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Abstract: For a compact Hausdorff space X, let J be the ordered set associated with the set of all
finite open covers of X such that there exists nJ , where nJ is the dimension of X associated with ∂.
Therefore, we have Ȟp(X;Z), where 0 ≤ p ≤ n = nJ . For a continuous self-map f on X, let α ∈ J be
an open cover of X and L f (α) = {L f (U)|U ∈ α}. Then, there exists an open fiber cover L̇ f (α) of X f

induced by L f (α). In this paper, we define a topological fiber entropy entL( f ) as the supremum of
ent( f , L̇ f (α)) through all finite open covers of X f = {L f (U); U ⊂ X}, where L f (U) is the f-fiber of
U, that is the set of images f n(U) and preimages f−n(U) for n ∈ N. Then, we prove the conjecture
log ρ ≤ entL( f ) for f being a continuous self-map on a given compact Hausdorff space X, where ρ is
the maximum absolute eigenvalue of f∗, which is the linear transformation associated with f on the

Čech homology group Ȟ∗(X;Z) =
n⊕

i=0
Ȟi(X;Z).

Keywords: algebra equation; Čech homology group; Čech homology germ; eigenvalue; topological
fiber entropy

MSC: Primary 37B40; 55N05; Secondary 28D20

1. Introduction

Recall that the pair (X, f ) is called a topological dynamical system, which is induced
by the iteration:

f n = f ◦ · · · ◦ f︸ ︷︷ ︸
n

, n ∈ N

and f 0 is denoted the identity self-map on X, where X is a compact Hausdorff space and
f is a continuous self-map on X. The preimage of a subset A ⊆ X is denoted by f−1(A).
If the preimage of f−(n−1)(A) is defined, then by induction, the preimage of f−(n−1)(A) is
denoted by f−n(A), where n ∈ Z+.

1.1. Brief History

For a topological dynamical system (X, f ), let α and β be the collections of the finite
open cover of X, and let:

α ∨ β = {A ∩ B; A ∈ α, B ∈ β};
f−1(α) = { f−1(A); A ∈ α},
f−1(α ∨ β) = f−1(α) ∨ f−1(β);
n−1∨
i=0

f−i(α) = α ∨ f−1(α) ∨ · · · ∨ f−(n−1)(α), n ∈ Z+.

(1)
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For a finite open cover α of X, let N(α) be the infimum number of the subcover of α.
Because X is compact, we get that N(α) is a positive integer. Hence, we define:

H(α) = log N(α) ≥ 0.

Following [1] (p. 81), if α, β are finite open covers of X, then we see:

α < β =⇒ H(α) ≤ H(β).

Definition 1 ([1], p. 89). For any given finite open cover α of X, define:

ent( f , α) = lim
n→+∞

1
n

H(
n−1∨
i=0

f−i(α)),

and define the topological entropy of f such that:

ent( f ) = sup
α
{ent( f , α)},

where sup
α

is through the all finite open cover of X.

For a compact manifold M, let Hi(M;Z) be the i-th homology group of integer coeffi-
cients, where 0 ≤ i ≤ dim M. In 1974, M. Shub stated the topological entropy conjecture [2],
which usually has been called the entropy conjecture [3], that is,

Conjecture 1. The inequality:

log ρ ≤ ent( f )

is valid or not for any C1 self-map f on a compact manifold M, where ent( f ) is the topological
entropy of f and ρ is the maximum absolute eigenvalue of f∗, which is the linear transformation
associated with f on the homology group:

H∗(M;Z) =
dim M⊕

i=0

Hi(M;Z).

In the first place, the inequality of Conjecture 1 is connected to the work of S. Smale [4–7],
M. Shub [8,9], and D. P. Sullivan [10–12].

In 1975, Manning [13] proved that Conjecture 1 holds for any homeomorphism of
manifolds X for which dim X ≤ 3, Shub and Williams [14] proved Conjecture 1 on mani-
folds M for no cycle diffeomorphisms, which are Axiom A; also, Ruelle and Sullivan [15]
proved Conjecture 1 on manifolds M, which have an oriented expanding attractor X ⊂ M.
In the same year, Pugh [16] proved that there is a homeomorphism f of some smooth M8

such that Conjecture 1 is invalid.
In 1977, Misiurewicz et al. [17,18] proved that Conjecture 1 holds for any smooth maps

on X = Sn and for any continuous maps on Tn with n ∈ Z+.
In 1980, Katok [19] proved that if a C1+α (α > 0) diffeomorphism f of a compact

manifold has a Borel probability continuous (non-atomic) invariant ergodic measure
with non-zero Lyapunov exponents, then it has positive topological entropy. In 1986,
Katok [20] proved that if the universal covering space of X is homeomorphic to the Eu-
clidean space, then Conjecture 1 holds for any f ∈ C∞(X); also, he gave a counterexample
explaining that the inequality of Conjecture 1 is invalid for a continuous map, that is on
two-dimensional sphere S2, there is f ∈ C0(S2) such that:

0 = ent( f ) < log ρ.
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For a C∞ mapping, Yomdin [21] in 1987 and Newhouse [22] in 1989 proved Conjecture 1,
respectively.

In 1992, for n-dimensional compact Riemannian manifolds with n ∈ Z+, Paternain
made a relation between the geodesic entropy and topological entropy of the geodesic flow
on the unit tangent bundle [23], which is an improvement of Manning’s inequality [24].

In 1994, Ye [25] showed that homeomorphisms of Suslinian chainable continua and
homeomorphisms of hereditarily decomposable chainable continua induced by square
commuting diagrams on inverse systems of intervals have zero topological entropy.

In 1997, for a closed connected C∞ manifold Mn with n ∈ Z+, Mañé [26] provided an
equality to relate the exponential growth rate of geodesic entropy, as a function of T, which
is parametrized by the arc length, with the topological entropy of the geodesic flow on the
unit tangent bundle.

In 2000, Cogswell gave that µ-a.e. x ∈ X is contained in an open disk Dx ⊂ Wu(x),
which exhibits an exponential volume growth rate greater than or equal to the measure-
theoretic entropy of f with respect to µ, where f ∈ C1+1(X) and f is a measure-preserving
transformation [27].

In 2002, Knieper et al. [28] showed that every orientable compact surface has a C∞

open and dense set of Riemannian metrics whose geodesic flow has positive topological
entropy.

In 2005, Bobok et al. [29] proved the inequality of Conjecture 1 for a compact man-
ifold X and for any continuously differentiable map f : X → X, which is m-fold at all
regular values.

In 2006, Zhu [30] showed that for Ck-smooth random systems, the volume growth is
bounded from above by the topological entropy on compact Riemannian manifolds.

In 2008, Marzantowicz et al. [3] proved the inequality of Conjecture 1 for all continuous
mappings of compact nilmanifolds.

In 2010, Saghin et al. [31] proved the inequality of Conjecture 1 for partially hyperbolic
diffeomorphism with a one-dimensional center bundle.

In 2013, Liao et al. [32] proved the inequality of Conjecture 1 for diffeomorphism away
from ones with homoclinic tangencies.

In 2015, Liu et al. [33] proved the inequality of Conjecture 1 for diffeomorphism that
are partially hyperbolic attractors.

In 2016, Cao et al. [34] proved the inequality of Conjecture 1 for dominated splittings
without mixed behavior.

In 2017, Zang et al. [35] proved the inequality of Conjecture 1 for controllable domi-
nated splitting.

In 2019, Lima et al. [36] developed symbolic dynamics for smooth flows with positive
topological entropy on three-dimensional closed (compact and boundaryless) Riemannian
manifolds.

In 2020, Hayashi [37] proved the inequality of Conjecture 1 for nonsingular C1 endo-
morphisms away from homoclinic tangencies, extending the result of [32].

Lately, for results about random entropy expansiveness and dominated splittings,
see [38], and for results about the relations of topological entropy and Lefschetz numbers,
see [39–41]. Furthermore, for a variational principle for subadditive preimage topological
pressure for continuous bundle random dynamical systems, see [42].

1.2. Motivation and Main Results

Conjecture 1 is not proven completely. For a compact Hausdorff space X, let J be the
ordered set associated with the set of all finite open covers of X such that there exists nJ ,
where nJ is the dimension of X associated with ∂, which will become clear in Definition 3.
Therefore, we have Ȟp(X;Z), where 0 ≤ p ≤ n = nJ . For a continuous self-map f on
X, let α ∈ J be an open cover of X and L f (α) = {L f (U)|U ∈ α}. Then, there exists an
open fiber cover L̇ f (α) of X f induced by L f (α). In this paper, we define a topological
fiber entropy entL( f ) as the supremum of ent( f , L̇ f (α)) through all finite open covers of
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X f = {L f (U); U ⊂ X}, where L f (U) is the f-fiber of U, that is the set of images f n(U) and
preimages f−n(U) for n ∈ N. Then, we prove the inequality

log ρ ≤ entL( f ).

where ρ is the maximum absolute eigenvalue of f∗, which is the linear transformation
associated with f on the Čech homology group:

Ȟ∗(X;Z) =
n⊕

i=0

Ȟi(X;Z).

Specifically, in triangulable compact n-dimensional manifold M, we get:

H∗(M;Z) = Ȟ∗(M;Z).

Hence, Conjecture 1 is valid for topological fiber entropy.
In this paper, we always let Ψ ∈ J be good enough and have enough refinement, i.e.,

satisfy all the necessary requirements of this paper. Define:

αc = {A; Ac ∈ α, where Ac ∪ A = X and Ac ∩ A = ∅},

and define:

a0 · · · ai−1 âi, ai+1 · · · ap = a0 · · · ai−1ai+1, · · · ap;
a0 · · · ai−1b(i)ai · · · ap = a0 · · · ai−1bai · · · ap;
a0 · · · ai−1b(i)

(k)ai · · · ap = ∑
m∈(k)

a0 · · · ai−1bmai · · · ap;

a0 · · · ai−1b(i)∅ · · · ap = ∑
m∈∅

a0 · · · ai−1bmai · · · ap = a0 · · · ai−1ai · · · ap;

(k) = {k1, k2, k3, · · · , kn; n = ‖{a0, · · · , ai−1, bm, ai, · · · , ap}‖ ≥ 1, m ∈ Z};
(a0 · · · ˆb(k) · · · ap)

d
= bk1 · · · bki

· · · bkn , ki ∈ (k).

2. Algebra Equation for the Boundary Operator

In this paper, let X be a compact Hausdorff space, C0(X) be the set of all continuous
self-maps on X, and id be the identity map on X. Let α, β be finite open covers of X, if for
any B ∈ β, there is A ∈ α such that B ⊆ A, then we define α ≤ β and say that β is larger
than α or β is a refinement of α. For A ∈ α, let A be the closure of A and ‖A‖ be the number
of elements of A.

Definition 2 ([43], p. 541). Let X be a Hausdorff space, Ψ be a cover of X, and U0, U1, U2, . . . ,
Up ∈ Ψ with p ∈ N. If U0

⋂
U1
⋂ · · ·⋂Up 6= ∅, then we define a p-simplex σp. Hence, we

get the p-th chain group Cp, the p-th homology group Hp(Ψ;Z), and the p-th cohomology group
Hp(Ψ;Z), where:

· · · −→ Cp+1(Ψ;Z)
∂p+1−−→ Cp(Ψ;Z)

∂p−→ Cp−1(Ψ;Z) −→ · · ·

∂p(U0 ∩ · · · ∩Up) =
p

∑
i
(−)i(U0 ∩ · · · ∩ Ûi · · · ∩Up),

∂p−1 ◦ ∂p = 0, Bp(Ψ;Z) = im ∂p+1, Zp(Ψ;Z) = ker ∂p and Hp(Ψ;Z) = Zp/Bp.

Let Cp(Ψ;Z) = hom(Cp(Ψ;Z),Z). Then, ∂p induces a homomorphism Cp−1(Ψ;Z) δp
−→

Cp(Ψ;Z). We obtain that:

· · · ←− Cp+1(Ψ;Z) δp+1
←−− Cp(Ψ;Z) δp

←− Cp−1(Ψ;Z)←− · · · ,

δp+1 ◦ δp = 0, Bp(Ψ;Z) = im δp, Zp(Ψ;Z) = ker δp+1 and Hp(Ψ;Z) = Zp/Bp.
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Lemma 1. Let X be a Hausdorff space and Ψ be a finite open cover of X. Then, we get Cp(Ψ;Z) ∼=
Cp(Ψ;Z) with p ∈ N. Moreover, let Ui = Uc

i .
If:

cp = U0 ∩ · · · ∩Up ∈ Cp(Ψ;Z),

then:

cp = U0 ∪ · · · ∪Up 6= X

is an isomorphic representation of the p-simplex of Cp(Ψ;Z).

Proof. Because Z can be treated as a finite generated free ring [44], Cp(Ψ;Z) can be treated
as a finite-dimensional Z-module space [45], and Cp(Ψ;Z) can be treated as the dual
Z-module space of Cp(Ψ;Z). With the property of the finite-dimensional Z-module space,
we get Cp(Ψ;Z) ∼= Cp(Ψ;Z).

Because:

cp = U0 ∩ · · · ∩Up 6= ∅⇐⇒ cp = U0 ∪ · · · ∪Up 6= X,

we get:

cp ∈ Cp(Ψ;Z)⇐⇒ cp ∈ Cp(Ψ;Z).

That is, U0 ∪ · · · ∪Up 6= X is an isomorphic representation of the p-simplex of Cp(Ψ;Z).

Definition 3. Let X be a Hausdorff space, Ψ be a finite open cover of X, and J be the ordered
set associated with the refinement of the finite open cover of X. Then, we define the function
nΨ = max{n; n ∈ S} on J. Obviously, if α, β ∈ J and α ≤ β, then nα ≤ nβ. If there exists
nJ = lim−−→

Ψ∈J
nΨ, then we say that nJ is the dimension of X associated with ∂, where:

S = {n; ∂(U0 · · · ∩Ui · · ·Un) 6= ∂(U0 · · · ∩Ui · · ·Un ∩Un+1), U0, · · · , Un+1 ∈ Ψ}.

Definition 4. Let X be a Hausdorff space, Ψ be a finite open cover of X, and 0 ≤ p ≤ n = nΨ.
If for any σp ∈ Cp(Ψ;Z), there exists σn ∈ Cn(Ψ;Z) such that σp = U0 ∪ · · · ∪Up is the p-th
surface of σn and:

(U0 ∪ · · · ∪ ˆU(k) · · · ∪Up)
d
= Uk0 ∪ · · · ∪Ukn−p+1 .

Then, we say that X is a Poincaré space.

Lemma 2. Let X be a Poincaré space and Ψ be its finite open cover. For 0 ≤ p ≤ n = nΨ, we get
that Hp(Ψ;Z) ∼= Hn−p(Ψ;Z).

Proof. By Lemma 1, we get the following chains of the mapping: · · · −→ Cp+1(Ψ;Z)
∂p+1−−→ Cp(Ψ;Z)

∂p−→ Cp−1(Ψ;Z) −→ · · ·
· · · ←− Cp+1(Ψ;Z) δp+1

←−− Cp(Ψ;Z) δp
←− Cp−1(Ψ;Z)←− · · ·

(2)
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For a fixed p-simplex in Cp(Ψ;Z), we see the algebraic equation:
< ∂cp, cp−1 >=< cp, δcp−1 >,

∂p(U0 · · · ∩Ui · · ·Up) =
p
∑

i=0
(−1)i(U0 · · · ∩ Ûi · · ·Up),

∂∅ = δ∅ = 0,
< a, ∅ >=< ∅, b >= 0;

(3)

and the algebraic equation:
<

p
∑

i=0
(−1)i(U0 · · · ∩ Ûi · · ·Up), V0 · · · ∩ V̂i · · ·Vp >=< cp, δcp−1 >,

p
∑

i=0
(−)i(V0 · · · ∪V(i)

(k) · · ·V
p) = δp(V0 · · · ∪ ˆV(k) · · ·Vp).

(4)

If (k) = ∅, then we define:

(i) = ∅, (−1)∅ = 0 and δp(U0 · · · ∪ ˆU(k) · · ·Up) = 0.

From (3) and (4), we obtain that:
∂p(U0 · · · ∩Ui · · ·Up) =

p
∑

i=0
(−1)i(U0 · · · ∩ Ûi · · ·Up),

δp(U0 · · · ∪ ˆU(k) · · ·Up) =
p
∑

i=0
(−1)i(U0 · · · ∪U(i)

(k) · · ·U
p).

(5)

That is,



∂p(U0 · · · ∩Ui · · ·Up)−
p
∑

i=0
(−1)i(U0 · · · ∩ Ûi · · ·Up) = 0,

δp(U0 · · · ∪ ˆU(k) · · ·Up)−
p
∑

i=0
(−1)i(U0 · · · ∪U(i)

(k) · · ·U
p) = 0,

δn−p+1((U0 · · · ∪ ˆU(k) · · ·Up)
d
) = δn−p+1(Uk1 · · · ∪Ukm · · ·Ukn−p+1),

δn−p+1(Uk1 · · · ∪Ukm · · ·Ukn−p+1) =
p
∑

i=0
(−1)i(Uk1 · · · ∪U(i)

(0,··· ,p) · · ·U
kn−p+1).

(6)

Let:

cp = ∑ zm(U0 · · · ∩Ui · · ·Up)m.

Then, we see that:

cn−p = ∑ zm((U0 · · · ∪ ˆU(k) · · ·Up)
d
)

m
, where zm ∈ Z.

Therefore, we obtain that:


U0 · · · ∩Ui · · ·Up ←→ U0 · · · ∪ ˆU(k) · · ·Up ←→ (U0 · · · ∪ ˆU(k) · · ·Up)

d,
cp ∈ ker ∂p ⇐⇒ cn−p ∈ ker δn−p+1,
cp ∈ im ∂p+1 ⇐⇒ cn−p ∈ im δn−p.

(7)

Let: {
∂ ker

im
(Cp) = Hp(Ψ;Z) = Zp/Bp = ker ∂p/im ∂p+1,

∂∗ker
im
(Cp) = Hp(Ψ;Z) = Zp/Bp = ker δp+1/im δp. (8)
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Then, ∂p and δn−p+1 are the dual solutions in the algebraic Equation (6). Similarly,
∂ ker

im
and ∂∗ker

im
are the dual values in the algebraic Equation (8). All the processes of the dual

maps are linear reversible, i.e., the same style as isomorphisms. Therefore, the p-th value of
∂ ker

im
on the Cp chain group is isomorphic to the (n− p)-th value of ∂∗ker

im
on the Cn−p chain

group, that is,

∂ ker
im
(Cp) ∼= ∂∗ker

im
(Cn−p).

For this reason, we see that:

Hp(Ψ;Z) ∼= Hn−p(Ψ;Z).

Like the linear equation in Euclidean space R3, let:

Si : Aix + Biy + Ciz = 0

be a class of lines, or in other words, a class of planes:

S∗i : Aix + Biy + Ciz = 0.

where i ∈ Z+ and i ≥ 2.
The line and plane are a pair of duals. For a fixed space R3, the intrinsic relationships

between lines or between planes are never changed. That is, f and g are two good maps
such that they are linear, if:

fi = f (Si, Si−1), f ∗i = f ∗(S∗i , S∗i+1), gi = g( fi) and g∗i = g( f ∗i ).

then gi and g∗i is a pair of duals such that there is a natural relationship between gi and
g∗n−i. For example, that natural relationship may be:

gi = g∗n−i, or gig∗n−i = 1, or gi + g∗n−i = 0,

or:

gi Ak + gn−iBk + Ck = 0 and g∗n−i Ak + g∗i Bk + Ck = 0,

and so on. The dual outcomes and the representations of the natural relation between gi
and g∗n−i only depend on the good maps f and g.

3. Germ and Dual of the Čech Homology

Definition 5 ([43], p. 542). Let X be a Hausdorff space and J be the ordered set associated with the
set of all covers of X, U0, U1, U2, . . . , Up ∈ Ψ with p ∈ N and Ψ ∈ J. If U0

⋂
U1 ∩ · · · ∩Up 6= ∅,

then we define a p-simplex σp. Hence, we get the p-th chain group Cp, the p-th homology group
Hp(Ψ;Z), and the p-th cohomology group Hp(Ψ;Z). If Ω, Ψ ∈ J and Ω ≤ Ψ, then we get the
homomorphisms:

fΨΩ : Hp(Ψ;Z)→ Hp(Ω;Z), and fΩΨ : Hp(Ω;Z)→ Hp(Ψ;Z).

Hence, we define the p-th Čech cohomology group:

Ȟp(X;Z) = lim−−→
Ω∈J

Hp(Ω;Z).

Following Definition 5, we have the following definition.
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Definition 6. Let X be a Hausdorff space and J be the ordered set associated with the set of all
finite open covers of X such that there exist nJ . For 0 ≤ p ≤ n = nJ , there exists the p-th Čech
homology group:

Ȟp(X;Z) = lim←−−
Ω∈J

Hp(Ω;Z).

Definition 7. Let X be a Poincaré space and J be the ordered set associated with the set of all finite
open covers of X such that there exists nJ . For Ω, Ψ ∈ J, let Θ = Ψ∨Ω = {α∩ β; α ∈ Ψ, β ∈ Ω}.
Then, we get homomorphisms

fΘΩ : Hp(Θ;Z)→ Hp(Ω;Z) and fΘΨ : Hp(Θ;Z)→ Hp(Ψ;Z).

Following this, we can define the Čech homology germ Hp(J;Z). Similarly, we define the Čech
cohomology germ Hp(J;Z). If there exists Γ ∈ J such that, we get Hp(Ψ;Z) ∼= Hn−p(Ψ;Z) for
any Ψ ∈ J whenever Γ ≤ Ψ, then we define:

Hp(J;Z) ∼= Hn−p(J;Z),

where n = nJ .

By Lemma 2, Definitions 5–7, we get the following result.

Lemma 3. Let X be a Poincaré space and J be the ordered set associated with the set of all finite
open covers of X such that there exists nJ . For 0 ≤ p ≤ n = nJ , we get that:

Ȟp(X;Z) ∼ Hp(J;Z) and Ȟp(X;Z) ∼ Hp(J;Z),

where ∼ means the different expressions for the same thing.

Definition 8. Let X be a Poincaré space and J be the ordered set associated with the set of all finite
open covers of X such that there exists nJ . For n = nJ , if:

Hp(J;Z) ∼= Hn−p(J;Z),

then we define:

Ȟp(X;Z) ∼= Ȟn−p(X;Z).

4. f-Čech Homology

Definition 9. Let X be a Hausdorff space, Ui, V, W ⊆ X and f ∈ C0(X), where 0 ≤ i ≤ k and
k ∈ Z. Then, we define:

L f (U) = (· · · , f−n(U), · · · , f−1(U), f 0(U), f 1(U), · · · , f n(U), · · · ),
f ◦ L f = L f ◦ f ,
L f (U) ∩ L f (V) = L f (W), where W = U ∩V,
L f (U0) · · · ∩ L f (Ui) · · · L f (Uk) = L f (U0) ∩ (L f (U1) · · · ∩ L f (Ui) ∩ L f (Uk)),
Lg+h(U) = (· · · , g−n(U)

⋃
h−n(U), · · · , g0(U)

⋃
h0(U), · · · , gn(U)

⋃
hn(U), · · · ),

L f (∅) = ∅,
Lg⊕h(U) = Lg+h(U), when g−1(U) ∩ h−1(U) = ∅,

where f−1(U) is the preimage of U. We say that L f (U) is the f -fiber of U and let
X f = {L f (U); U ⊂ X}.
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If X is a compact space, then X+∞ =
−∞
∏

i=−1
X × X ×

+∞
∏
i=1

X is compact as well by the

Tychonoff theorem. In fact, in Definition 9, L f (U) glues the preimage orbit and image orbit
of U.

If X is a discrete Hausdorff space, then we get that X f
∣∣∣
X×

+∞
∏

i=1
X

is the direct limit space

of (X, f ) following [46], but X f
∣∣∣ −∞

∏
i=−1

X×X
is not the inverse limit space of (X, f ).

Definition 10. Let X be a Hausdorff space, and let J be the ordered set associated with the set of all
finite open covers of X. Let f ∈ C0(X), Ψ ∈ J and U0, · · · , Up ∈ Ψ with p ∈ N. If:

σ
f
p = L f (U0) ∩ · · · ∩ L f (Up) 6= ∅,

then we define an f -Čech p-simplex σ
f
p . Hence, we get the f -Čech p-chain group Cp(Ψ, f ;Z), and

we get the f -Čech p-th homology group Hp(Ψ, f ;Z), where:

· · · −→ Cp+1(Ψ, f ;Z)
∂

f
p+1−−→ Cp(Ψ, f ;Z)

∂
f
p−→ Cp−1(Ψ, f ;Z) −→ · · · ,

∂
f
p(L f (U0) · · · ∩ L f (Ui) · · · L f (Up)) =

p
∑

i=0
(−1)i(L f (U0) · · · ∩ L̂ f (Ui) · · · L f (Up)).

It is easy to get that ∂
f
p−1 ◦ ∂

f
p = 0, that is,

∂
f
p−1 ◦ ∂

f
p(L f (U0) · · · ∩ L f (Ui) · · · L f (Up))

=
p
∑
i
(−1)i∂ f (L f (U0) · · · ∩ L̂ f (Ui) · · · L f (Up))

=
p
∑
i

∑
j<i

(−1)i+j(L f (U0) · · · ∩ L̂ f (Uj) · · · ∩ L̂ f (Ui) · · · L f (Up))

+
p
∑
i

∑
j>i

(−1)i+j−1(L f (U0) · · · ∩ L̂ f (Ui) · · · ∩ L̂ f (Uj) · · · ∩ L f (Up))

= 0.

Therefore, we see that:

Bp(Ψ, f ;Z) = im ∂
f
p+1, Zp(Ψ, f ;Z) = ker ∂

f
p and

Hp(Ψ, f ;Z) = Zp(Ψ, f ; G)/Bp(Ψ, f ;Z).

By Lemma 3 and Definition 9, we easily have the following lemma.

Lemma 4. A Čech p-chain cp is associated with an f -Čech p-chain c f
p, that is U0∩U1∩ · · · ∩Up 6=

∅ if and only if L f (U0) ∩ L f (U1) ∩ · · · ∩ L f (Up) 6= ∅. Therefore, the Čech p-chain group is
isomorphic to the f -Čech p-chain group.

Definition 11. Let X be a Hausdorff space, f ∈ C0(X), and Ψ be a finite open cover of X. Let J
be the ordered set associated with the refinement of the finite open cover of X. Then, we define the
function nΨ, f = max{n; n ∈ S} on J. Obviously, if α, β ∈ J and α ≤ β, then nα, f ≤ nβ, f . If there
exists:

nJ, f = lim−−→
Ψ∈J

nΨ, f ,

then we say that nJ, f is the dimension of (X, f ) associated with ∂ f , where:

S = {n; ∂ f (L f (U0) · · · ∩ L f (Un)) 6= ∂(L f (U0) · · · ∩ L f (Un) ∩ L f (Un+1)), U0, · · · , Un+1 ∈ Ψ}.
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Similarly, with Definitions 5–7 and the following Definition 11, we obtain the following
definition.

Definition 12. Let X be a Hausdorff space, f ∈ C0(X), and J be the ordered set associated with
the refinement of the finite open cover of X such that there exists nJ, f . Let Θ = Ψ ∨Ω = {α ∩ β;
α ∈ Ψ, β ∈ Ω} with Ω, Ψ ∈ J. For 0 ≤ p ≤ n = nJ, f , we get homomorphisms:

fΘΩ : Hp(Θ, f ;Z)→ Hp(Ω, f ;Z) and fΘΨ : Hp(Θ, f ;Z)→ Hp(Ψ, f ;Z).

Therefore, we get the pth f -Čech homology germ Hp(J, f ;Z) and the pth f -Čech homology group:

Ȟp(X, f ;Z) = lim←−−
Ω∈J

Hp(Ω, f ;Z).

Lemma 5. Let X be a Hausdorff space, f ∈ C0(X), and J be the ordered set associated with the set
of all finite open covers of X such that there exist nJ and nJ, f . Then, we have nJ = nJ, f , and we get
Ȟp(X, f ;Z) and Ȟp(X;Z), where 0 ≤ p ≤ n = nJ . Moreover, for Ψ ∈ J, we get that:

im ∂p+1 = Bp(Ψ;Z) = Bp(Ψ, f ;Z) = im ∂
f
p+1,

ker ∂p = Zp(Ψ;Z) = Zp(Ψ, f ;Z) = ker ∂
f
p and

Zp(Ψ; G)/Bp(Ψ;Z) = Hp(Ψ;Z) = Hp(Ψ, f ;Z) = Zp(Ψ, f ; G)/Bp(Ψ, f ;Z).

Using Lemmas 3, 5 and Definition 12, we see the following result.

Lemma 6. Let X be a Hausdorff space, f ∈ C0(X), and J be the ordered set associated with the set
of all finite open covers of X such that there exist nJ, f . For 0 ≤ p ≤ n = nJ, f , we obtain:

Hp(J, f ;Z) ∼ Ȟp(X, f ;Z),

where ∼ means the different expressions for the same thing.

Furthermore, we can define the f -Čech cohomology germ Hp(J, f ;Z), the f -Čech co-
homology group Ȟp(X, f ;Z), and the f -Poincaré space. Obviously, we get that Cp(X;Z) =
Cp(X, id;Z). For convenience, let:

Ȟ∗(X;Z) =
n⊕

i=0
Ȟi(X;Z), C∗(X;Z) =

n⊕
i=0

Ci(X;Z), B∗(X;Z) =
n⊕

i=0
Bi(X;Z),

Ȟ∗(X, f ;Z) =
n⊕

i=0
Ȟi(X, f ;Z), C∗(X, f ;Z) =

n⊕
i=0

Ci(X, f ;Z) and

B∗(X, f ;Z) =
n⊕

i=0
Bi(X, f ;Z).

By Lemmas 4 and 6, we have the following lemma.

Lemma 7. Let X be a Hausdorff space, f ∈ C0(X), and J be the ordered set associated with
the set of all finite open covers of X such that there exist nJ and nJ, f . Then, nJ = nJ, f and for
n = nJ = nJ, f . We have Ȟp(X;Z) and Ȟp(X, f ;Z), where 0 ≤ p ≤ n. Moreover, there are linear
transformations f∗ associated with f on Ȟ∗(X;Z), on C∗(X;Z), and on Ȟ∗(X, f ;Z), respectively.
If E f∗ is the set of all eigenvalues of f∗ and:

‖E f∗‖ = sup{|a|; a ∈ E f∗},

then we obtain the inequalities:
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‖E f∗ |Ȟ∗(X, f ;Z)‖ ≤ ‖E f∗ |Z∗(X, f ;Z)‖ ≤ ‖E f∗ |C∗(X, f ;Z)‖,
‖E f∗ |H∗(X;Z)‖ ≤ ‖E f∗ |Z∗(X;Z)‖ ≤ ‖E f∗ |C∗(X;Z)‖ and

‖E f∗ |C∗(X;Z)‖ ≤ ‖E f∗ |C∗(X, f ;Z)‖.
(9)

What is more, we can define the LC0 category that its objects are X f and its morphisms
are continuous maps, where X is a Hausdorff space and f is a continuous self-map on
X. Similarly, we can define the L̃C0 category for which its objects are Ȟ∗(X, f ;Z) and
its morphisms are F∗, where X, Y are Hausdorff spaces, f ∈ C0(X), g ∈ C0(Y), and F∗
is associated with the continuous map F : X f → Yg. Furthermore, we can define the
homotopy and homeomorphism from X f to Xg and research the relations between the
elements of LC0 and L̃C0 .

Definition 13. Let X, Y be compact Hausdorff spaces, f ∈ C0(X) and g ∈ C0(Y).

(a) If there exist continuous maps F : X f −→ Yg and D : Yg −→ X f such that F ◦ D = idYg and
D ◦ F = idX f , then we say that X f and Yg are L1-homotopy equivalent.

(b) If there exists a continuous map F : X f × [0, 1] −→ Yg such that F(X f , 0) = h(X f ) and
F(X f , 1) = r(X f ), then we say that h, r : X f −→ Yg are the L2-homotopy. Hence, h induces
a homomorphism:

h∗ : Ȟ∗(X, f ;Z) −→ Ȟ∗(Y, g;Z),

and r∗ induced by r.

Let L be the class of objects:

{X f ; X is a compact Hausdorff space, f ∈ C0(X)}.

For each pair X f , Yg ∈ L, let mors(X f , Yg) = L1(X f , Yg). By the definition of the
L1-homotopy and the composition function ◦, we get the category (L, mors, ◦).

Let L̃ be the class of objects {Ȟ∗(X, f ;Z); X f ∈ L}. Let:

morH(Ȟ∗(X, f ;Z), Ȟ∗(Y, g;Z))

be the group homomorphism from Ȟ∗(X, f ;Z) to Ȟ∗(Y, g;Z), where Ȟ∗(X, f ;Z),
Ȟ∗(Y, g;Z) ∈ L̃.

By the induced ∗ homomorphism of the L1-homotopy and the composition function ◦,
we get the category (L̃, morH , ◦). Easily, we get a functor from (L, mors, ◦) to (L̃, morH , ◦).

Then, by diagram chasing, we see the following:

Theorem 2. Let f ∈ C0(X), g ∈ C0(Y), and let X and Y be compact Hausdorff spaces.

(a) If X f and Yg are L1-homotopy equivalent, then:

Cp(X, f ;Z) = Cp(X, g;Z) and Ȟp(X, f ;Z) = Ȟp(X, g;Z).

(b)If h, r : X f −→ Yg are the L2-homotopy, then h∗ = r∗.

Example 1. Let f ∈ C0(X), g ∈ C0(Y), and let X and Y be compact Hausdorff spaces. If there
exists a homeomorphism F from X to Y such that F f = gF, then:

Ȟp(X, f ;Z) = Ȟp(X, g;Z).
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Example 2. Let f ∈ C0(X), g ∈ C0(Y), and let X and Y be compact Hausdorff spaces. If there
exists a homeomorphism F from X to Y, then:

Ȟp(X, f ;Z) = Ȟp(X, g;Z).

Example 3. Let f ∈ C0(X), g ∈ C0(Y), and let X and Y be compact Hausdorff spaces. If there
exists a continuous map F : X× [0, 1] −→ Y such that:{

F(X, 0) = h(X)
F(X, 1) = r(X)

that is h and r are homotopies. Then, h∗ = r∗, where:

h∗ : Ȟ∗(X, f ;Z) −→ Ȟ∗(Y, g;Z) and r∗ : Ȟ∗(X, f ;Z) −→ Ȟ∗(Y, g;Z).

5. Topological Fiber Entropy

In this section, X is a compact Hausdorff space and J is the set of all finite open covers
of X such that there exists nJ . For n = nJ , we have Ȟp(X;Z), where 0 ≤ p ≤ n.

Let α be an open cover of X and L f (α) = {L f (U)|U ∈ α}. Then, there exists an open
fiber cover L̇ f (α) of X f induced by L f (α).

Definition 14. For a fixed open fiber cover L̇ f (α) of X f , define:

f−1(L̇ f (α))

L̇ f (α)
= max

U∈α
‖{ f−1 L̇ f (U) ∩ L̇ f (U)}‖;

f (L̇ f (α))

L̇ f (α)
= max

U∈α
‖{ f L̇ f (U) ∩ L̇ f (U)}‖;

Ld = max{ f−1(L̇ f (α))

L̇ f (α)
,

f (L̇ f (α))

L̇ f (α)
};

ent( f , L̇ f (α)) = ent( f , α) + log Ld.

and define the topological fiber entropy of f by:

entL( f ) = sup
L̇ f (α)

{ent( f , L̇ f (α))},

where sup
L̇ f (α)

is through all finite open covers of X f .

Lemma 8 ([1], p. 102). If f is the shift operator on a k-symbolic space, then ent( f ) = log k.

Corollary 1. If f is the shift operator on a k-symbolic space, then:

entL( f ) = ent( f ) + log k = 2 log k.

Example 4. Let {1, 2, · · · , k} = X and f :


{1} → {1, 2, · · · , k},
{2} → {1, 2, · · · , k},

...
...

...
{k} → {1, 2, · · · , k}

. Then:

ent( f ) = 0, entL( f ) = 0.

Example 5. Let {1, 2, · · · , k} = X and f : {1, 2, · · · , k} → {1} . Then:

ent( f ) = 0, entL( f ) = 0.
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Example 6. Let [0, 1] = X and f (x) = kx, 0 < k < 1. Then:

ent( f ) = 0, entL( f ) = 0.

Lemma 9. For m ∈ Z and m > 2, there are p, q ∈ Z such that p 6= q and m = p + q, where
1 ≤ p, 1 ≤ q.

Let f ∈ C0(X) and f∗ be the linear transformation on Ȟ∗(X, f ;Z) associated with f .
We say that a Čech eigenvalue chain is the chain belonging to an eigenvalue of f∗. Then,
any Čech eigenchain can be associated with an open cover of X f .

Lemma 10. Let X be a compact Hausdorff space and J be the ordered set associated with the set of
all finite open covers of X such that there exist nJ and nJ, f . Then, nJ = nJ, f , and for n = nJ = nJ, f ,
we have Ȟp(X;Z) and Ȟp(X, f ;Z), where 0 ≤ p ≤ n. Let α ∈ J be an open cover of X. If L f (α)

is a Čech eigenchain belonging to the eigenvalue m, then L f (α) has a factor conjugating with a shift
operator on m-symbolic space or Ld = m, where m ∈ N.

Proof. By Lemma 6, for an eigenchain L f =
k
∑

i=0
aiσ̌i belonging to the eigenvalue m, there

exists the f -Čech homology germ Hp(J, f ;Z) such that:

Hp(J, f ;Z) ∼ Ȟp(X, f ;Z), 0 ≤ p ≤ nJ .

where σ̌i ∈ Ȟ∗(X, f ;Z) and m, ai ∈ Z.
Hence, there exists Φ ∈ J such that L f ∈ H∗(Φ, f ; G) and:

f∗(L f ) = m(L f ).

That can be extended to an equation on C∗(Φ, f ; G), and we get the equation:

f](σ̌i) = m(σ̌i), i ∈ {0, · · · , k},

where σ̌i ∈ C∗(Φ, f ; G) and m ∈ Z.
Just thinking of f] on C∗(Φ, f ; G), let U0, · · · , Uj be open subsets of X and:

σ̌i = L f (U0) ∩ · · · ∩ L f (Uj).

Then, we see:

L f (Uη) = (· · · , f−n(Uη), · · · , f−1(Uη), f 0(Uη), f 1(Uη) · · · , f n(Uη), · · · ),

where η ∈ {0, · · · , j}.
Therefore,

f](σ̌i) = f](L f (U0)
⋂ · · ·⋂ L f (Uj)) = L f ( f (U0))

⋂ · · ·⋂ L f ( f (Uj))
= m(L f (U0)

⋂ · · ·⋂ L f (Uj)).

That is,

m(
j⋂

η=0
(· · · , f−n(Uη), · · · , f−1(Uη), f 0(Uη), · · · , f n(Uη), · · · ))

=
j⋂

η=0
(· · · , f−n( f (Uη)), · · · , f−1( f (Uη)), f 0( f (Uη)), · · · , f n( f (Uη)), · · · )

=
j⋂

η=0
(· · · , f−(n−1)( f (Uη)), · · · , f−1( f (Uη)), f (Uη), f 2(Uη), · · · , f n+1(Uη), · · · ).
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Therefore, we see that:

m(
j⋂

η=0
L f (Uη)) = (

j⋂
η=0

L f ( f (Uη))).

Without loss of generality, let j = 0. Then:

L f ( f (U0)) = m(L f (U0)).

If L f (U0) is torsion, then the conclusion is trivial. Next, we only prove the conclusion
for L f (U0), which is torsion free. Now, let L f (U0) be a torsion free element.

(i) m = 0, 1; the conclusion is trivial.
(ii) If m = 2, then there exists U ⊆ f−1( f (U0)) such that U * U0 and U0 * U, where

U0, U are non-empty open subsets of X.
If f−1( f (U0)) = U0, then:

L f ( f (U0)) = (L f (U0)) = 2(L f (U0));

this is a contradiction for the property that Z is a free group.
Because of U * U0 and U0 * U, with the property of the Hausdorff space, there exist
points x, y such that x ∈ U0, but x /∈ U, and y ∈ U, but y /∈ U0. Then, there exist open
neighborhoods O(x) of x and O(y) of y, respectively, such that:

x ∈ O(x) ⊆ U0 but O(x) * U and y ∈ O(y) ⊆ U but O(y) * U0.

That is, O(x), O(y) ⊆ f−1( f (U0)) and O(x)
⋂

O(y) = ∅.
Hence, Ld = 2, and for m = 2, the conclusion is true.

(iii) m ≥ 3; from the mathematical induction, let the conclusion be right for m = n− 1.
Then, we see the conclusion for m = n.

Using Lemma 9, we get m = p + q, p 6= q and:

L f ( f (U0)) = p(L f (U0)) + q(L f (U0)).

Therefore, there exists f |U0 = h + g such that:

Lh( f (U0)) = p(L f (U0)) and Lg( f (U0)) = q(L f (U0)).

(1) If L f 6= Lh⊕g, then using (ii) with the same computing, we get:

Ld = m.

(2) If L f = Lh⊕g, then we get:

L f ( f (U0)) = Lh( f (U0))⊕ Lg( f (U0));

else, we get:
h−1( f (U0))

⋂
g−1( f (U0)) = W 6= ∅.

That is, we get p(L f (W)) = q(L f (W)), and it is a contradiction of the property that Z
is a free group.

For m = p + q, we get that p, q ≤ n− 1, and by mathematical induction, we obtain:{
h−1( f (U0)) ⊇ U0i, U0j, U0i

⋂
U0j = ∅, 1 ≤ i, j ≤ p

g−1( f (U0)) ⊇ U1k, U1l U1k
⋂

U1l = ∅, 1 ≤ k, l ≤ q

where U0i, U0j, U1k, and U1l are non-empty open subsets.
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With the decomposition:

L f ( f (U0)) = Lh( f (U0))⊕ Lg( f (U0)),

we get that Ui, Uj ⊆ f−1( f (U0)), Ui
⋂

Uj = ∅, and Ui, Uj are non-empty open subsets of
X, where 1 ≤ i, j ≤ m.

Therefore, Ld = m or there exists an m-symbolic space Sm conjugating with a shift
operator on Sm, that is L f (U0) has a factor conjugating with a shift operator on Sm.

Therefore, for m = n, the conclusion is right, and by mathematical induction, the
conclusion is right for any eigenvalue m, where m ∈ N.

Now, we give the following definition.

Definition 15. For two topological dynamic systems (X1, f ) and (X2, g), if there exists a homeo-
morphism H from X1 to X2 such that H ◦ f = g ◦ H, then we say that H is a topological conjugacy
from (X1, f ) to (X2, g) or just say that (X1, f ) is topologically conjugate to (X2, g); moreover, if
X = X1 = X2, then we say that f is topologically conjugate to g on X.

From the proof of Lemma 10, it is easy to see that Ld(·) is invariant for topological
conjugacy. Furthermore, we know that the topological entropy ent(·) is invariant for
topological conjugacy. Hence, we obtain that:

Proposition 1. The topological fiber entropy is invariant for topological conjugacy.

Theorem 3. Let X be a compact Hausdorff space and J be the ordered set associated with the set
of all finite open covers of X such that there exists nJ . For n = nJ , we have Ȟp(X;Z), where
0 ≤ p ≤ n. For f ∈ C0(X), we get:

log ‖E f∗ Ȟ∗(X;Z)‖ ≤ entL( f ),

Moreover, for 0 ≤ p ≤ n, we get:

log ‖E f∗ Ȟ∗(X, f ;Z)‖ ≤ entL( f ).

Proof. It is easy to obtain that

entL( f ) ≥ ent( f , L̇ f (α)) ≥ log ‖E f∗ |C∗(X, f ;Z)‖ ≥ log ‖E f∗ |Ȟ∗(X;Z)‖

and:
entL( f ) ≥ ent( f , L̇ f (α)) ≥ log ‖E f∗ |C∗(X, f ;Z)‖ ≥ log ‖E f∗ |Ȟ∗(X, f ;Z)‖.

By simple computing, we get the following results.

Proposition 2. entL( f ) ≥ ent( f ); the inequality can be strict.

Proposition 3. entL(id) = ent(id) = 0, where id is the identical map.

Corollary 2. Let X be a compact Poincaré space and J be the ordered set associated with the set
of all finite open covers of X such that there exists nJ . For n = nJ , we have Ȟp(X;Z), where
0 ≤ p ≤ n. The topological entropy conjecture is valid for the topological fiber entropy and Čech
cohomology. Moreover, the topological entropy conjecture is valid for the topological fiber entropy
and the f -Čech homology.
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Corollary 3. In triangulable compact n-dimensional manifold M, the topological entropy conjec-
ture is valid for the topological fiber entropy and homology group:

H∗(M;Z) =
n⊕

i=0

Hi(M;Z),

where Hi(M;Z) is the i-th integer coefficients’ homology group of M.

6. Conclusions

If we replace Z with any free abelian group G that is finite generated, then the conclu-
sion is also valid. Because the counterexample of A. B. Katok [20] is on a two-dimension
sphere S2 and f ∈ C0(S2), with Corollary 3, we get that the inequality of the topological
entropy conjecture is valid again with our definition, that is,

log ρ ≤ entL( f ).

Others may be more interested in what the topological fiber entropy entL( f ) measures.
From the definition:

entL( f ) = sup
L̇ f (α)

{ent( f , α) + log Ld},

we get that the topological fiber entropy ent( fL) is sup
L̇ f (α)

on the sum:

ent( f , α) + log Ld.

The first part ent( f , α) is the usually one. The second part log Ld is likely some fiber
ratio or fiber degree of the dynamics (X, f ); it is likely the “reference system” or “initial
value” of the first part ent( f , α).
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