associativity condition is satisfied.

Since Rn[x],LA1An(R) are endowed with naturally defined orderings, Lemma 2 can
be straightforwardly applied to construct semihypergroups from them.

Indeed, for a pair of polynomials f , g ∈ Rn[x] we put f ≤ g, whenever f (x) ≤
g(x), z ∈ Rn[x]. In such a case (Rn[x],≤) is a partially ordered abelian group. Now we
define a binary hyperoperation

# : Rn[x]×Rn[x]→ P?(Rn[x]) (20)

by

f #g = {h; h ∈ Rn[x], f (x) + g(x) ≤ h(x), x ∈ R} = [ f + g)≤. (21)

By Lemma 2 we have that (Rn[x], #) is a hypergroup.
Moreover, defining

# : LA1An(R)×LA1An(R)→ P?(LA1An(R)) (22)

by L(m,
−−→
p(x))#L(k,

−−→
q(x)) =

[
L(m,

−−→
p(x)) + L(k,

−−→
q(x))

)
≤

=
[

L(m + k,
−−→
p(x) +

−−→
q(x)

)
≤

=

{L(r,
−−→
u(x)); m + k ≤ r,

−−→
p(x) +

−−→
q(x) ≤

−−→
u(x)}, which means

pj(x) + qj(x) ≤ uj(x),

where j = 0, 1, . . . , n− 1, we obtain, again by Lemma 2 that the hypergroupoid (LA1An(R), #)
is a commutative semihypergroup.
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Finally, define a mapping

σn : LA1An(R)×Rn[x]→ Rn[x] (23)

by
σn(L(m, pn−1, . . . , p0, f )) = L(m, p0 ◦ f + pn−1, . . . , p0 ◦ f + p1, p0). (24)

Below, in the proof of Theorem 3, we show that the mapping satisfies the GMAC con-
dition.

This allows us to construct a quasi-multiautomaton.

Theorem 3. Suppose (LA1An(R), #), (Rn[x], #) are hypergroups constructed above and σn :
LA1An(R)×Rn[x]→ Rn[x] is the above defined mapping. Then the structure

((LA1An(R), #), (Rn[x], #), σn)

is a quasi-multiautomaton.

Proof. Suppose L(m,~p) ∈ LA1An(R), f , g ∈ Rn[x]. Then

σn(σn(L(m,~p), f ), g) = σn(L(m, p ◦ f + pn−1, . . . , p ◦ f + p1, p0), g) =

= L(m, p ◦ g + p ◦ f + pn−1, . . . , p ◦ g + p ◦ f + p1, p0) =

= L(m, p ◦ (g + f ) + pn−1, . . . p ◦ (g + f ) + p1, p0) ∈
∈ {σn(L(m, p ◦ h + pn−1, . . . p ◦ h + p1, p0); f , g, h ∈ Rn[x], f + g ≤ h} =
= σn(L, m, pn−1, . . . , p1, p0), [ f + g)≤) = σn(L(m,~p), f #g), (25)

hence the GMAC condition is satisfied.

Now let us discuss actions on objects of different dimensions. Recall that a homo-
morphism of automaton (S, G, δS) into the automaton (T, H, δT) is a mapping F = φ× ψ :
S× G → T × H such that φ : S → T is a mapping and ψ : G → H is a homomorphism
(of semigroups or groups) such that for any pair [s, g] ∈ S× G we have

φ(δS(s, g)) = δT(φ(s), ψ(g)), i.e., φ ◦ δS = δT ◦ (φ× ψ). (26)

In order to define homomorphisms of our considered actions and especially in order to
construct a sequence of quasi-automata with decreasing dimensions of the corresponding
objects, we need a different construction of a quasiautomaton.

If f ∈ Rn[x], f (x) = ∑n
k=0 anxk and L(m,~p) ∈ LA1An(R), we define

τn(L(m, pn−1, . . . , p0), f ) = L(m, an + pn−1, . . . , a1 + p0 + a0). (27)

Now, if g ∈ Rn[x], g(x) = ∑n
k=0 bkxk, we have

τn(τn(L(m, pn−1, . . . , p0), f ), g) =

= τn(L(m, an + pn−1, . . . , a1 + p1 + a0), g) =

= L(m, an + bn + pn−1, . . . , a1 + b1 + p0 + a0 + b0) =

= τn

(
L(m, pn−1, . . . , p0),

n

∑
k=0

(ak + bk)x

)
=

= τn(L(m, pn−1, . . . , p0), f + g). (28)

Hence τn : LA1An(R) × Rn[x] → LA1An(R) is the transition function (satisfying
MAC) of the automaton A = (LA1An(R),Rn−1[x], τn).
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Consider now two automata–An−1 = (LA1An−1(R),Rn−1[x], τn−1) and the above
one. Define mappings

φn : LA1An(R)→ LA1An−1(R), ψn : Rn[x]→ Rn−1[x] (29)

in the following way: For L(m, pn−1, . . . , p0) ∈ LA1An(R) put

φn(L(m, pn−1, . . . , p0)) = L(m, pn−2, . . . , p0) ∈ LA1An−1(R) (30)

and for f ∈ Rn[x], f (x) = ∑n
k=0 akxk define

ψn( f ) = ψn

(
n

∑
k=0

akxk

)
=

n−1

∑
k=0

akxk ∈ Rn−1[x]. (31)

Evidently, there is ψn( f + g) = ψn( f ) + ψ(g) for any pair of polynomials f , g ∈ Rn[x].

Theorem 4. Let φn : LA1An(R) → LA1An−1(R), ψn : Rn[x] → Rn−1[x], τn : LA1An(R)×
Rn[x] → LA1An(R), n ∈ N, n = 2, be mappings defined above. Define Fn : An → An−1
as mapping

Fn = φn × ψn : LA1An(R)×Rn[x]→ LA1An−1(R)×Rn−1[x].

Then the following diagram

LA1An(R)×Rn[x]
τn //

φn×ψn

��

LA1An(R)

φn

��
LA1An−1(R)×Rn−1[x]

τn−1 // LA1An−1(R)

(32)

is commutative, thus the mapping Fn = φn × ψn is a homomorphism of the automaton An =
(LA1An(R),Rn[x], τn) into the automaton An−1 = (LA1An−1(R),Rn−1[x], τn−1).

Proof. Let [L(m,~p), f ] ∈ LA1An(R)×Rn[z], f (x) = ∑n
k=0 akxk. Then

(φn ◦ τn)(L(m,~p), f ) = φn

(
τn

(
L(m, pn−1, . . . , p0),

n

∑
k=0

akxk

))
=

= φn((m, an + pn−1, . . . , a1 + p0 + a0)) = L(m, an−1 + pn−2, . . . , a1 + p0 + a0) =

= τn−1

(
L(m, pn−2, . . . , p0),

n−1

∑
k=0

akxk

)
=

= τn−1

(
(φn × ψn)

(
L(m, pn−1, . . . , p0),

n

∑
k=0

akxk

))
=

= (τn−1 ◦ (φn × φn)))(L(m,~p), f ), (33)

Thus the diagram (32) is commutative.

Using the above defined homomorphism of automata we obtain the sequence of
automata with linking homomorphisms Fk : Ak → An−1, k ∈ N, k ≥ 2 :

. . .
Fn−1←−− (LA1An−1(R),Rn−1[x], τn−1)

Fn←− (LA1An(R),Rn[x], τn)

(LA1A1(R), τ1)
F2←− (LA1A2(R), τ2)

F3←− . . .
Fn−2←−− (LA1An−2(R),Rn−2[x], τn−2)

Fn−1←−− . . . (34)
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Here, for L(m, P− 1, P− 0) ∈ LA1A2(R) we have

L(m, p1, p0)y(x) = m
d2y(x)

dx2 + p1(x)
dy(x)

dx
+ p0(x)y(x) (35)

for any y(x) ∈ C2(R) and any L(m, p0) ∈ LA1A1(R) it holds L(m, p0)y(x) = m dy(x)
dx +

p0(x)y(x).
The obtained sequence of automata can be transformed into a countable sequence of

quasi-multiautomata. We already know that the transition function

σn : LA1An(R)×Rn[x]→ LA1An(R)

satisfies GMAC. Further, suppose f , g ∈ Rn[x], f (x) = ∑m
k=0 akxk, g(x) = ∑m

k=0 bkxk. Then

ψn( f #g) = ψn({h; h ∈ Rn[x], f + g 5 h}) =
= {ψn(h); h ∈ Rn[x], f + g 5 h} =
= {u; u ∈ Rn−1[x], ψn( f ) + ψn(g) 5 u} =

= ψn( f )#ψn(g);

here grad ψn(h) < grad h for any polynomial h ∈ f #g. Thus the mapping ψn : (Rn[x], #)→
(Rn−1[x], #) is a good homomorphism of corresponding hypergroups.

Now we are going to construct a sequence of automata with increasing dimensions,
i.e., in a certain sense sequence “dual” to the previous sequence. First of all, we need a
certain “reduction” member to the definition of a transition function

λ∗n : LA1An(R)×Rn[x]→ LA1An(R), (36)

namely redn−1 : Rr[x] → Rn−1[x] whenever r > n− 1. In detail, if f (x) = ∑r
k−0 akxk ∈

Rr[x], then

redn−1( f ) = redn−1

(
r

∑
k=0

akxk

)
= redn−1

(
r

∑
k=n

akxk +
n−1

∑
k=0

akxk−1

)
=

=
n−1

∑
k=0

akxk−1 ∈ Rn−1[x]. (37)

Further, L(m, pn−2, . . . , p0)n ∈ LA1An(R) is acting by

L(m, pn−2, . . . , p0)ny(x) = m
dny(x)

dxn +
n−2

∑
k=0

pk(x)
dky(x)

dxk (38)

whereas L(m, pn−2, . . . , p0)n−1 ∈ LA1An−1(R), i.e.,

L(m, pn−2, . . . , p0)n−1y(x) = m
dn−1y(x)

dxn−1 +
n−2

∑
k=0

pk(x)
dky(x)

dxk . (39)

Then for any pair (L(m, pn−1, . . . , p0), f ) ∈ LA1An(R)×Rn[x], where f (x) = ∑n
k=0 akxk,

we obtain

λn = λ?
n ◦ (id× redn−1) (40)
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and

(λ?
n ◦ (id× redn−1))(L(m, pn−1, . . . , p0, f ) = λ?

n

(
L(m, pn−1, . . . , p0),

n−1

∑
k=0

akxk

)
=

= L(m, pn−1 + an−1, . . . , p0 + a0) ∈ LA1An(R), (41)

thus the mapping λn : LA1An(R)×Rn[x]→ LA1An(R) is well defined. We should verify
validity of MAC and commutativity of the square diagram determining a homomorphism
between automata.

Suppose L(m, pn−1, . . . , p0) ∈ LA1An(R), f , g ∈ Rn[x], f (x) = ∑n
k=0 akxk, g(x) =

∑n
k=0 bkxk. Then

λn(λn(L(m, pn−1, . . . , p0), f ), g) =

= λn(L(m, pn−1 ++an−1, . . . , p0 + a0, g) =

= L(m, pn−1 + an−1 + bn−1, . . . , p0 + a0 + b0) =

= λn

(
L(m, pn−1, . . . , p0),

n

∑
k=0

(ak + bk)xk

)
=

= λn(L(m, pn−1, . . . , p0), f + g), (42)

thus MAC is satisfied.
Further, we are going to verify commutativity of this diagram

LA1An−1(R)×Rn−1
λn−1 //

ξn−1×ηn−1
��

LA1An−1(R)

ηn−1

��
LA1An(R)×Rn[x]

λn // LA1An(R)

(43)

where ξn−1(L(m, pn−2, . . . , p0)n−1) = L(m, pn−1, . . . , p0)n, i.e.,

m
dn−1

dxn−1 + pn−1(x)
dn−2

dxn−1 + · · ·+ p0(x)id→ m
dn

dxn + pn−2(x)
dn−2

dxn−2 + · · ·+ p0(x)id (44)

and ηn−1

(
∑n−1

k=0 akxk
)
= an−1xn + ∑n−1

k=0 akxk.

Considering L(m, pn−2, . . . , p0) and the polynomial f (x) = ∑n−1
k=0 akxk similarly as

above, we have

(ηn−1)(L(m, pn−2, . . . , p0), f ) = ηn−1(L(m, pn−2 + an−2, . . . , p0 + a0)n−1) =

= ηn−1(λn−1(L(m, pn−2, . . . , p0), f ) = (ηn−1 ◦ λn−1)(L(m, pn−2, . . . , p0), f ). (45)

Thus the above diagram is commutative. Now, denoting by Tn−1 the pair of mappings
(ξn−1, ηn−1), we obtain that Tn−1 : (LA1An−1(R),Rn−1[x], λn−1)→ (LA1An(R),Rn[x], λn)
is a homomorphism of the given automata. Finally, using Tk as connecting homomorphism,
we obtain the sequence

(LA1A1(R),R1[x], λ1)
T1−→ (LA1A2(R),R2[x], λ2)

T2−→ (LA1A3(R),R3[x], λ3)
T3−→ . . .

. . .
Tn−2−−→ (LA1An−1(R),Rn−1[x], λn−1)

Tn−1−−→ (LA1An(R),Rn[x], λn)
Tn−→ . . . (46)

4. Practical Applications of the Sequences

In this section, we will include several examples of the above reasoning. We will
apply the theoretical results in the area of artificial neurons, i.e., in a way, continue with
the paper [11] which focuses on artificial neurons. For notation, recall [11]. Further on we
consider a generalization of the usual concept of artificial neurons. We assume that the
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inputs uxi and weight wi are functions of an argument t, which belongs into a linearly
ordered (tempus) set T with the least element 0. The index set is, in our case, the set C(J) of
all continuous functions defined on an open interval J ⊂ R. Now, denote by W the set of
all non-negative functions w : T → R. Obviously W is a subsemiring of the ring of all real
functions of one real variable x : R → R. Further, denote by Ne(~wr) = Ne(wr1, . . . , wrn)
for r ∈ C(J), n ∈ N the mapping

yr(t) =
n

∑
k=1

wr,k(t)xr,k(t) + br

which will be called the artificial neuron with the bias br ∈ R. By AN(T) we denote the
collection of all such artificial neurons.

4.1. Cascades of Neurons Determined by Right Translations

Similarly as in the group of linear differential operators we will define a binary opera-
tion in the systemAN(T) of artificial neurons Ne(·) and construct a non-commutative group.

Suppose Ne(~wr), Ne(~ws) ∈ AN(T) such that r, s ∈ C(J) and ~wr = (wr,1, . . . , wr,n),
~ws = (ws,1, . . . , ws,n), where n ∈ N. Let m ∈ N, 1 ≤ m ≤ n be a such an integer that
wr,m > 0. We define

Ne(~wr) ·m Ne(~ws) = Ne(~wu),

where
~wu = (wu,1, . . . , wu,n) = (wu,1(t), . . . , wu,n(t)),

~wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T

and, of course, the neuron Ne(~wu) is defined as the mapping yu(t) =
n
∑

k=1
wk(t)xk(t) +

bu, t ∈ T, bu = brbs.
The algebraic structure (AN(T), ·m) is a non-commutative group. We proceed to

the construction of the cascade of neurons. Let (Z,+) be the additive group of all inte-
gers. Let Ne(~ws(t)) ∈ AN(T) be an arbitrary but fixed chosen artificial neuron with the
output function

ys(t) =
n

∑
k=1

ws,k(t)xs,k(t) + bs.

Denote by ρs : AN(T)→ AN(T) the right translation within the group of time varying
neurons determined by Ne(~ws(t)), i.e.,

ρs(Ne(~wp(t)) = Ne(~wp(t) ·m Ne(~ws(t))

for any neuron Ne(~wp(t)) ∈ AN(T). In what follows, denote by ρr
s the r-th iteration of ρs

for r ∈ Z. Define the projection πs : AN(T)×Z→ AN(T) by

πs(Ne(~wp(t)), r) = ρr
s(Ne(~wp(t)).

One easily observes that we get a usual (discrete) transformation group, i.e., the action
of (Z,+) (as the phase group) on the group AN(T). Thus the following two requirements
are satisfied:

1. πs(Ne(~wp(t)), 0) = Ne(~wp(t)) for any neuron Ne(~wp(t)) ∈ AN(T).
2. πs(Ne(~wp(t)), r + u) = πs(πs(Ne(~wp(t)), r), u) for any integers r, u ∈ Z and any

artificial neuron Ne(~wp(t)). Notice that the just obtained structure is called a cascade
within the framework of the dynamical system theory.

4.2. An Additive Group of Differential Neurons

As usually denote by Rn[t] the ring of polynomials of variable t over R of the grade at
most n ∈ N0. Suppose ~w = (w1(t), . . . , wn(t)) be the fixed vector of continuous functions
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wk : R → R, bp be the bias for any polynomial p ∈ Rn[t]. For any such polynomial
p ∈ Rn[t] we define a differential neuron DNe(~w) given by the action

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn . (47)

Considering the additive group of Rn[t] we obtain an additive commutative group
DN(T)of differential neurons which is assigned to the group of Rn[t]. Thus for DNep(~w),
DNeq(~w) ∈ DN(T) with actions

y(t) =
n

∑
k=1

wk(t)
dk−1 p(t)

dtk−1 + b0
dn p(t)

dtn

and

z(t) =
n

∑
k=1

wk(t)
dk−1q(t)

dtk−1 + b0
dnq(t)

dtn

we have DNep+q(~w) = DNep(~w) + DNeq(~w) ∈ DN(T) with the action

u(t) = y(t) + z(t) =
n

∑
k=1

wk(t)
dk−1(p(t) + q(t))

dtk−1 + b0
dn(p(t) + q(t))

dtn

Considering the chain of inclusions

Rn[t] ⊂ Rn+1[t] ⊂ Rn+2[t] . . .

we obtain the corresponding sequence of commutative groups of differential neurons.

4.3. A Cyclic Subgroup of the Group AN(T)m Generated by Neuron Ne(~wr) ∈ AN(T)m

First of all recall that if Ne(~wr), Ne(~ws) ∈ AN(T)m, r, s ∈ C(J), where
~wr(t) = (wr,1(t), . . . , wr,n(t)), ~ws(t) = (ws,1(t), . . . , ws,n(t)), are vector function of weights

such that wr,m(t) 6= 0 6= ws,m(t), t ∈ T with outputs yr(t) =
n
∑

k=1
wr,k(t)xk(t) + br, ys(t) =

n
∑

k=1
ws,k(t)xk(t) + bs (with inputs xk(t)), then the product Ne(~wr) ·m Ne(~ws) = Ne(~wu) has

the vector of weights
~wu(t) = (wu,1(t), . . . , wu,n(t))

with wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T.

The binary operation “·m” is defined under the assumption that all values of functions
which are m-th components of corresponding vectors of weights are different from zero.

Let us denote by ZANr(T) the cyclic subgroup of the group AN(T)m generated by
the neuron Ne(~wr) ∈ AN(T)m. Then denoting the neutral element by N1(~e)m we have
ZANr(T) =

= {. . . , [Ne(~wr)]
−2, [Ne(~wr)]

−1, N1(~e)m, Ne(~wr), [Ne(~wr)]
2, . . . , [Ne(~wr)]

p, . . . }.

Now we describe in detail objects

[Ne(~wr)]
2, [Ne(~wr)]

p, p ∈ N, p ≥ 2, N1(~e)m and [Ne(~wr)]
−1, (48)

i.e., the inverse element to the neuron Ne(~wr).
Let us denote [Ne(~wr)]2 = Ne(~ws), with ~ws(t) = (ws,1(t), . . . , ws,n(t)). then

ws,k(t) = wr,m(t)wr,k(t) + (1− δm,k)wr,k(t) = (wr,m(t) + 1− δm,k)wr,k(t).
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Then the vector of weights of the neuron [Ne(~wr)]2 is

~ws(t) = ((wr,m(t) + 1)wr,1(t), . . . , w2
r,m(t), . . . , (wr,m(t) + 1)wr,n(t)),

the output function is of the form

ys(t) =
n

∑
k=1
k 6=m

(wr,m(t) + 1)wr,k(t)xk(t)) + w2
r,mxn(t) + b2

r .

It is easy to calculate the vector of weights of the neuron [Ne(~wr)]3 :

((w2
r,m(t) + 1)wr,1(t), . . . , w3

r,m(t), . . . , (w2
r,m(t) + 1)wr,n(t)).

Finally, putting [Ne(~wr)]p = Ne(~wv) for p ∈ N, p ≥ 2, the vector of weights of this
neuron is

~wv(t) = ((wp−1
r,m (t) + 1)wr,1(t), . . . , wp

r,m(t), . . . , (wp−1
r,m (t) + 1)wr,n(t)).

Now, consider the neutral element (the unit) N1(~e)m of the cyclic group ZANr(T).
Here the vector~e of weights is~e = (e1, . . . , em, . . . , en), where em = 1 and ek = 0 for each
k 6= m. Moreover the bias b = 1.

We calculate products Ne(~ws) · N1(~e)m, N1(~e)m) · Ne(~ws). Denote Ne(~wu), Ne(~wv)
results of corresponding products, respectively–we have ~wu(t) = (wu,1(t), . . . , wu,n(t)),
where

wu,k(t) = ws,m(t)ek(t) + (1− δm,k)ws,k(t) = ws,k(t)

if k 6= m and wu,k(t) = ws,m(t)(em(t) + 0 · ws,m(t)) = ws,m(t) for k = m. Since the bias
is b = 1, we obtain yu(t) = xm(t) + 1. Thus Ne(~wu) = Ne(~ws). Similarly, denoting
~wv(t) = (wv,1(t), . . . , wv,n(t)), we obtain wv,k(t) = em(t)ws,k(t) + (1− δm,k)ek(t) = ws,k(t)
for k 6= m and wv,k(t) = ws,m(t) if k = m, thus ~wv(t) = (ws,1(t), . . . , ws,n(t)), consequently
Ne(~wu) = Ne(~ws) again.

Consider the inverse element [Ne(~wr)]−1 to the element Ne(~wr ∈ ZAN(T)m. Denote
Ne(~ws) = [Ne(~wr)]−1, ~ws(t) = (ws,1(t), . . . , ws,n(t)), t ∈ T. We have Ne(~wr) · Ne(~ws) =
Ne(~wr) ·m [Ne(~wr)]−1 = N1(~e)m. Then

0 = e1 = wr,m(t)ws,1(t) + wr,1(t),

0 = e2 = wr,m(t)ws,2(t) + wr,2(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 = em = wr,m(t)ws,m(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 = en = wr,m(t)ws,n(t) + wr,n(t).

From the above equalities we obtain

ws,1(t) = −
wr,1(t)
wr,m(t)

, . . . , , ws,m(t) =
1

wr,m(t)
, . . . , ws,n(t) = −

wr,n(t)
wr,m(t)

.

Hence, for [Ne(~wr)]−1 = Ne(~ws), we get

~ws(t) =
(
− wr,1(t)

wr,m(t)
, . . . ,

1
wr,m(t)

, . . . ,− wr,n(t)
wr,m(t)

)
=

=
1

wr,m(t)
(−wr,1(t), . . . , 1, . . . ,−wr,n(t)),
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where the number 1 is on the m-th position. Of course, the bias of the neuron [Ne(~wr)]−1 is
b−1

r , where br is the bias of the neuron Ne(~wr).

5. Conclusions

The scientific school of O. Borůvka and F. Neuman used, in their study of ordinary
differencial equations and their transformations [1,28–30], the algebraic approach with
the group theory as a main tool. In our study, we extended this existing theory with
the employment of hypercomposiional structures—semihypergroups and hypergroups.
We constructed hypergroups of ordinary linear differential operators and certain sequences
of such structures. This served as a background to investigate systems of artificial neurons
and neural networks.
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