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Abstract: In this paper, we use the elementary methods and properties of classical Gauss sums to
study the calculation problems of some mean values of character sums of special polynomials, and
obtained several interesting calculation formulae for them. As an application, we give a criterion for
determining that 2 is the cubic residue for any odd prime p.
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1. Introduction

Let q > 1 be an integer. For any positive integer k > 1, an integer a with (a, q) = 1
is called k-th residue modulo q, if the congruence equation xk ≡ a(mod q) has at least
an integer solution x0 mod q. That is, xk

0 ≡ a(mod q). If k = 2 and q = p, an odd prime,
Legendre first introduced the quadratic character function, i.e., Legendre’s symbol modulo
p, which is defined as follows:

(
a
p

)
=


1, if a is a quadratic residue modulo p;
−1, if a is not a quadratic residue modulo p;
0, if p | a.

This function occupies a very important position in elementary number theory and
analytic number theory. Many number theory problems are closely related to it. Some
works can be found in references [1–13], which will not be listed here. For example, if p
is a prime with p = 4k + 1, then p can be expressed as the sum of two squares of positive
integers. That is, p = α2(p) + β2(p). More precisely (see Theorem 4–11 of [14]), we have
the identity

p = α2(p) + β2(p) ≡

 p−1
2

∑
a=1

(
a3 + ra

p

)2

+

 p−1
2

∑
a=1

(
a3 + na

p

)2

,

where
(
∗
p

)
denotes the Legendre’s symbol modulo p, r and n are any two integers with

(rn, p) = 1, such that
(

rn
p

)
= −1 or

(
r
p

)
+
(

n
p

)
= 0.

In addition, Legendre’s symbol has many unique properties. For example,(
−1
p

)
= (−1)

p−1
2 ,

(
2
p

)
= (−1)

p2−1
8 and

(
q
p

)
·
(

p
q

)
= (−1)

(p−1)(q−1)
4 ,

where p and q are two different odd primes (see [15]).
In this paper, we concentrate our attention on the mean values of character sums of

the polynomial f (x, y). That is,
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p−1

∑
b=0

∣∣∣∣∣p−1

∑
a=0

χ( f (a, b))

∣∣∣∣∣
4

, (1)

where f (x, y) is an integer coefficient polynomial of x and y, p is an odd prime, χ is any
non-principal character modulo p.

Our aim is to give an exact formula for calculating the sum in (1). Of course, for a
general polynomial f (x, y), this is hard to do. However, for some special polynomials
f (x, y), we can still produce fairly good results. The main purpose of this paper is to
illustrate this point. That is, we will use elementary methods and the properties of the
classical Gauss sums to prove the following results.

Theorem 1. Let p be an odd prime with p ≡ 1(mod6). Then, for any non-principal character
χ mod p, we have the identity

1
p− 1

·
p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

χ
(

a3 + n
)∣∣∣∣∣

4

=

{
6p2, if χ3 6= χ0;
p2 + 4p + 1, if χ3 = χ0,

where χ0 denotes the principal character modulo p.

Theorem 2. Let p be an odd prime with p ≡ 1(mod6). Then, for any three-order character
λ mod p, we have the identity

1
p− 1

·
p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

λ
(

a3 + n
)∣∣∣∣∣

6

= (p + 1)
(

p2 + 8p + 1
)
− d(d2 − 3p),

where 4p = d2 + 27b2, d is uniquely determined by d ≡ 1(mod3) (see [3]).

Theorem 3. Let p be an odd prime with p ≡ 1(mod6). Then, we have

p−1

∑
a=0

(
a3 + 2

p

)
=

(
2
p

)
· d = (−1)

p2−1
8 · d,

where
(
∗
p

)
denotes the Legendre’s symbol modulo p, d is the same as the definition in Theorem 2.

From Theorem 3, we may immediately deduce the following two corollaries.

Corollary 1. Let p be an odd prime with p ≡ 1(mod6). Then, 2 is a cubic residue modulo p if
and only if d is an even number.

Corollary 2. Let p be an odd prime with p ≡ 1(mod6). Then, 2 is a cubic residue modulo p if
and only if there are two integers d1 and b1 such that

p = d2
1 + 27 · b2

1,

where d1 is uniquely determined by d1 ≡ −1(mod3) (see G. Frei [11]).

Some notes. Our results reveal the value distribution properties of the character sums
of polynomials. Although the value distribution of individual sums is very irregular, its
mean value shows good distribution properties, such as Theorem 1. In addition, our results
seem to be generalized, which means that we can study the mean value

p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

χ
(

ah + n
)∣∣∣∣∣

4

,
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and obtain an exact formula for it, where p is an odd prime with p ≡ 1(mod h).
For any prime p with p ≡ 1(mod 6) and any non-principal character χ modulo p,

whether there is an exact calculation formula for the 2k-th power mean

p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

χ
(

a3 + n
)∣∣∣∣∣

2k

, k ≥ 3.

This is an open problem. We will study it further. Of course, if χ = λ is a three-order
character modulo p, then from the methods of proving Theorem 2, we can prove that this
conclusion is correct.

Theorem 3 shows a close relation between the quadratic residue in the form of a3 + 2

modulo p (p ≡ 1(mod 6)) and d. For example, if (−1)
p2−1

8 · d > 0, then in a complete
residue system modulo p, the number of quadratic residues in the form of a3 + 2 is
greater than the number of quadratic non-residues. If we take p = 7, 13 and 19, then
(−1)

49−1
8 · 1 > 0, (−1)

169−1
8 · 1 < 0 and (−1)

361−1
8 · 1 < 0, so we have

6

∑
a=0

(
a3 + 2

p

)
> 0,

12

∑
a=0

(
a3 + 2

p

)
< 0,

18

∑
a=0

(
a3 + 2

p

)
< 0.

This also describes the distribution properties of the quadratic residue in the form of
a3 + 2 modulo p from a different perspective.

2. Several Lemmas

In this section, we provide several lemmas. Of course, for the proofs of these lemmas,
some knowledge of analytic number theory is required. They can be found in many
number theory books, such as [14–16]; here, we do not need to list these. Firstly, we have
the following lemmas.

Lemma 1. Let p be a prime with p ≡ 1(mod 6). Then, for integer n with (n, p) = 1 and any
non-principal character χ mod p, if χ3 6= χ0, then we have the identity∣∣∣∣∣p−1

∑
a=0

χ
(

a3 + n
)∣∣∣∣∣ = 1

√
p
·
∣∣λ(n)τ(λ)τ(χλ

)
+ λ(n)τ

(
λ
)
τ(χλ)

∣∣;
If χ = λ is a third-order character modulo p, then we have∣∣∣∣∣p−1

∑
a=0

λ
(

a3 + n
)∣∣∣∣∣ =

∣∣∣∣λ(n) · τ3(λ)

p
− λ(n)

∣∣∣∣.
Proof. Let λ be any third-order character modulo p. Then, for any integer a with (a, p) = 1,
note that the identity 1 + λ(a) + λ(a) = 3, if there is an integer b with (b, p) = 1 such that
a ≡ b3 mod p; 1 + λ(a) + λ(a) = 0, otherwise. So, from these and the properties of Gauss
sums we have

p−1

∑
a=0

χ
(

a3 + n
)
= χ(n) +

p−1

∑
a=1

(
1 + λ(a) + λ(a)

)
χ(a + n)

=
p−1

∑
a=0

χ(a + n) +
p−1

∑
a=1

(
λ(a) + λ(a)

)
χ(a + n)

=
1

τ(χ)

(
p−1

∑
b=1

χ(b)
p−1

∑
a=1

λ(a)e
(

b(a + n)
p

)
+

p−1

∑
b=1

χ(b)
p−1

∑
a=1

λ(a)e
(

b(a + n)
p

))

=
χ(n)
τ(χ)

(
λ(n)τ(λ)τ

(
χλ
)
+ λ(n)τ

(
λ
)
τ(χλ)

)
. (2)
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If χ = λ, then from (2), τ(χλ) = −1, λ2 = λ and τ(λ)τ
(
λ
)
= p we have∣∣∣∣∣p−1

∑
a=0

λ
(

a3 + n
)∣∣∣∣∣ =

∣∣∣∣λ(n) · τ3(λ)

p
− λ(n)

∣∣∣∣. (3)

Now, Lemma 1 follows from (2) and (3).

Lemma 2. Let p be a prime with p ≡ 1(mod 6). Then, for any third-order character λ mod p,
we have the identity

τ(χ2) · τ
(
λ
)
= λ(2) · τ(λχ2) · τ(λ),

where τ(χ) =
p−1

∑
a=1

χ(a)e
(

a
p

)
denotes the classical Gauss sums,

(
∗
p

)
= χ2 denotes the Legendre’s

symbol modulo p, e(y) = e2πiy and i2 = −1.

Proof. Let ψ = λχ2, then ψ must be a sixth-order character modulo p. Note that ψ2 = λ2 = λ,
from the properties of the classical Gauss sums, we have

p−1

∑
a=0

ψ
(

a2 − 1
)
=

p−1

∑
a=0

ψ
(
(a + 1)2 − 1

)
=

p−1

∑
a=1

ψ
(

a2 + 2a
)
=

p−1

∑
a=1

ψ(a)ψ(a + 2)

=
1

τ
(
ψ
) p−1

∑
a=1

ψ(a)
p−1

∑
b=1

ψ(b)e
(

b(a + 2)
p

)
=

1
τ
(
ψ
) p−1

∑
b=1

ψ(b)
p−1

∑
a=1

ψ(a)e
(

b(a + 2)
p

)

=
τ(ψ)

τ
(
ψ
) p−1

∑
b=1

ψ(b)ψ(b)e
(

2b
p

)
=

τ(ψ)

τ
(
ψ
) p−1

∑
b=1

λ(b)e
(

2b
p

)
=

λ(2)τ(λ)τ(ψ)
τ
(
ψ
) . (4)

On the other hand, note that for any integer b with (b, p) = 1, we have the identity

p−1

∑
a=0

e
(

ba2

p

)
= 1 +

p−1

∑
a=1

(1 + χ2(a))e
(

ba
p

)
=

p−1

∑
a=1

χ2(a)e
(

ba
p

)
= χ2(b) · τ(χ2),

so we also have the identity

p−1

∑
a=0

ψ
(

a2 − 1
)
=

1
τ
(
ψ
) p−1

∑
a=0

p−1

∑
b=1

ψ(b)e
(

b(a2 − 1)
p

)

=
1

τ
(
ψ
) p−1

∑
b=1

ψ(b)e
(
−b
p

) p−1

∑
a=0

e
(

ba2

p

)
=

τ(χ2)

τ
(
ψ
) p−1

∑
b=1

ψ(b)χ2(b)e
(
−b
p

)

=
τ(χ2)

τ
(
ψ
) p−1

∑
b=1

λ(b)e
(
−b
p

)
=

τ(χ2) · τ
(
λ
)

τ
(
ψ
) . (5)

Now, combining identities (4) and (5), we have

τ(χ2) · τ
(
λ
)
= λ(2) · τ(λχ2) · τ(λ).

This proves Lemma 2.

Lemma 3. Let p be a odd prime with p ≡ 1(mod 3). Then, for any third-order character
λ mod p, we have

τ3(λ) + τ3(λ) = dp,

where d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1(mod 3).

Proof. This result can be found in [6] or [10].
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3. Proofs of the Theorems

In this section, we shall prove our main results. Firstly,we prove Theorem 1. If χ 6= λ,
then note that the identity

p−1

∑
n=1

λ(n) =
p−1

∑
n=1

λ(n) = 0,

from Lemma 1, we have∣∣∣∣∣p−1

∑
a=0

χ
(

a3 + n
)∣∣∣∣∣

2

=
1
p
·
(

2p2 + λ(n)τ2(λ)τ
(
χλ
)
τ
(
χλ
)
+ λ(n)τ2(λ)τ(χλ)τ(χλ)

)
and

p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

χ
(

a3 + n
)∣∣∣∣∣

4

=
1
p2 ·

p−1

∑
n=1

(
2p2 + λ(n)τ2(λ)τ

(
χλ
)
τ
(
χλ
)
+ λ(n)τ2(λ)τ(χλ)τ(χλ)

)2

= 4p2(p− 1) + 2p2(p− 1) = 6p2(p− 1). (6)

If χ = λ, then from Lemma 1, we have

p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

λ
(

a3 + n
)∣∣∣∣∣

4

=
p−1

∑
n=1

(
p + 1− λ(n) · τ3(λ)

p
−

λ(n) · τ3(λ)
p

)2

= (p + 1)2(p− 1) + 2p(p− 1) = (p− 1)
(

p2 + 4p + 1
)

. (7)

Now, Theorem 1 follows from (6) and (7).
Now, we prove Theorem 2. From (3) and Lemma 3, we have

p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

λ
(

a3 + n
)∣∣∣∣∣

6

=
p−1

∑
n=1

(
p + 1− λ(n) · τ3(λ)

p
−

λ(n) · τ3(λ)
p

)3

= (p + 1)3(p− 1)− 3(p + 1)2
p−1

∑
n=1

(
λ(n) · τ3(λ)

p
+

λ(n) · τ3(λ)
p

)

+3(p + 1)
p−1

∑
n=1

(
λ(n) · τ3(λ)

p
+

λ(n) · τ3(λ)
p

)2

−
p−1

∑
n=1

(
λ(n) · τ3(λ)

p
+

λ(n) · τ3(λ)
p

)3

= (p + 1)3(p− 1) + 6(p + 1)p(p− 1)− (p− 1)

(
τ9(λ)

p3 +
τ9(λ)

p3

)

=
(

p2 − 1
)(

p2 + 8p + 1
)
− p− 1

p3

[(
τ3(λ) + τ3(λ))3

− 3p3
(

τ3(λ) + τ3(λ))]
=

(
p2 − 1

)(
p2 + 8p + 1

)
− (p− 1)

(
d3 − 3pd

)
.

This proves Theorem 2.
To prove Theorem 3, we let λ be a third-order character modulo p, then from the

properties of Gauss sums (see Theorem 8.19 of [15]) and the identity

p−1

∑
a=0

χ2(a + m) =
p−1

∑
b=0

χ2(b) = 0
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we have

p−1

∑
a=0

(
a3 + 2

p

)
= χ2(2) +

p−1

∑
a=1

(
1 + λ(a) + λ(a)

)
χ2(a + 2)

=
p−1

∑
a=0

χ2(a + 2) +
p−1

∑
a=1

(
λ(a) + λ(a)

)
χ2(a + 1)

=
1

τ(χ2)

p−1

∑
a=1

λ(a)
p−1

∑
b=1

χ2(b)e
(

b(a + 2)
p

)
+

1
τ(χ2)

p−1

∑
a=1

λ(a)
p−1

∑
b=1

χ2(b)e
(

b(a + 2)
p

)

=
χ2(2) · λ(2) · τ(λ) · τ

(
χ2λ

)
+ χ2(2) · λ(2) · τ(λ) · τ(χ2λ)

τ(χ2)
. (8)

From Lemma 2, we have

τ(χ2λ)

τ(χ2)
=

λ(2) · τ
(
λ
)

τ(λ)
and

τ
(
χ2λ

)
τ(χ2)

=
λ(2) · τ(λ)

τ
(
λ
) . (9)

Note that
(

2
p

)
= (−1)

p2−1
8 and τ(λ)τ

(
λ
)
= p, from (8), (9) and Lemma 3, we have

p−1

∑
a=0

(
a3 + 2

p

)
=

χ2(2) · λ(2) · τ(λ) · τ
(
χ2λ

)
+ χ2(2) · λ(2) · τ(λ) · τ(χ2λ)

τ(χ2)

=

(
2
p

)
·

τ3(λ) + τ3(λ)
p

= (−1)
p2−1

8 · d.

This proves Theorem 3.
Now, we prove Corollary 1. If 2 is a cubic residue modulo p, then the congruence

equation x3 + 2 ≡ 0(mod p) has three solutions. So from Theorem 2, we know that d is an
even number. Since from Theorem 2, we have

p−1

∑
a=0

(
a3 + 2

p

)
= (−1)

p2−1
8 · d, (10)

and the left-hand side in (10) is an even number, so d must be an even number.
If d is an even number, then the left hand side in (10) must be an even number. So there

is an integer a such that a3 + 2 ≡ 0(mod p). Note that p ≡ 1(mod 3), so the congruence
equations x3 ≡ −2(mod p) and x3 ≡ 2(mod p) must have three integer solutions. Thus, 2
must be a cubic residue modulo p.

This proves Corollary 1.
Now, we prove Corollary 2. From (1) we know that

4p = d2 + 27b2. (11)

If 2 is a cubic residue modulo p, then d is an even number. From (11), we know
that b must be an even number. Let d = 2d1 and b = 2b1, since d ≡ 1(mod 3), so
d1 ≡ −1(mod 3). Thus, from (11), we have the identity

p = d2
1 + 27 · b2

1,

where d1 ≡ −1(mod 3).
This completes the proofs of our main results.

4. Conclusions

If p is a prime with p ≡ 1(mod 6), then there must be two integers d and b such that
the equation 4p = d2 + 27b2, where d is uniquely determined by d ≡ 1(mod 3). The main
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result of this paper is to give an exact calculation formula for the fourth power mean of one
kind of character sum and an exact representation of d by the Legendre’s symbol modulo
p. That is, we proved the identities

1
p− 1

·
p−1

∑
n=1

∣∣∣∣∣p−1

∑
a=0

χ
(

a3 + n
)∣∣∣∣∣

4

=

{
6p2, if χ3 6= χ0;
p2 + 4p + 1, if χ3 = χ0

and

p−1

∑
a=0

(
a3 + 2

p

)
= (−1)

p2−1
8 · d.

From Theorem 3, we can deduce that 2 is a cubic residue modulo p if and only if d is
an even number. This gives us a criterion for knowing that 2 is a cubic residue modulo p.

These results not only give the exact values of the character sums, they are also some
new contribution to the research in related fields.
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Soc. 2007, 20, 357–384. [CrossRef]
10. Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [CrossRef]
11. Frei, G. The Reciprocity Law from Euler to Eisenstein. In The Intersection of History and Mathematics; Birkhäuser Verlag: 1994;

pp. 67–90. Available online: https://sci-hub.ren/10.1007/978-3-0348-7521-9_6 (accessed on 10 January 2021). [CrossRef]
12. Shen, S.; Zhang, W.P. The Generalized Quadratic Gauss Sum and Its Fourth Power Mean. Mathematics 2019, 7, 258. [CrossRef]
13. Zhang, W.P.; Samad, A.; Chen, Z.Y. New Identities Dealing with Gauss Sums. Symmetry 2020, 12, 1416. [CrossRef]
14. Zhang, W.P.; Li, H.L. Elementary Number Theory; Shaanxi Normal University Press: Xi’an, China, 2008.
15. Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976.
16. Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer: New York, NY, USA, 1982.

http://doi.org/10.1186/s13662-020-02660-7
http://dx.doi.org/10.1016/0022-314X(77)90010-5
http://dx.doi.org/10.4064/aa115-3-3
http://dx.doi.org/10.3390/sym10110625
http://dx.doi.org/10.1137/110850414
http://dx.doi.org/10.1090/S0894-0347-06-00536-4
http://dx.doi.org/10.1090/S0273-0979-1981-14930-2
https://sci-hub.ren/10.1007/978-3-0348-7521-9_6
http://dx.doi.org/10.1007/978-3-0348-7521-9_6
http://dx.doi.org/10.3390/math7030258
http://dx.doi.org/10.3390/sym12091416

	Introduction
	Several Lemmas
	Proofs of the Theorems
	Conclusions
	References

