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Abstract: The article is dedicated to the development of a mathematical model and methodology for
evaluating the effectiveness of integrating information technology solutions into digital platforms us-
ing virtual simulation infrastructures. The task of selecting a stack of technologies is formulated as the
task of selecting elements from sets of possible solutions. This allows us to develop a mathematically
unified approach to evaluating the effectiveness of different solutions, such as choosing programming
languages, choosing Database Management System (DBMS), choosing operating systems and data
technologies, and choosing the frameworks used. Introduced technology compatibility operation
and decomposition of the evaluation of the efficiency of the technology stack at the stages of the life
cycle of the digital platform development allowed us to reduce the computational complexity of the
formation of the technology stack. A methodology based on performance assessments for experi-
mental research in a virtual software-configurable simulation environment has been proposed. The
developed solution allows the evaluation of the performance of the digital platform before its final
implementation, while reducing the cost of conducting an experiment to assess the characteristics
of the digital platform. It is proposed to compare the characteristics of digital platform efficiency
based on the use of fuzzy logic, providing the software developer with an intuitive tool to support
decision-making on the inclusion of the solution in the technology stack.

Keywords: mathematical model for evaluating the effectiveness of integrating information technol-
ogy; digital platforms; virtual simulation infrastructures; experimental virtual environment

1. Introduction

The proliferation of web applications, driven by their platform and hardware indepen-
dence, ubiquity of use, interfaces, data transfer protocols, and programmable capabilities,
has defined the development of the IT sector—the creation of digital platforms. Using
a platform allows the collection and sharing of information between a huge number of
users, combining results into big data. Information technologies, which are used in the
development of digital platforms, are commonly called technology stacks. An important
feature of IT solutions integrated into the stack is their replaceability, meaning one of the
technologies can be replaced with an alternative, either newly created or a new version of
the existing one. There are many techniques for individual software design phases [1,2] for
specific technologies and software systems such as digital platforms.

The system performance depends on the efficiency of each of the components of the
technology stack [3] and on the effectiveness of their interaction [4]. At the same time,
there can be more than one ready-made technology solution for one task, both commercial
and free of charge. In practice, the choice is based on load tests or expert assessments. The
approaches summarize the experience of using specific components or the technology stack,
but are not based on formal assessments and cannot be used to compare efficiency. Formal
methods are focused on solving identification and optimization tasks that are of greater
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dimensionality. The proposed methods do not consider the specifics of the operation of the
digital platform and its infrastructure.

The quality of the technology selection can only be judged after the entire stack of
technologies has been formed, a digital platform has been developed, and characteristics
are calculated. In practice, there are situations where large digital systems stop working
when they start at high load. For example, the logging framework accessed the database
where the main data was stored, which resulted in a significant increase in the latency of
access to the data. It is typical that when the system is commissioned, it turns out that
some of its write/reading functions are slower than expected, the method of storing data
was incorrectly selected, and so on. In high load systems with integrated modules used, it
is difficult or impossible to assess theoretically their effectiveness. In these conditions, a
model and an approach are proposed, which consist of identifying a subset of technologies
of the required technology stack and choosing based on an assessment of quality character-
istics in conditions that simulate a real environment, e.g., parameters of network loading,
parameters of virtual machines, data transfer rate, and so on.

The paper also proposes use of fuzzy logic. For example, when choosing technological
solutions based on minimizing the consumption of a resource, the key indicator is not
the specific number of bytes or microseconds spent on the execution of an algorithm that
changes slightly from experiment to experiment, but a qualitative estimate of whether
resource consumption is “high”, “medium”, or “low” in accordance with the developer’s
goals and perceptions. The introduction of such quality categories makes it possible to
significantly simplify the evaluation of the technological solution, breaking all the many
available technological solutions into a small number of classes relative to the consumption
of the resource, corresponding to the quality categories.

The article consists of six sections. Section 2 provides an overview of related works,
Section 3 proposes a basic model, Section 4 describes the virtual environment used for
experimental research, and Section 5 describes the example of decision-making for specific
experimental studies. Section 6 provides key results and conclusions.

2. Related Works

The basics of evaluating information technology solutions are considered within the
algorithmic efficiency theory. However, in the development of digital platforms, each
solution can include a large number of algorithms. Evaluating the effectiveness of each
individual algorithm will require laborious research. In addition, the solutions under
consideration may contain closed source code.

There are many approaches to the task of selecting effective software components [5–7],
methods for solving the problem of optimization, and formal models for the decision-
making support [8,9]. However, the tasks under consideration are of great dimensionality
and the existing solutions do not take into account the specifics of the operation of the
digital platform and its infrastructure. Various methods of Database Management System
(DBMS) benchmarking are well known for SQL, NoSQL, and hybrid solutions, but these
methods do not address the DBMS in the context of the technology stack.

Development practices (load testing, benchmarking, expert review etc.) generalize
experience in specific solutions or technology stacks and are actively applied in digital
platform development practices. A significant drawback of these practices is the lack of
consideration of the specifics of the operation of the digital platform and its infrastructure.

The need for experimental evaluation of the technology solutions before integration
into the digital platform can be due to various reasons. For example, the software de-
veloper may need to test the hypothesis about the pros or cons of the solution under
consideration [10]. The need for cross-platform functioning [11] also can be the reason for
experimental evaluation to ensure the resulting digital platform components can run in
various environments (browsers, mobile devices, operating systems etc.).

Distributed software development teams have a practice of using virtual development
environments [12]. This technology uses virtualization and virtual machine configura-
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tion management [13] to apply the right settings and install the required components. It
automates the process of synchronizing, setting up, and starting the developer’s work
environment. Configuration management systems facilitate simultaneous distributed work
on multiple components of the software being developed [14] and automate the process
of installing and customizing all the necessary components of the development environ-
ment [15]. Upgrading and modifying the virtual environment also becomes simplified [16]
because configuration files can be easily distributed among developers.

To test the compatibility of technology solutions, services are used to bootstrap a
virtual machine with the chosen operating system, software, and browser of a given version.
Microsoft has a number of virtual machines for Internet Explorer and Edge browsers that
do not require the purchase of a Windows license. However, since there are many other
browsers, there are tools with a large set of options. For example, BrowserStack provides
the ability to run virtual machines with a predetermined configuration on a remote server.
It also provides means to run automated test scenarios, such as regression testing, during
development.

A well-established approach to experimental software evaluation is software test-
ing [17]. In papers [18,19], a number of approaches to testing are considered, which
differ in their types: functional, non-functional, compatibility, reliability, recoverability,
performance, maintainability, security, and others. As noted in [20], there are noticeable
differences in views on the problems of software testing in industry and in science. At
the stage of software maintenance, automation tools are actively used [21,22]. Testing the
software is commonly included into the overall sequence of operations required to verify
that the software meets the requirements. In addition, experiments are being carried out to
assess the quality of the system [23,24] for the end users.

3. Technology Stack Selection Model

The concept and corresponding model for choosing a technology stack have been
developed and can be described as follows. It is necessary to construct a p-dimensional
vector of the technology stack to build the digital platform:

Ξ =
{
ξ1, ξ2, . . . , ξp

}
, ξi ∈ Ŝi, (i = 1, p),

where ξi—information technology solution for the technology stack (communication pro-
tocols, type of DBMS, frameworks used, Operating system (OS) version, etc.); Ŝi—the set
of possible alternatives for each information technology solution type. Let each set with
specific selected technology options denote Ξq.

For the given operating conditions (that is, when the digital platform is used after its
complete implementation, during the workload on software and hardware of a computing
system), each set of the technology stack can be associated with a vector of efficiency
characteristics, such as memory consumption, processing time of a given number of
records, processing queue size, failure frequency, maximum number of users, average CPU
load, client data transfer time, etc.:

∀Ξq → ϑq = [ϕq,1, . . . ,ϕq,n]
T ∈ Rn.

The stack Ξo will be effective if

∃Ξo, ∀Ξl , l 6= o : max
Ω

(ϑl , ϑo) = ϑo.

Here, Ω is the configuration and operating conditions of the digital platform after its
implementation; max—operation of comparison of vectors characterizing qualities. In this
paper, the operation max is proposed to be implemented using fuzzy logic.
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In this case, the choice is a problem with computational complexity determined by a
complete enumeration of all elements of the sets Ŝi(i = 1, p) in p places of the technology
stack, i.e., it is necessary to enumerate all the options.

O = n1 · n2 · . . . · np,

where ni is cardinality of Ŝi(i = 1, p).
The complexity of the problem lies in the necessity of complete enumeration of

possible solutions, and in the fact that efficiency can be determined only by forming
the entire technology stack and assessing its performance after implementation. It is
proposed to solve the problem of evaluating the effectiveness by its approximation on
the basis of experimental virtual environments simulating the given operating conditions,
decomposing the general problem in accordance with the stages of the life cycle of the
development of digital platforms. To achieve this goal, the concept of a configuration is
introduced at t stages of the life cycle for a given configuration and operating conditions Ω:
ωi(i = 1, t) ⊂ Ω. At each stage ωi, each information technology solution of the technology
stack is selected so that the values of the efficiency characteristics are greater or equal in a
given set of alternatives.

In addition, technologies depend on the selection of previous information technology
solutions included into the technology stack. For example, the programming languages
chosen at the first stage limit the sets of libraries, the choice of the type of data storage
limits the choice of DBMS, and the choice of the OS also introduces restrictions.

Let an operation of compatibility of solutions be introduced such that

ξk BC ξg, if Ξ = (ξ1, . . . , ξk, . . . , ξg, . . . , ξp)→ ϑ,
wherein ϑ has no zero elements,

In other words, compatible solutions are those that do not give zero efficiency values;
that is, they are able to function when used together.

At each m-th stage of the life cycle, the problem of choosing an information technology
solution for the formation of a technology stack is solved, i.e., a subset of the required Ξo is
formed. The procedure for choosing an information technology solution is as follows. For
each valid and compatible set Σm =

{
sm

1 , . . . , sm
η

}
,η < p.

Let sm
1 ∈ Ŝ1,

then
sm

2 ∈ S̃2 ⊆ Ŝ2, ∀s̃2 ∈ S̃2 : s̃2 BC sm
1 ;

sm
3 ∈ S̃3 ⊆ Ŝ3, ∀s̃3 ∈ S̃3 : s̃3 BC sm

2 ;
. . .
sm
η ∈ S̃η ⊆ Ŝη, ∀s̃η ∈ S̃η : s̃η BC sm

η−1;

For the efficiency vector given at the m-th stage out of Mi characteristics ∀Σm →
Φm ∈ RMm

:

∃Σo, ∀Σl , l 6= o : max
ωm

(Φl , Σo) = Σo, forωi obtaining a solution set for the technology stack Σo ⊂ Ξo.

When choosing solutions with the introduced operation of compatibility of infor-
mation technology solutions, the number of options for enumeration is reduced, so the
complexity estimate will be

Õ = n1 · n2(1− ∆1) · n3(1− ∆2) · . . . · np(1− ∆p−1),

where ni is the set cardinality Ŝi(i = 1, p); ∆i(i = 1, p− 1, ∆1 ≤ ∆2 ≤ .. ≤ ∆p−1) is the
coefficient characterizing the decrease in cardinality Ŝi down to S̃i, considering solution
compatibility.
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The original problem of evaluating a technology stack is divided into stages. Thus, the
technology stack is evaluated at each stage instead of a single evaluation after the digital
platform is launched. If the completely assembled digital platform does not meet the
requirements (in terms of speed, resources used, the ability to provide desired Quality-of-
service (QoS) to users, etc.), it will be necessary to identify which of the technology solutions
used affect efficiency (which is a very time-consuming task), and it will be necessary to
reimplement or to replace these technology solutions. When using the proposed approach,
assessments of the effectiveness of various alternative options are obtained at the stage of
selecting technological solutions. These assessments make it possible to select effective and
appropriate technological solutions before the time the platform is put into operation.

Thus, the approach allows the reduction of the number of options required to be
evaluated for forming a technology stack and makes it possible to evaluate information
technology solutions at the stages of the digital platforms’ development life cycle. The
introduced decomposition of the selection problem allows us to reduce the dimension of the
original problem and reduce the number of options under consideration, the effectiveness
of which can only be assessed by conducting experiments including each of the information
technology solutions into the digital platform.

The approach has limitations that must be considered when using it. The initial selec-
tion of the information technology solutions is carried out with the involvement of expert
assessments, and therefore the list of options may not be complete. If initial expert assess-
ments have led to an ineffective set of solutions, then the choice of subsequent solutions for
implementation in the technology stack will be limited by the need to ensure compatibility
with existing ineffective solutions. Thus, a systematic error in expert assessments can
hypothetically lead to a decrease in the efficiency of the digital platform.

4. Experimental Virtual Environment

When setting up an experiment, it is important to minimize the influence of the
observer on the object. To isolate the evaluated information technology solution from the
influence of the observer, it is necessary to form an independent infrastructure [25]. It can be
prepared both in hardware, using physical computing devices (computers, servers, routers,
etc.), and software, using virtual machines. The second option should be considered
preferable, since the implementation of the infrastructure using software means more
rational use of resources and portability. In addition, the use of virtual machines provides
infrastructure reusability.

It should be noted that infrastructure provisioned with virtual machines has several
disadvantages—it requires a large amount of disk space, it is difficult to monitor the current
state of virtual machines, and the changes you make need to be documented separately.

To mitigate the shortcomings, one can use the “infrastructure as code” approach. The
approach is implemented using systems such as:

• Systems for creating and configuring a virtual development environment (for example,
the Vagrant system);

• Systems for automating the deployment and management of applications in environ-
ments with containerization support (for example, Docker);

• Configuration management systems (for example, Ansible, Puppet).

Studies show that containerization systems are less suitable for setting up compu-
tational experiments. They provide less isolation of computational resources, which can
affect results.

To obtain experimental evaluations of the integration of information technology
solutions into digital platforms, a virtual simulation bench has been developed, as shown
in Figure 1.
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Figure 1. Scheme of the virtual bench for obtaining experimental evaluations of the integration of
information technology solutions.

Figure 1 contains a general scheme of the experimental bench. Configuration files in
YAML and Ruby languages are used as initial data. Based on the configuration files, virtual
machines are launched with the specified parameters and network connection settings.
Then the reference image of the operating system is loaded and launched. After launch,
the necessary software is installed on the guest operating systems using the configuration
management system (Ansible). The detailed description of the experiment, the source code
of the virtual environment, the settings of the swarm intelligence algorithm, and other
parameters are presented in the paper [25].

The proposed approach based on a virtual environment allows the obtaining of reliable
estimates of the effectiveness of information technology solutions. If the requirements and
operating conditions are changed (for example, the computing infrastructure is changed,
servers were replaced, the amount of data received, and the number of users were changed),
then the reliability of the estimates could be arguable. In this case, the estimates of the
effectiveness of information technology solutions need to be recalculated. However, the
methodology makes it possible to recalculate the value of the estimates using the experi-
mental virtual environment, even if the requirements and operating conditions are subject
to change.

Incorrect decomposition of the technology stack into subsets also can significantly
affect the reliability of the estimates obtained. That is, the technology stack can be decom-
posed so that interrelated and interacting information technology solutions are selected
at different stages, while the experimental evaluation of the effectiveness of these solu-
tions occurs independently of each other, which excludes the possibility of testing and
evaluating their mutual influence. In this case, the reliability of efficiency estimates can be
lower than expected; however, this limitation is general for all decomposition problems.
Decomposition of a single problem into many elementary problems increases the speed
and reduces computational costs of solving them, but it excludes the possibility of assessing
their mutual influence. Therefore, the depth of decomposition of the problem into subsets is
determined by the researcher depending on the available time and computational resources
for solving problems of assessing the effectiveness of information technology solutions.

5. Examples

Let there be given n functional requirements qi (i = 1, n) for the digital platform,
as well as t different configurations ωk (k = 1, t) of the infrastructure, reflecting the
set of conditions for the functioning of the platform. The platform developer defines M
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solutions of the technology stack to choose from. Each of the M solutions implement
at least one of the functional requirements qi. The subsets of alternative information
technology solutions from M capable of implementing the functional requirement qi can
be denoted as mi (i = 1, n). The subsets of information technology solutions, where for
each functional requirement qi there is at least one component from M, are defined as
technology stacks sj (j = 1, p

)
. S is the set of all possible stacks. To assess the quality of

integration of information technology solutions, f quality indicators rk,j
ξ ,(ξ = 1, f ): Rk,j =

[rk,j
1 , . . . , rk,j

ξ , . . . , rk,j
f ]

T
, (k = 1, t, j = 1, p) are introduced [26]. These quality indicators

belong to R f space. Thus,
∀ωk : sj → Rk,j ∈ R f ,

where Rk,j is a vector consisting of the values of the experimentally calculated quality
indicators for the infrastructure configurationωk and the evaluated stack sj.

The following methodology for the integral quality assessment of the technology stack
is proposed:

1. Mathematical formalization of the problem of choosing the appropriate technology
stack in accordance with the above definitions.

2. Formation of fuzzy inference rules based on the goals and priorities of the digital
platform developer.

3. Study of the fuzzy inference system for the completeness of coverage of the range of
input values by the rules, the absence of redundant rules, and the elimination of the
ambiguous choice situation by setting the weights of the rules.

4. The choice of the method of normalizing the values of quality indicators rk,j
ξ for

transmission to the input of the fuzzy inference system.
5. Organization of experiments in a virtual simulation environment to obtain normalized

quality values rk,j
ξ for transferring to the input of the fuzzy inference system and

obtaining an integral quality indicator of the evaluated stack sj for infrastructure
configurationωk.

6. To organize a directed search of the s∗ technology stack for configuration ωk, it is
proposed to use the swarm intelligence algorithm [27].

Let us consider the application of the methodology on the example of choosing
Node.js modules for developing a digital platform DigitalPsyTools [28], designed to provide
information support for population and longitudinal psychological research in Russia.

The following functional requirements are imposed on the modules used for data
transmission and processing in the digital platform:

• q1—sequentially check all elements of the array for compliance with the condition
and return an array consisting of elements for which the check gave the value “True”
(given alternatives: Lodash, Underscore);

• q2—apply the specified function to all elements of the array, returning a new array
consisting of the transformed elements (given alternatives: Lodash, Underscore, native
JavaScript);

• q3—return the first element of the array (given alternatives: Lodash, Underscore);
• q4—build full path to file or directory based on specified array of path elements (given

alternatives: native path module);
• q5—find and replace a substring in the given string (given alternatives: native JavaScript);
• q6—zip the transferred file array and return the generated Zip archive (given alterna-

tives: Adm-zip, jszip, zipit);
• q7—calculate the MD5 hash sum for the specified dataset (given alternatives: Hasha,

md5, Ts-md5);
• q8—read data from file (given alternatives: Fs-extra, native fs module);
• q9—read the contents of a directory by returning an array of filenames and subdirecto-

ries inside the directory (given alternatives: Fs-extra);
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• q10—recursively read the contents of a directory and return an array of filenames and
subdirectories inside the directory (given alternatives: Recursive-readdir).

Thus, n = 10, p = 216.
The quality of functioning is evaluated using f = 3 quality indicators: r1

k,j—physical
time spent on the experiment, ns; r2

k,j—microprocessor time spent on executing user
code during the experiment, µs; r3

k,j—increase in the size of memory pages allocated
to the experiment process (including heap, code segment, and stack), bytes. During the
experiment, the quality indicators were normalized relative to their maximum values in
the experiment, taking values on the interval [0; 1].

The use of these quality indicators is explained by the need to choose a technology
stack for which resource consumption in terms of increasing the size of memory pages,
processor, and physical time of program execution are minimal, which will ensure the best
user experience on various desktop and mobile devices.

The Fuzzy Logic Toolbox for MATLAB engineering software package is used for fuzzy
inference. It allows us to make the process of creating and configuring fuzzy inference
systems interactive. The developer visually configures the number of fuzzy sets, the type
of the membership function, the method of fuzzification of the initial quantitative data
for the transition to a qualitative representation, and the defuzzification method to obtain
a quantitative value at the output of the system. In the given example, the following
standard fuzzy inference parameters are set: and method: min; or method: max; implication:
min; aggregation: max; defuzzification: centroid.

Two different fuzzy inference systems of the Mamdani type were developed to obtain
integral quality indicators of the evaluated technology stack Ψ(ωk, sj

)
. Both systems are

described in Appendix A.
The first fuzzy inference system led to the following technology stack for the imple-

mentation of functional requirements:

• q1 is implemented by the “Underscore” component;
• q2 and q5 are implemented by the JavaScript language tools;
• q3—by the “Lodash” component;
• q4—by the “Path” component;
• q6—by the “Adm-zip” component;
• q7—by the “Hasha” component;
• q8—by the “Fs” component;
• q9—by the “Fs-extra” component;
• q10—by the “Recursive-readdir” component.

The integral quality indicator value for the technology stack is 0.8123.
The second fuzzy inference system led to the following technology stack for the

implementation of functional requirements of the given digital platform:

• q1 is implemented by the “Underscore” component;
• q2 and q5 are implemented by the JavaScript language tools;
• q3—by the “Lodash” component;
• q4—by the “Path” component;
• q6—by the “Adm-zip” component;
• q7—by the “Ts-md5” component;
• q8—by the “Fs-extra” component;
• q9—by the “Fs-extra” component;
• q10—by the “Recursive-readdir” component.

The integral quality indicator value for the technology stack is 0.8647.

6. Conclusions

A methodology for the selection of information technology solutions for a technology
stack of digital platforms based on fuzzy logic has been developed. The methodology was
tested on the choice of a technology stack for the component of data processing and trans-
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mission in the digital platform of population psychological research. The obtained results
were confirmed experimentally, as the implementation of the selected technologies pro-
vided the required level of quality and efficiency in the collection and transmission of data
in population studies. In this paper, studies of two alternative methods of fuzzy inference
are carried out, demonstrating the use of fuzzy logic for the developed methodology.

The contribution of the paper to the developer community lays in demonstration of
the importance of conducting experimental research and obtaining numerical estimates
of technology solution efficiency during the process of digital platform development. It
is shown that the software system will satisfy the specified requirements if the choice of
the technology stack is reasonable. The limitation of the approach is the need to allocate
additional computing resources and specialists for experimental research and analysis of
the results obtained. However, these costs are justified for digital platforms that process
big data or work with a large number of users, since the methodology helps to avoid many
of the errors that are commonly detected at the launch stage.

The proposed methodology can be applied in various models of the digital platforms’
life cycle. Since correct experiments are time consuming, it is quite possible that the
approach is difficult to apply in agile development methodologies with short sprints. The
methodology is suited better to the incremental and agile methodologies with a longer
sprint or iteration duration as it gives the advantage during the search of the effective
information technology solutions based on the previously selected technology stack.

The proposed methodology can be used when choosing technological solutions for the
technology stack of modern digital platforms and similar software systems with integrated
architecture.

Author Contributions: Conceptualization, E.N.; methodology, E.N., A.G., and D.I.; software, D.I.;
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Appendix A

Two different fuzzy inference systems of the Mamdani type (hereinafter FIS) were
developed, as shown in Figure A1, to obtain integral quality indicators Ψ(ωk, sj

)
of the

evaluated technology stack. These systems take as input the three quality indicators
described above, with r1

k,j being denoted as t, r2
k,j being denoted as cpu, and r3

k,j being
denoted as ram. The integral quality indicator Ψ(ωk, sj) is denoted as quality.

Figure A1. Structure of fuzzy inference system.
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In both fuzzy inference systems, the numerical values of the indicators t, cpu, ram are
associated with fuzzy sets “low”—low resource consumption, “med”—average resource
consumption, “high”—high resource consumption, for which triangular membership
functions are defined with coordinates vertices [−0.4 0 0.4], [0.1 0.5 0.9], [0.6 1 1.4] for
“low”, “med”, “high”, respectively.

The integral quality indicator named quality is associated with fuzzy sets “low”—
low quality, “med”—medium quality, “high”—high quality in accordance with defined
membership functions, as shown in Figure A2.

Figure A2. Membership functions of fuzzy sets for the integral quality indicator.

When determining the value of the integral quality indicator in FIS, the following
rules are used (the weight of the rule is indicated in brackets):

1. If (t is low) and (cpu is low) then (quality is high) (0.5);
2. If (t is low) and (cpu is med) then (quality is high) (0.5);
3. If (t is low) and (cpu is high) then (quality is med) (0.5);
4. If (t is med) and (cpu is low) then (quality is high) (0.5);
5. If (t is med) and (cpu is med) then (quality is med) (0.5);
6. If (t is med) and (cpu is high) then (quality is med) (0.5);
7. If (t is high) and (cpu is low) then (quality is med) (0.5);
8. If (t is high) and (cpu is med) then (quality is med) (0.5);
9. If (t is high) and (cpu is high) then (quality is med) (0.5);
10. If (ram is med) then (quality is med) (1);
11. If (ram is high) then (quality is low) (1).

For verification, an alternative output is considered, using more rules. When deter-
mining the value of the integral quality indicator in FISA, the following rules are used (the
weight of the rule is indicated in brackets):

1. If (t is low) and (cpu is low) and (ram is low) then (quality is high) (1);
2. If (t is low) and (cpu is low) and (ram is med) then (quality is high) (1);
3. If (t is low) and (cpu is low) and (ram is high) then (quality is med) (1);
4. If (t is low) and (cpu is med) and (ram is low) then (quality is high) (1);
5. If (t is low) and (cpu is med) and (ram is med) then (quality is med) (1);
6. If (t is low) and (cpu is med) and (ram is high) then (quality is low) (1);
7. If (t is low) and (cpu is high) and (ram is low) then (quality is med) (1);
8. If (t is low) and (cpu is high) and (ram is med) then (quality is low) (1);
9. If (t is low) and (cpu is high) and (ram is high) then (quality is low) (1);
10. If (t is med) and (cpu is low) and (ram is low) then (quality is high) (1);
11. If (t is med) and (cpu is low) and (ram is med) then (quality is med) (1);
12. If (t is med) and (cpu is low) and (ram is high) then (quality is low) (1);
13. If (t is med) and (cpu is med) and (ram is low) then (quality is med) (1);
14. If (t is med) and (cpu is med) and (ram is med) then (quality is med) (1);
15. If (t is med) and (cpu is med) and (ram is high) then (quality is low) (1);
16. If (t is med) and (cpu is high) and (ram is low) then (quality is med) (1);
17. If (t is med) and (cpu is high) and (ram is med) then (quality is med) (1);
18. If (t is med) and (cpu is high) and (ram is high) then (quality is low) (1);
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19. If (t is high) and (cpu is low) and (ram is low) then (quality is med) (1);
20. If (t is high) and (cpu is low) and (ram is med) then (quality is low) (1);
21. If (t is high) and (cpu is low) and (ram is high) then (quality is low) (1);
22. If (t is high) and (cpu is med) and (ram is low) then (quality is med) (1);
23. If (t is high) and (cpu is med) and (ram is med) then (quality is med) (1);
24. If (t is high) and (cpu is med) and (ram is high) then (quality is low) (1);
25. If (t is high) and (cpu is high) and (ram is low) then (quality is med) (1);
26. If (t is high) and (cpu is high) and (ram is med) then (quality is low) (1);
27. If (t is high) and (cpu is high) and (ram is high) then (quality is low) (1).

FIS and FISA decision surfaces are shown in Figure A3.

Figure A3. Decision surfaces for fuzzy inference systems, FIS and FISA.

Consideration of decision surfaces for pairs of indicators for FIS and FISA indicates
the applicability of both fuzzy inference systems for the choice of information technology
solutions. However, due to a more compact rule base and the use of weight priorities, FIS
is distinguished by a higher steepness of the surface in terms of t, cpu and by the presence
of local maximum, which is compensated by the superior weight of the selection rules in
terms of the ram indicator (Rules 10 and 11) to eliminate the ambiguity of the choice in
terms of t, cpu.
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