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Abstract: Multivariate Statistical Process Control (MSPC) seeks to monitor several quality character-
istics simultaneously. However, it has limitations derived from its inability to identify the source of
special variation in the process. In this research, a proposed model that does not have this limitation
is presented. In this paper, data from two scenarios were used: (A) data created by simulation and
(B) random variable data obtained from the analysed product, which in this case corresponds to
cheese production slicing process in the dairy industry. The model includes a dimensional reduction
procedure based on the centrality and data dispersion. The goal is to recognise a multivariate pattern
from the conjunction of univariate variables with variation patterns so that the model indicates the
univariate patterns from the multivariate pattern. The model consists of two stages. The first stage is
concerned with the identification process and uses Moving Windows (MWs) for data segmentation
and pattern analysis. The second stage uses Bayesian Inference techniques such as conditional proba-
bilities and Bayesian Networks. By using these techniques, the univariate variable that contributed
to the pattern found in the multivariate variable is obtained. Furthermore, the model evaluates the
probability of the patterns of the individual variables generating a specific pattern in the multivariate
variable. This probability is interpreted as a signal of the performance of the process that allows to
identify in the process a multivariate out-of-control state and the univariate variable that causes the
failure. The efficiency results of the proposed model compared favourably with respect to the results
obtained using the Hotelling’s T2 chart, which validates our model.

Keywords: Multivariate Statistical Process Control; control charts; Bayesian Network; Bayesian
Inference; moving windows

1. Introduction

The field of application of the model developed in this research is that of Control
Charts (CCs). CCs are an extension of time series that represent a chronological sequence
of one-variable observations [1]. There are two types of CCs: univariate CCs (created by
Shewhart in 1931) that inspect the nonconformity of a quality characteristic of a random
variable and Multivariate Control Charts (MVCCs) that simultaneously monitor various
quality characteristics (random variables for statistical effects). The objective of the CCs is
to help understand the variation of the observations of the variable (type of pattern with
statistical variation) that leads to the establishment of variation structures. As noted in [2],
an effective way of handling the data is by using tolerance ranges and regions. Tolerance
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intervals are defined to contain a proportion of a population with a given confidence
level. These intervals are analogous to what are known in statistical process control as
“control limits”. Unlike a confidence interval that provides information about an unknown
population parameter, a tolerance interval provides information about the variability that
it contains and this is interesting to consider in the approach to pattern recognition.

There are two basic categories of variation structures: natural variation and special
variation. The first one is the random variation inherent to only random characteristics of
the data generating process; the second one is the variation related to situations outside
the process [3]. When a variable presents some structure of natural or special variation, a
pattern is defined. There are patterns for natural variation and for special variation. The
objective of pattern recognition in CCs is to recognise the patterns to be associated with
the natural variation and for special variation in the variation structures. CCs can exhibit
15 types of patterns [4], of which seven are considered simple: Natural (N), Increasing
Trend (IT), Decreasing Trend (DT), Cycle (Cy), Downward Shift (DS), Upward Shift (US)
and Systematic (Sy) patterns.

Univariate CCs have been used mostly in industry as a strategy for individual mon-
itoring of the quality characteristics of the process over MVCCs due to the simplicity of
execution and understanding, but in many cases, a simultaneous inspection of two or more
characteristics is required. In addition, the variables may present correlation between them.
For these cases, the MVCCs appear. The first of these, which are more often used in theory
than in practice, is called Hotelling’s T2 and was developed in 1947 to monitor changes in
the mean [5]. There are other popular MVCCs such as the Multivariate Cumulative Sum
(MCUSUM) [6] and Multivariate Exponentially Weighted Moving Average (MEWMA).

The use of Hotelling’s T2 CCs as such has made it possible to generate various
modifications and is used as the comparative reference method with new proposals. The
CCs’ logic of operation and use in the processes allows adaptations to achieve better
performance in observable cases [7–17]. Furthermore, with them as reference, the ongoing
development of Multivariate Pattern Recognition (MVPR) using Artificial Neural Networks
is to achieve the joint monitoring of random variables [12–16]. The reasons for generating
modifications to the Hotelling’s CCs are: (1) the limitation in its design since it can only
detect out-of-control signals for the special pattern of “changes in the mean” when the
process has lost stability due to non natural variation causes and, (2) its inability to detect
the random variables that cause instability in the process and to identify the type of failure
that occurs as discussed in [17]. This means that there are no defined procedures for the
interpretation of variation structures for MVPR.

The approach envisaged in this research consists of the MVPR identifying multivariant
patterns that are related to the special variation present in the univariate variables. With
this, the effect of special variation on univariate patterns is assessed in the observable
multivariate pattern in “the Unified Multivariate Variable” (UMV). The aforementioned
process of association provides valuable information for process improvement. The study
of the presence of a special pattern in a random variable implies analysing the type and
form of the displacement of the random variables that thus have changed in the values
of their statistical parameters, such as the mean and the standard deviation. The analysis
process is suitable when evaluating the changes in the mean that allow an association to
be made with the variables that present special variation as presented in [18]. Another
approach for analysis of the CCs T2 is the one shown in [19]. There, the CC was used
to detect outliers associated with patterns present in the random variables. It uses the
Birnbaum–Saunders distribution to estimate the parameters of the graph that allow to
obtain a new distribution where the special variation detection is carried out. In both
studies [18,19], the MVPR was not achieved in the variation structures and the patterns
were associated only with changes in the performance of the studied parameters.

Regarding the interpretation of variation structures for the pattern recognition, there
are several studies that share a method of data segmentation in the variable called Moving
Windows (MWs) [20–22]. A MW is a dynamic segmentation method that is applied to the
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observations that integrate the random variables of the processes. Its use is very practical
as it allows various research approaches such as the observation of the covariance by
period [23]. With MWs, a sequential representation of the observations is achieved by
presenting one datum point observation at a time and discarding the oldest observation.
The size of the window must be predefined by a reference size, by experimenting with
several sizes looking for an optimal size or by determining the size that “visualises” the
presence of special variation in the MW and the characteristics of the identifiable pattern,
which are strengthened or gradually weakened as the MW moves through the stream
of observations of the random variable. In [24,25], it has been shown that this heuristic
approach significantly reduces the rate of misclassification of patterns present in the
variation structures.

Song et al. propose a different approach for MVCCs adapting the Naive Bayes method
based on Bayesian inference [26]. The method is used to interpret out-of-control signals in
multivariate processes based on test instances and training instances, which is effective
for diagnosing processes with a large number of variables. By considering out-of-control
signals, the method is able to associate the variables and diagnose some patterns that
may indicate that the process is out-of-control. The basic logic of Bayesian inference is
based on Bayes’ Theorem [27]. This theorem is used to calculate the probability of an event
while previously having information about it. From this theorem, Bayesian Networks have
been developed, which are probabilistic models that allow to establish a graphic model
considering random variables and the relationships that exist between them. The Bayesian
statistics are applied when the evidence about the true value of a probabilistic event is
expressed in terms of degrees of belief, that is, as Bayesian probabilities.

There are limitations in the MVCCs in terms of the identification of the random
variables that cause an out-of-control process associated with a pattern present in the
univariate variable, which is why in this article an MVPR method is presented taking as
reference the structure of observable variation in the multivariate variable. The objective is
to show the association of patterns present in the multivariate variable. To achieve this,
a Bayesian Network is implemented to calculate the probability that an special variation
pattern appears and that it comes from some specific random variable. In this research
effort, Bayesian Inference is defined as an alternative approach for the identification of
variables and for the MVPR without requiring the necessary assumptions in traditional
CCs methods.

In a Bayesian Network, the data structure marks the way in which the nodes and
connections are integrated, that is, the dependence and independence of each variable. A
Bayesian Network is a Directed Acyclic Graph as is shown in Figure 1.

Figure 1. General structure of a Bayesian Network.
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A Directed Acyclic Graph defines a factorisation of the joint probability distribution
over the variables that are represented by the nodes and the factorisation is given by the
directed links. For each Directed Acyclic Graph consider: (i) G = VE where V denotes a
set of nodes and E, a set of directed links between pairs of nodes, (ii) a joint probability
distribution P(UV) over the set of variables indexed UV by V that can be factorised as:

P(UV) = ∏
(v∈V)

P(Uv
∣∣Upa(v)) (1)

where Upa(v) denotes the set of variables of the variable UV for each node v ∈ V. Factori-
sation expresses a set of independence assumptions that are represented by the Bayesian
Network in terms of pairs of nodes that are not directly connected to each other by a
directed link. The existing relationships are defined in Conditional Probability Tables
attached to each node that specify the probability of a particular state given the states of
the main nodes [28], which is shown in Figure 1.

The method for the Bayesian Network validation reserves a certain amount of data
for testing with the rest used for confirmation. Each class in the complete data set must
be represented with the correct proportions in the training and test sets. There are nu-
merous statistical techniques for comparing models such as cross-validation, which is
recommended as one of the best ways to test a model and introduces bias when testing its
validity with the same data [29].

The K2 is a simple learning algorithm for Bayesian Networks. It starts with an order
of nodes processing each node in turn and immediately considering adding edges of
previously processed nodes to the current one. In each step, it adds an advantage that
maximises the network score, and when there are no further improvements, the attention
is directed to the next node. As an additional mechanism to avoid overfitting, the number
of parents for each node can be restricted to a predefined maximum as stated in [30].

The problem that this article solves is located in multivariate statistics, which seeks
to obtain simple methodological forms of analysis of the behaviour of several variables
simultaneously. In a practical way, understanding more than two CCs to identify causes of
special variation is a complex task and subject to errors, the so-called type 1 and 2 errors
in classical statistics. This article shows how through the UMV it is possible to synthesise
the variation of the 4 random variables of the study case. The complexity of the system is
reduced from 4 to 1. Thus, the analytical inspection of the behaviour of the UMV leads
to the generalisation of the 4 variables, without neglecting the fact that a special cause of
variation affects more than one random variable.

A notable contribution from this research is the use of index numbers in the method.
It is known that index numbers are a statistical measure allowing the study of variations of
data series in relation to a measure defined as a base. The advantages are obtaining the
properties of identity, proportionality, inalterability and homogeneity in the data series of
the variables. Index numbers are used as a statistical measure to study variations of one
or more variables with respect to time. With these, the random variables “p” that come
from different measurement scales can be compared under the same scale, thus obtaining
a way to compare these variations that originally have different magnitudes and units
of measurement. Another contribution is the use of Bayesian Networks to calculate the
probabilities that a multivariate pattern with special variation presents and the probability
that it comes from the presence of some pattern of some specific univariate variable. The
Bayesian Inference is an alternative approach for the identification of variables and for the
MVPR without requiring the necessary assumptions made in traditional CCs methods.

The paper has been organised as follows: After this brief introduction, the study case
is presented in Section 2; Section 3 formally presents our model methodology whereas
simulated results and real-world case results are presented in Section 4; finally, conclusions
are given in Section 5.
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2. Study Case

To validate our model, simulated data and real data were used. The real data were
taken from various measurements made from Gouda cheese. The cheese blocks first enter
into the cutting machine where slices are cut by an automated machine. The cutting process
results in small slices fit for individual packaging of predefined dimensions. There are
4 quality characteristics, weight and 3 measurements in length (thickness, width and height)
as indicated in Figure 2.

Figure 2. Cheese process.

The complete block of cheese has the geometric shape of a semi-regular rectangular
prism with variable weight and lengths. Of the cheese slices, it is important to measure
the thickness, width and height as well as record the weight of the cut slice. These are
quality characteristics that consequently generate 4 random variables, X1, X2, X3 and X4,
respectively. These univariate variables are observable for the SPC. Weight and dimensional
measures have a descriptive statistical behaviour as random variables. They have trends,
dispersion and, of course, parameters and estimators with accordance to the function of
the probability distribution that they present. The objective is to keep the dimensions
and weight in statistical control to avoid losses for the manufacturer and to improve the
acceptance of the product by the customer. The statistical behaviour of the weight and
dimensions of the cheese slices were studied. It is evident that there is a correlation between
dimensional variables and weight. Table 1 shows a summary of the statistical analysis.

Table 1. Summary of the statistical characteristics of the random variables of the cheese slices.

Concept Thickness X1 Width X2 Height X3 Weight X4

Probability
distribution Non-normal Non-normal Non-normal

Normal, approximately
with great amount of

data

Variation pattern
type Variable

Variable between two
or more patterns (IT

and DT)
Variable Variable

Process
Observation

It is defined by the cutting
machine in a

self-regulating way.
Overfitting is present.

It is predetermined by
the variable dimension

of cheese block

It is predetermined by
the variable dimension

of cheese block.

Correlated with the
dimensions of the

cheese slices.

The cutting system evaluates and determines the thickness of the cheese slices with
which the cutting machine adjusts the activation of the blade between slices. As this
adjustment is dynamic, there is over-adjustment in the process which is explained as the
action of continuous and recurrent changes of the values in the parameters of equipment,
machinery or processes with the intention of causing the quality characteristics of the
product to be within specs. Normally, these adjustments are carried out without the
statistical bases that allow understanding of the concepts of natural and special variation.
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3. Model

The developed model consists of two stages (see Figure 3). The first stage corresponds
to the identification process (of variables and patterns), and the second stage refers to the
process of attribution of patterns detected in the unified variable where frequencies and
pattern association is achieved with the Bayesian Network.

Figure 3. Model for Multivariate Pattern Recognition (MVPR).

3.1. Identification Process—Stage 1

The identification process considers:

(A) Random Variables Definition
Consider each of the “p” univariate random variables to be analysed on Xi from i = 1
to p, where “n” is the amount of data that the random variable contains.

X1 = {x1
1, x1

2, x1
3, . . . , x1

n}
X2 = {x2

1, x2
2, x2

3, . . . , x2
n}

...
Xp = {xp

1 , xp
2 , xp

3 , . . . , xp
n}

Subsequently, the matrix X shown in Equation (2) is constructed. According to the
method of application of the CCs, considering only critical quality variables, that is,
those in which the performance of the quality of the process is reflected. X denotes
the multivariate random variable that is in turn an integrating matrix arrangement of
the p univariate random variables with n observations. Thus, X will have dimensions
of p× n.

X =

 x1
1 . . . x1

n
...

. . .
...

xp
1 . . . xp

n

 (2)

(B) Dimensional reduction to obtain the Unified Multivariate Variable (UMV)
Obtaining the UMV is based on a reductionist approach of converting a system of
variation of p univariate random variables into a single univariate random variable.
The variation structures of the system of p variables are transferred to the UMV; with
this, it is possible to maximise human understanding of the statistical and graphical
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behaviour of the system of variables. In the Statistical Control of Multivariate Pro-
cesses, this reductionist principle is followed, which offers advantages in the simple
analysis of the behaviour of a complex data set in a single observable data set. The
obtained UMV achieves variable simplification using the random variables’ centrality
and dispersion. One of the characteristics of the UMV is that it also considers each
one of the observations and the statistical characteristics of all the random variables.
To obtain the UMV the procedure is as follows:

(i) Obtain the column vector of the means of X to obtain Equation (3). This
vector’s dimension would be of p× 1. Each row’s mean (from i = 1 to p) will
be calculated for Xi

= 1
n ∑n

j=1 xi
j

X = [X1, X2, . . . , Xp
]T (3)

(ii) Generate the index numbers for each of matrix X’s elements to obtain I.

I =




x1
1

X1 . . . x1
n

X1

...
. . .

...
xp

1
Xp . . . xp

n
Xp


 =


 I1

1 . . . I1
n

...
. . .

...
Ip
1 . . . Ip

n


 (4)

(iii) Generate the column vector S of standard sample deviations of random p

variables where from i = 1 to p of X, Si =

√
∑n

j (xi
j−Xi

)2

n−1 is applied. Equation (5)
is obtained.

S = [S1, S2, . . . , Sp]T (5)

(iv) Obtain the vector NI with i = 1 to p from the matrix I (indexes) using NIi =

∑n
j=1 Ii

j = 1 to obtain:

NI = [NI1, NI2, . . . , NIp]T (6)

(v) Compute the matrix of the index number product for the standard deviations
(Equations (4) and (5)) and call this matrix M.

M =


 I1

1 S1 . . . I1
nS1

...
. . .

...
Ip
1 Sp . . . Ip

n Sp


 =


 M1

1 . . . M1
n

...
. . .

...
Mp

1 . . . Mp
n


 (7)

(vi) Obtain the N vector with i = 1 to p from M using Ni = ∑n
j=1 Mi

j to obtain:

N = [N1, N2, . . . , Np]T (8)

(vii) Compute the nucleus (Nn) as the sum of the elements of S (Equation (5))

Nn = S1 + S2 + . . . + Sp (9)

(viii) Obtain the UMV through the product sum expressed in Equation (10)

UMV = [(p ∗NI) + (Nn ∗N)] (10)

(C) MW construction
For each raw vector Xi from i = 1 to p variables and n data, a multivariate variable
with predetermined length L(L < n) is defined. For example, with i = 1, the concept
of multivariate variable is explained in the following manner: X1 = x1

1, x1
2, . . . , x1

n



Mathematics 2021, 9, 306 8 of 18

will generate a given quantity of MW as vectors of L entries. The initial multivariate
variable is formed with x1

1, x1
2, . . . , x1

L, and the second MW expels the data entry x1
1

integrating x1
L+1 (which is x1

2, x1
3, . . . , x1

L+1 from the initial X1); the third vector as MW
will be the initial x1

3, x1
4, . . . x1

L+2
So that:

MW1 = {x1
1, x1

2, . . . , x1
L+0}

MW2 = {x1
2, x1

3, . . . , x1
L+1}

MW3 = {x1
3, x1

4, . . . , x1
L+2}

...

(11)

The more data that are included in the MW, which is represented as L, the more
variation characteristics in the pattern of the random variable can be recognised,
and therefore the more accurate the pattern recognition will be. However, the L
value cannot be too large as there is an information overload effect and this leads to
confusion. In a practical approach, one could experiment with different sizes of L
to determine the most suitable one. It has been found that values between 8 and 25
are adequate and also that the efficiency of pattern recognition is compromised as L
increases. It is important to remember that one of the main objectives of recognition
is to detect and classify patterns as quickly as possible; hence, it is important to
have a convenient value for L. On the other hand, the patterns will not be displayed
properly if the size of the MW is too small and consequently increases the complexity
of discriminating between the different types of patterns.
To define the size of the MWs, the recommendations made in [28] are to be considered.
The MWs are composed of between 4 and 24 data. As the window reduces the
number of observations, the recognition quality is compromised. On the other hand,
if a window with a greater number of observations is considered, better recognition
precision is achieved.

(D) Normality test for the observations of the MWs
Each MW is evaluated with an Anderson–Darling goodness-of-fit test. MWs with
a p-value >0.1 are classified as having a normal probability distribution, that is, as
a vector with a natural pattern; otherwise, the vector is classified as a pattern with
special variation.

(E) Diagnosis of patterns with special variation
MWs with patterns with special variation are analysed by human inspection using
scatter plots to determine the pattern type and the univariate CC. In this study,
the set of data of which the pattern has the characteristics of special variation with
randomness not centred on the mean defined as a natural non-centred pattern (N +)
is considered patterns with special variation in this study. It is assumed that the data
vector looses the central reference of the mean when any of the patterns with special
variation considered in this work are present.

3.2. Attribution Process—Stage 2

Stage 2 corresponds to the pattern attribution process in each MW for pattern analysis.
This analysis has two objectives: (1) to account for the occurrence of each univariate
variable, and (2) to distinguish the contribution of the pattern present in the UMV.

The attribution process considers:

(A) Structural arrangement of the data
WEKA® (University of Waikato, Hamilton, New Zealand) is used for data processing,
which is open source machine learning software created by the University of Waikato
[31]. The software can create Bayesian Networks, Bayesian classifiers, neural networks
and decision trees among other data science applications. The program requires a
structural treatment of data using a file format with an extension .arff. The declared
variables in this software were: Relations, Attributes and found cases (the database
arrangement was defined) [25].
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(B) Configuration of the Bayesian Network
The structure of the data marks the way in which the nodes and connections are
integrated, that is, the dependence and independence of each variable.

(C) Definition of the evaluation test, estimator and of the search algorithm
Cross-validation consists of evaluation to approve the result of the Bayesian Network
which allows to carry out as many evaluations as possible of data based on 10 cases.
This divides the data into instances, and, in each evaluation, an instance is taken
for training and another is used for evaluation. The most appropriate estimator for
the network is a “simple estimator” that is responsible for finding the Conditional
Probability Tables of the nodes represented in the Bayesian Network. To search for
the best network configuration, a K2 scaling algorithm for the Bayesian Network is
used which is restricted to find the order of the variables.

4. Results

In this section, simulated and real data will be used first to exemplify the use of
the developed model, which consists of two stages. The first stage corresponds to the
identification process and the second stage to the process of attribution of patterns detected
in the UMV. Lastly, the model will be compared with the Hotelling’s control chart.

4.1. Analysis with Simulated Data

Data simulation to obtain X:

(A) A matrix X is constructed with real sample data from the application case described
in Section 2. In this case, p = 4 and n = 58, X1, X2, X3, X4.

(B) Each variable X is analysed to obtain the polynomial equation of best fit by the least
squares method. The following mathematical models were obtained from the sample
data at time t.

YX1 = 12.9265 + 0.0496t− 0.001547t2 + 0.000013t3 (12)

YX2 = 2.6489 + 0.0591t− 0.0023t2 + 0.000612t3 (13)

YX3 = 9.9856 + 0.00228t− 0.01301t2 + 0.00018t3 (14)

YX4 = 398.1452 + 0.2537t + 0.008578t2 − 0.0002261t3 (15)

(C) Data are generated simulating the variation structures of the variables of X.
For our case study, it was considered that:

– The centrality of the pattern is equivalent to the ordinate to the origin in Equa-
tions (12)–(15).

– The temporality of the data as a time series and the mathematically modelled
variation are obtained from the polynomial model.

– Each datum point calculated using Equations (12)–(15) to obtain infinite data se-
ries was altered by adding a standard, normal and random variation component
once the polynomials had been previously standardised. Equations (12)–(15)
provide data vectors with fixed values since t is defined as the time scale and
the polynomial defines the simulated pattern. To propose an infinite model
generator of vectors based on these equations, it was necessary to include the
random error term in the equations of the polynomials so that one vector is
different from another in the values they contain, but similar in the pattern of
the data. Therefore, the random error term produces variation in the values, but
does not modify the variation structure of the data that form the pattern of the
polynomial.

Thus the term z(0, 1) where z ∼ N(0, 1) is added to each equation to obtain random
and a large amount of data.
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4.1.1. Assignment Process—Stage 1

Figure 4a shows the behaviour of one of the vectors in X. The simulated sample
data were used to construct the graphs and thus visualise the patterns of the 4 univariate
variables and the UMV. After analysing the variation of the data and the application of
CCs, the following was found:

– IT patterns in X2

– DT patterns in X3

– N pattern in the other two variables (X1, X4) with outliers.

The L value for the length of the MW was 12. With the obtained MW, 95% confidence
intervals were estimated for each of the 4 variables to observe the amplitude in the variation
of the data (see Figure 4b). The effect on the intervals of the DT and IT patterns as well as
the outliers can be observed.

Figure 4. X Graph considering (a) scatter plots and (b) intervals. A Unified Multivariate Variable (UMV) vector of dimension
n can be seen as a representation of the values of a variable in n elements of a population, which can be seen in the graph
as observations.

A total of 47 vectors were obtained as MW. The MWs were subjected to the Anderson–
Darling non-parametric normality test to separate and identify the data from MWs with
normal variation and from MWs without it. The type of variation pattern present was
identified for the MWs defined with a special variation pattern as well as the UMV (see
Table 2) in order to obtain the a priori probability by frequency counting, for Bayesian
Inference.

The most frequent patterns with special variation present were: IT with 13% for X1,
N+ and IT with 6% for X2, N+ with an incidence of 28% for X3 and IT of 32% for X4.
The S and M patterns were not found in any MW. However, the pattern with special
variation called N+ defined in the stage 1 point E was identified (diagnosis of pattern with
special variation).

Figure 5 shows the Bayesian Network where each node represents a variable and the
arcs represent the causal relationships. Each node displays its corresponding Conditional
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Probability Table. The Conditional Probability Table shows the probability that an event
(pattern) occurs in said variable. The probabilities that are not shown in the Conditional
Probability Table are due to the fact that they have an insignificant representation <0.15.
The Conditional Probability Table associated with the response or resultant node shows
the total probabilities of the Bayesian Inference that identifies the probability that a pattern
with special variation will be present in the UMV.

Table 2. Patterns found in the variables and a global summary of cases found.

MW X1 X2 X3 X4 UMV MW X1 X2 X3 X4 UMV MW X1 X2 X3 X4 UMV

1 IT N DS DS IT 17 IT N N IT IT 33 N N N+ N N
2 IT IT DS IT IT 18 IT DS N N IT 34 N N N+ N N
3 N N DS IT DS 19 IT DS N N IT 35 N N N+ N N
4 N N DS IT N 20 US N+ N Cy IT 36 N N N+ N N
5 N N DS IT N 21 N+ IT N DS IT 37 N N N+ DS N
6 N N DS DS N 22 N+ N N IT IT 38 N N N+ IT N
7 N N N IT N 23 N+ N DT IT IT 39 N N N IT N
8 N N N+ IT N 24 N+ N DT DS DT 40 N N N IT N
9 N N N N US 25 N N DT IT IT 41 N N N IT N

10 N IT N N N 26 DS N Cy N IT 42 N N N DT N
11 N N N N N 27 DS N DT N DT 43 N N N N N
12 N N N N Cy 28 DT N Cy N N 44 N N N+ N N
13 N N N N N 29 N N US N N 45 N N N+ N N
14 N N N N N 30 N N N+ N N 46 N DT N+ N N
15 N N N DS N 31 N N DT N N 47 N N+ N+ N N
16 IT N DT IT IT 32 N N N+ N N

Figure 5. Bayesian Network diagram for variables from the first simulation.

4.1.2. Attribution Process—Stage 2

The structural arrangement consisted of the correct identification of variation patterns
in Xi and the UMV. The attributes were integrated as a .arff file for reading in WEKA®
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software. Figure 6 presents the structural arrangement for data entry made by up of two
sections, relation and data, for the first 10 MWs. This arrangement contains three essential
elements for data processing, the relation (@relation), which is the name that is assigned
to the data and that allows associating the two remaining elements as part of the data set;
the attributes (@attribute), which is a declaration of all possible cases of variation patterns
(natural and special variation patterns) and the patterns that can occur in UMVs; finally,
the description of the attributes (@DATA), which includes the declaration of the cases
where each line contains the result of the analysis performed on each MW for the variables
and the UMV.

Figure 6. Structural arrangement of the patterns found in Moving Windows (MWs).

The generated Bayesian Network was evaluated using Bayesian Inference with the a
priori probabilities which were calculated with the data from the identification of patterns.
From the UMV, the a posteriori probability was derived which is the probability that an
event occurs given the experience of repeating the pattern assignments with which the
network was fed many times. The evaluation of the node that operates at the UMV showed
the following probabilities:

0.624 for a pattern N to occur,
0.248 for IT
0.05 for DT
0.03 for DS and for US
0.01 for the N + pattern
0.01 for C.

The N pattern in the UMV had a higher probability of occurrence because it had
a higher incidence in all univariate variables. The problem of identifying multivariate
patterns is to find the special variation pattern present in the variables that cause an out-of-
control state in the UMV. The IT pattern showed a probability of 0.248 of presenting in the
UMV. This indicates that the special variation pattern transmitted to the UMV matches
with the pattern identified in Figure 7.

The Bayesian Network configuration achieved a percentage of correctly classified
instances of 80.5% which means a good performance when obtaining the association of



Mathematics 2021, 9, 306 13 of 18

patterns. Table 3 shows a summary of the Conditional Probability Tables. The header
shows the pattern and the variable with the highest allocation contribution. The first
column describes the patterns that can occur in the UMV. The cells without information
presented little or no influence.

Figure 7. Pattern found in the UMV.

Table 3. Conditional Probability Table related to pattern contribution.

NX1 N+X1 DSX1 ITX1 NX2 NX3 N+X3 DTX3 DSX3 NX4 DSX4 ITX4

N_UMV 88% 82% 36% 39% 54% 25%
DS_UMV 33% 33% 33% 33% 33%
US_UMV 33% 33% 33%
IT_UMV 22% 41% 48% 41% 22% 41%
DT_UMV 27% 27% 45% 45%

As a result that none of the special variation patterns of the random variables presented
a contribution greater than 50% of influence on the UMV, an N pattern appeared. A
behaviour of IT, which was not completely defined, in the UMV was derived from the
combined influence of the present patterns in the simulated variables. The variable X1 had
a 0.41 probability of causing the IT pattern in the UMV. Similarly, the N + pattern had a
22% influence on the presence of IT. In X3, with a 22% probability of generating the special
variation pattern due to a DT pattern. Finally X4, with a 0.41 probability derived from the
Cy pattern.

4.2. Analysis with Real-World Data

A set of 58 vectors were obtained for each random variable Xi (p = 4). The 4 variables
of the cheese bars are: X1 (length in cm); X2 (width in cm); X3 (height in cm); and X4

(weight in grams). The data of the four variables were segmented and grouped under
the concept of MW. A significant disturbance was recognised in windows of the variable
X4 in the MW17-MW18 range. The normality of the observations was checked with the
non-parametric Anderson–Darling test. For the variable X1, the most frequent variation
for the special variation pattern was IT; for X2, the most frequent variation for the special
variation pattern was Cy; for X3, the most frequent variation for the special variation
pattern was IT; and for X4, the most frequent variation for the special variation pattern was
DS. Data from vectors with non-centred natural behaviour N+ could be identified.

The structural arrangement was made for the identification of attributes in a file (.arff).
WEKA software was used for Bayesian Network analysis. The generated Bayesian Network
and its configuration were the same as that used in the simulated data cases. It was found
that the pattern presented in the variables with the highest probability of occurrence was N
with 0.723. The special variation pattern DS showed a probability of 0.188 of being present
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in the UMV which means that the pattern transmitted to the univariate variable matches
with the pattern identified in the variable without treatment with the MW (see Figure 8).

Figure 8. Pattern found in UMV for real data.

The Bayesian Network configuration achieved 89.36% of correctly classified instances
and that translates into a good performance when obtaining the association of patterns. A
summary Conditional Probability Table is shown in Table 4. Empty cells had little influence.
Figure 9 shows the Bayesian Network diagram for this real data.

Table 4. Conditional Probability Table summary related to the pattern contribution.

NX1 USX1 NX2 CyX2 NX3 ITX3 NX4 DSX4 USX4

N_UMV 44% 54% 47%
DS_UMV 36% 36% 44% 52% 76%
US_UMV 33% 33% 33% 33%
IT_UMV 33% 33% 33%

Figure 9. Bayesian Network diagram for variables with real data.
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The probability of occurrence of a DS pattern in the univariate variable due to the
presence of a DS pattern in the variable X4 is 76%. This means that, through the Bayesian
Network and in addition to predicting the type of pattern present in the UMV, the causative
random variable and the type of special variation pattern are identified.

4.3. Performance of Hotelling’s Control Chart in the Study Case

To contrast the results obtained with the proposed model, the multivariate data analy-
sis was carried out using Hotelling’s MVCC’s T2. The used random variables correspond
to the cheese production process. Figure 10 shows the T2 CC, the set control limit and the
behaviour of the multivariate variable.

Figure 10. T2 for variables of the industrial case of cheese production.

Each point shown on the graph represents a sub-sample of two observations. Seven
out of the control points are present, that is, they exceed the upper control limit. Although
the graph shows when the process is unstable, it is not possible to identify the causative
variables. The standard procedure of analysing the variables causing a control point is
the use of univariate CCs. This complicates the interpretation as the number of variables
to be analysed grows since the correlation between them is omitted. With the plotted
points, a DT pattern was identified at the beginning of the graph and, subsequently, an IT
in subgroups 13 to 24. The main limitation when identifying the patterns in the Hotelling
MVCCs T2 is that there are no rules for pattern interpretation. Another drawback is that
the representation of the observations in the MVCCs T2 is performed on a new data scale
different from the one initially presented.

4.4. Considerations for the Study Case

The cheese production process has three main stages: curdling, pressing and mould-
ing. The result of these three stages, among others involved, is reflected in the 4 quality
characteristics, X1, X2, X3 and X4. On the other hand, the special causes of variation that
produce special patterns in these 4 random variables are developed in the production
method, in the machinery, equipment and tooling or in the influence of the human factor
in the process. Grouping the types of special causes of variation with their effect on the
4 quality characteristics, it is concluded that the results necessarily will influence the taken
action to avoid such condition in the process. A useful troubleshooting summary is useful,
so that the corresponding special pattern can be dealt with as indicated in Table 5.
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Table 5. Summary of causes and possible solutions.

Presence of Special
Pattern in Causes Possible Solutions

Thickness X1

(a) Machinery, equipment and
tooling of the cutting machine.
(b) Influence of human factor in
the operation of the cutting
machine. (c) Mathematical
algorithm for activation of the
cutting blade that depends on the
density and dimensions of the
cheese block.

Cutting blade wearing.
Automatic or human adjustments
on the cutting machine.
Modify statistical or mathematical
parameters in the cutting algorithm
to activate the blade.
Review adjustments and their effect
on cyclical, systematic patterns,
trends and changes in the mean.

Width X2, Height X3 Process stages

Check curdling and moulding by
checking small or abrupt variations
in X2 and X3 of cheese block or
between one block and another.

Weight X4 Depend on X1 to X3 dimensions
and the cheese density

Check pressing and moulding

5. Conclusions

Traditional methods for pattern recognition have tried to answer three fundamental
questions about what happens in the process:

1. Has a change occurred in the process?
2. When has this change occurred?
3. What are the process variables that have changed?

The first two questions are solved with the existing multivariate procedures. This
novel method of MVPR using Bayesian Networks is able to answer the third question by
achieving the association of patterns in a UMV. This association allowed the identification
of patterns in the random variables using the concept of MW. It was observed that the
graphic representation of the MWs in intervals is a smoothed and equivalent projection
of the behaviour of the variables without segmentation. The Bayesian Network was able
to report the types of patterns that occur in the UMV and the probability of contribution
of each variable. Based on the representation of each pattern in each of the variables, the
network functioned as an estimator of the patterns transmitted to the UMV.

It can be stated that it is possible to find the probabilities of occurrence of special
variation pattern in the two simulated scenarios using a third degree polynomial regression.
The probabilities of a pattern occurring were successfully associated using the Conditional
Probability Tables provided by the Bayesian Network. In the first simulation, a correct
classification of instances of 80.5% and 61.70% was found for the case of the second
simulation. In both cases, the Conditional Probability Table associated the patterns found
achieving the identification of the pattern present in the UMV and the influencing variable.
In the case of using the network with data from a real process, the probability of occurrence
of a specific pattern in the univariate variable is obtained as well as the variable that
contributes the most disturbance to the identified pattern. For this scenario, a correct
classification of 89.36% was achieved. This is why Bayesian Networks can be used for the
association and identification of patterns that influence the UMV.

When analysing the variables of the real process with the Hotelling CC T2, it was
observed that the behaviour of the univariate variable does not allow inferring about the
variable causing an out of control point. This problem is solved with the proposed model.
For this reason, identifying the variables causing special variation pattern in multivariate
processes represents our contribution with practical application in the industry. The
proposed model is a new approach to pattern analysis in MVCCs using information
segmentation, using multivariate variable and the analysis provided by the Bayesian
Networks. This multivariate pattern recognition allows to obtain information on the
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random variables with the greatest influence on the UMV as well as the probability of
occurrence of special variation pattern in industrial processes.

For its implementation, the following is required:

(a) A process under statistical control, using traditional statistical process control.
(b) To accomplish the programming to automate the segmentation of variables and the
identification of patterns.
(c) To implement the Bayesian Network programming to generate the Conditional Proba-
bility Table and the inference about the process.
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Abbreviations

The following abbreviations are used in this manuscript:
CCs Control Charts
SPC Statistical Process Control
MSPC Multivariate Statistical Process Control
MWs Moving Windows
MVCCs Multivariate Control Charts
MCUSUM Multivariate Cumulative Sum
MEWMA Multivariate Exponentially Weighted Moving Average
MVPR Multivariate Pattern Recognition
UMV Unified Multivariate Variable
IT Increasing Trend
DT Decreasing Trend
Cy Cycle
DS Downward Shift
US Upward Shift
Sy Systematic
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