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Abstract: We present the relativistic generalization of the classical harmonic oscillator suspended
within a uniform gravitational field measured by an observer in a laboratory in which the suspension
point of the spring is fixed. The starting point of this analysis is a variational approach based on the
Euler–Lagrange formalism. Due to the conceptual differences of mass in the framework of special
relativity compared with the classical model, the correct treatment of the relativistic gravitational
potential requires special attention. It is proved that the corresponding relativistic equation of motion
has unique periodic solutions. Some approximate analytical results including the next-to-leading-
order term in the non-relativistic limit are also examined. The discussion is rounded up with a
numerical simulation of the full relativistic results in the case of a strong gravity field. Finally,
the dynamics of the model is further explored by investigating phase space and its quantitative
relativistic features.

Keywords: relativistic harmonic oscillator; kinematics of a particle; special relativity; nonlinear
problems in mechanics; equations of motion in gravitational theory
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1. Introduction

The harmonic oscillator or mechanical spring, implementing Hooke’s Law, is one of
the standard textbook examples for introducing the student to Newtonian mechanics [1].
Treating classical motion under a Hookean potential is simplest, in spite of additional
difficulties when, e.g., velocity-dependent forces (as friction) are added. Remarkably, the
relativistic counterpart of an oscillator or a pendulum—which approximates to a harmonic
oscillator for small amplitudes—stationed within some supplementary force field has so
far been dealt with only scarcely.

A detailed discussion of relativistic effects on a simple pendulum without any ad-
ditional forces has been carried out by Erkal in 2000 [2]. In 2008, Torres shows that the
relativistic pendulum with friction possesses periodic solutions which are absent in the
classical case [3]. In a more recent publication of this area of research, in 2017, de la Fuente
and Torres focuses on relativistic extensions for the motion of the harmonic oscillator from
the view of the oscillating body, but without including any gravitational effects [4]. In all
these publications an appropriate laboratory frame is chosen where characteristic, preferred
points are fixed, i.e., the suspension points of the pendulum and the spring representing
the oscillator, respectively.

The present work fills an outstanding gap in the existing research literature by ex-
amining the relativistic effects of a harmonic oscillator in a uniform gravitational field,
adopting and extending the approach by Goldstein and Bender [5]. In the classical model,
the maximum velocity of the mass in motion can be arbitrarily large depending on the
displacement with respect to the equilibrium point of the spring. Relativistic mechanics
will adjust this behavior by only allowing a maximum speed less than the speed of light,
as accelerating a mass to higher velocities will in like manner increase its inertial mass
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(equivalent to an increase in kinetic energy). Although the oscillating mass point is not
considered to generate its own gravitational field and the uniform gravitational field shall
be caused by an external object, any variable inertial mass will also be subject to gravity.
This will inescapably lead to further nontrivial complications when studying relativistic
effects of gravity for the harmonic oscillator—even from the perspective of special relativity
without considering general relativity. Nonetheless, the present model may provide a
legitimate and satisfactory approximation for an oscillator close to a black hole, as on a
small scale the Schwarzschild spacetime at a sufficiently large distance from the event hori-
zon (where gravitational tidal effects can be ignored) approximates well a strong uniform
gravitational field.

The core of this paper is organized as follows. In Section 2, after a short introduction
to the variational principle [6,7] for the classical case of the harmonic oscillator, the Euler–
Lagrange formalism in the framework of special relativity [8,9] is used to set up the
equations of motion for a harmonic oscillator which will be subject to an external uniform
gravitational field and measured by an observer in a laboratory where the suspension
point of the spring is fixed. Generalizing from the classical to the relativistic regime is
not as trivial as it appears at first sight due to the particular, distinct nature of relativistic
mass—mass which attains a dynamical quality—and the fact that variable kinetic energy
itself is equivalent to additional mass which is susceptible to the external gravitational field.
Special care has to be taken to take these entirely relativistic effects into account.

Therefore, Section 3 concentrates on the full derivation of the correct relativistic
potential for the uniform gravitational field surrounding the harmonic oscillator. As
approximation in the case of weak gravitational fields, we consider the Taylor expansion of
the potential in the non-relativistic limit and some of its particular properties. Furthermore,
we examine the full relativistic results for the potential with strong gravity and, in particular,
identify its physically allowed regions. Although we are able to derive the relativistic
gravitational potential for the case at hand, and in closed analytical form, the final results
for the equation of motion become intangible for analytical evaluation.

In Section 4, we perform the numerical integration of the equation of motion to
simulate the dynamics of this model and explore some significant characteristics of the
system. In general, we prove that the equation of motion for the relativistic harmonic
oscillator also has unique periodic solutions. In the strong gravity case, we compare
relativistic with classical estimates for the oscillating amplitudes. For further analysis,
we present the corresponding phase-space trajectories and discuss its most prominent
characteristics.

2. Variational Principle and Equation of Motion

Robert Hooke (1635–1703) first pointed out that the mathematical description for
small oscillations of a body with mass m0 > 0 attached to an elastic spring with position
x = x(t) takes the form: m0 ẍ = −kx. The positive constant k > 0 depends on the elastic
properties of the spring in question. As a natural length scale serves the length of the
spring at its maximum elongation, denoted as ` > 0. This mechanical system is termed
“harmonic oscillator”. Such systems are of utmost relevance in physics and engineering,
as any mass particle subject to a force in stable equilibrium will effectively operate as a
harmonic oscillator for small fluctuations—small fluctuations being displacements with
only a fraction of length `. Additional importance emerges in the dynamics of a continuous
classical field as it may be formulated as the dynamics of an infinite number of harmonic
oscillators. Furthermore, the quantum harmonic oscillator describes some of the most
important model systems in quantum mechanics.

Already for the elementary classical case of a spring extended in a uniform Newto-
nian gravitational field, the most efficient and powerful approach is the framework of
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Lagrangian mechanics [6,7], which is based on a variational principle. Accordingly, the
deterministic equations of motion will result from the following principle of least action

δ
∫

dt L = δ
∫

dt
[

1
2 m0 ẋ2 − 1

2 kx2 −m0gx
]
= 0 (1)

by varying over all possible paths x = x(t) and keeping the end points fixed. From
Equation (1), it becomes clear that we exclude the oscillating mass point (which has neg-
ligible mass) as possible source of a gravitational field. For practical purposes and as is
customary, the position x of the mass point and the external uniform gravitational field
with strength g > 0 are measured in the laboratory frame, where the suspension of the
spring at one end is fixed.

The integrand in Equation (1) is the Lagrangian function, L, which includes kinetic
energy T = 1

2 m0 ẋ2, the spring potential Vs(x) = 1
2 kx2, and the gravitational potential

Vg(x) = m0gx. Note that we consider spring elongations with respect to position x = 0
which is also the suspension point of the spring. In this laboratory frame, with the suspen-
sion point at rest, the oscillating device is stationed within a uniform gravitational field
(determined by the gravitational constant g > 0) in such a way that both are aligned. This
dynamical system is one-dimensional, and the corresponding Euler–Lagrange equation
amounts to solving a simple linear second-order differential equation deriving from(

d
dt

∂

∂ẋ
− ∂

∂x

)
L = 0. (2)

By substituting the Lagrangian L from Equation (1) into Equation (2), it is straightfor-
ward to reproduce the well-known general solution in closed analytical form:

x(t) = C1 cos

(√
k

m0
t

)
+ C2 sin

(√
k

m0
t

)
− m0g

k
, (3)

where C1 and C2 are the two integration constants depending on the initial values for the
differential equation.

However, the classical result, Equation (3), does not contemplate strong gravitational
fields and when velocities ẋ get closer to the speed of light c > 0. Furthermore, in special
relativity the mass is a dynamical quantity, dependent on the relative velocity ẋ of the
observer, such that m = γm0, where the usual relativistic factor is γ(ẋ) = 1/

√
1− ẋ2/c2.

Consequently, Equation (3) will utterly fail in giving a faithful description of the physical
effects in the relativistic domain.

In order to generalize to a correct description in the relativistic domain, the best starting
point is to modify the classical principle of least action, Equation (1). As expected, the rest
mass m0 in Equation (1) will have to be divided by the factor γ to correctly incorporate
both rest mass and kinetic energy. Moreover, the spring potential Vs is unaltered, and the
relativistic gravitational potential Vg, however, is hitherto undetermined. Therefore, we
postulate the relativistic Lagrangian

L(x, ẋ) = −m0c2

γ(ẋ)
− 1

2 kx2 −Vg(x), (4)

which readily yields the relativistic action principle

δ
∫

dt

[
−m0c2

√
1− ẋ2

c2 −
1
2 kx2 −Vg(x)

]
= 0. (5)

Note that Vg(x), as stressed before, gives the relativistic gravitational potential as measured
in the laboratory frame with fixed strength g > 0 and as a function of varying spring
elongation x.
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Complications for identifying Vg in Equation (5) arise, because mass in special relativ-
ity will change with its variable kinetic energy and thus simultaneously cause a change of
the mass which is subject to the external gravitational field. This effect can be taken into
account by using the relativistic ansatz

Vg(x) =
∫

dx mg = m0g
∫ dx√

1− ẋ2

c2

. (6)

For a rigorous general definition of this potential see Goldstein & Bender [5].
As Vg, and thus L, do not explicitly depend on time, according to Noether’s theorem

total energy must be conserved. For this purpose, we carry out the Legendre transforma-
tion [6,7] of Equation (4) yielding the Lagrangian energy function

E(x, ẋ) =
m0c2√
1− ẋ2

c2

+ 1
2 kx2 + Vg(x) =: E, (7)

which is just the constant total energy E of the system. Without loss of generality, but for
convenience, we assume for the remainder of the derivation that at position x = 0 the mass
particle be at rest, i.e., E = m0c2, or equivalently, we will assume that the following initial
conditions hold:

x(0) = 0 and ẋ(0) = 0. (8)

Furthermore, this immediately implies via Equation (7) that

Vg(0) = 0. (9)

Observe that condition Equation (9) is chosen to agree with the definition of the classical
potential and is nothing more than just fixing the arbitrary, and unphysical, integration
constant in Equation (6).

Applying the Euler–Lagrange formalism to Equation (5) produces the following
relativistic equation of motion,

d
dt

(
m0 ẋ√
1− ẋ2

c2

)
+ kx +

d
dx

Vg(x) = 0, (10)

where Vg(x) is still unknown and needs to be determined. The next section focuses on
uncovering the explicit relativistic form of gravitational potential Vg(x).

3. Relativistic Potential for Uniform Gravitational Field

As already stressed, the problem of dealing with the relativistic model of the harmonic
oscillator in a uniform gravitational field is appreciably more complicated than the classical
case. The core problem originates from the fundamentally different concept of mass in
the classical or the relativistic description of the physical phenomena. The ansatz for the
gravitational potential given in Equation (6) naturally considers relativistic corrections of a
mass in relative motion with respect to the laboratory.

Moreover, from energy conservation, viz. Equation (7), with E = m0c2, and from
solving for the relativistic factor γ, it directly follows that

γ =
1√

1− ẋ2

c2

=
m0c2 − 1

2 kx2 −Vg(x)
m0c2 ≥ 1, (11)

which constrains the physically admissible range of potential Vg.
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Now, substituting the relativistic factor of Equation (11) into Equation (6) gives the
integral equation

Vg(x) =
g
c2

∫
dx
[
m0c2 − 1

2 kx2 −Vg(x)
]
, (12)

or correspondingly, the differential equation

d
dx

Vg(x) =
g
c2

[
m0c2 − 1

2 kx2 −Vg(x)
]
> 0, Vg(0) = 0, (13)

where we have considered integration condition Equation (9). Furthermore, we indicated
the correct sign of gradient dVg/dx, since the gravitational force, Fg = −dVg/dx, is oriented
downwards the x-axis. It is important to notice that Equation (13) contains the constant
k > 0, considering that obviously the elastic property of the spring affects the speed of the
oscillating mass and enters Vg via the relativistic factor γ. This is in full agreement with
previous published results using a similar approach, e.g., for the relativistic pendulum
with a gravitational potential energy also depending on length of the pendulum, viz. (see
in [2], Equation (6)).

Equation (13) is an ordinary differential equation of type f ′(x) = a + bx2 + c f (x)
which can easily be solved. The solution is

Vg(x) =

[
m0c2 − k

(
c2

g

)2](
1− e−

g
c2 x
)
+ 1

2 k
(

2c2

g
− x
)

x (14)

with derivative
d

dx
Vg(x) =

[
m0g− k

c2

g

]
e−

g
c2 x

+ k
(

c2

g
− x
)

. (15)

Some checks of Equation (15) are in order: Note that in the absence of any spring (k = 0),

the result Fg = −V′g = −m0g e−
g
c2 x is recovered, which is in full agreement with the

calculations by Goldstein and Bender [5]. As a consequence, the classical result, Fg = −m0g
is obtained for x = 0, before the mass particle is set in motion, viz. Equation (8). Moreover,
in the weak gravity domain (g`/c2 � 1), to lowest order the gravitational force obviously
has to be independent of spring constant k, and it is Fg ≈ −m0g +O

(
g`/c2), with ` being

the natural length scale of the spring, viz. Section 2. However, as gravity becomes stronger,
the harmonic force will entangle with gravity in the potential Vg due to the subtle relativistic
effects already mentioned. To see this, we expand Equation (14) in a power series and
obtain the expansion of Vg up to first order in the dimensionless scale parameter g`/c2:

Vg(x) = m0g x− kx3

6`

(
g`
c2

)
+O

(
g`
c2

)2
. (16)

Observe that the quantity g/c2 is a Lorentz scalar, representing an invariant for all
inertial frames. Obviously, the speed of light c is a Lorentz scalar, and g being an accelera-
tion is measured the same in all inertial frames with relative motion to the rest/laboratory
frame. Thus, the ratio g/c2 is also invariant under Lorentz transformations.

In Equation (16), the term of order O
(

g`/c2) already contains spring constant k.
Therefore, in first approximation for weak gravity, the odd powers indicate a symmetric
result, more precisely rotational symmetry with respect to rotations of 180◦ about the origin,
see Figure 1. In the full relativistic regime, including all orders of the expansion, symmetry
is broken. Observe also that in this expansion of the gravitational potential, the additional
next-to-leading-order term represents the main correction of special relativity. It bears some
similarity with the post-Newtonian approximation in general relativity. However, here in
our approach—within the framework of special relativity—the underlying spacetime is of
course Minkowskian, and thus flat.
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x

V

O

m0g x

x0

�x0

Vg.x/

g`

c2
� 1

weak-gravity case

Fg D �V 0

g.x/ � �m0g C
kx2

2`

�

g`

c2

�

Figure 1. In the weak gravity case, when g`/c2 � 1, the approximation for the relativistic gravita-
tional potential Vg in the non-relativistic limit is most suitable (blue curve), see Equation (16). This
approximate result is symmetric with respect to rotations of 180◦ about the origin—a symmetry
property which is lost in the full relativistic case. The approximate model is only physically valid

well within the interval [−x0, x0], where x0 =
√

2m0
k c, so that sign-flips of the force field are avoided.

The non-relativistic, classical case is indicated by the straight gray line.

Figure 2 displays the full relativistic result for Vg in a strong gravitational field. Here,
to achieve g/c2 = 1 m−1 (measured in physical units m−1), all parameters are set to unity,
except for the spring constant which we chose to be k = 2 kg/s2 (measured in physical
units kg/s2). We also represent the gradient, V′g = dVg/dx, for any position x ∈ [−1, 1].
Note that the gravitational force therefore will flip sign at x0, satisfying V′g(x0) = 0 for
Equation (13), and is given by

x0 =
c2

g

W0

 m0g2

kc2 − 1
e

+ 1

, (17)

where W0 is the principal branch of Lambert’s W function (see in [10], §4.13). By including
higher orders up to O(g`/c2)3 in Equation (16), a reasonably good approximation for

Equation (17) is obtained: x0 ≈ m0g
k

(√
2c2k
m0g2 + 1− 1

)
.

For the data in Figure 2, it is x0 ≈ 0.77 m, and thus all estimates for x > x0 are
unphysical. However, with initial conditions Equation (8) the mass particle will move only
on the negative axis, x ≤ 0, and thus will safely be in the physical region.
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−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

−1 −0.75 −0.5 −0.25  0  0.25  0.5  0.75  1

x

V′g(x)

Vg(x)

−kx
2
/2

all parameters
 are set to unity
 except for k=2

Figure 2. The relativistic gravitational potential, Vg(x), for an oscillating body posted in a strong
uniform gravitational field. For the graphical representation we use m0 = 1 kg, g = 1 kg m/s2, and
k = 2 kg/s2. Further, the speed of light is normalized to c = 1 m/s. The dashed line marks below the
physically allowed region for Vg, viz. Equation (20). The gradient, V′g(x), is also shown.

4. Model Dynamics and Numerical Simulation

With the exact analytical result for the relativistic gravitational potential Vg, given by
Equation (14), we are now in the position to complete the description of the dynamics of
the model at hand. Substituting its derivative V′g, given by Equation (15), into the equation
of motion, Equation (10), readily yields the Euler–Lagrange equation—a nonlinear second-
order differential equation—which governs the physical system

γ3m0 ẍ +

[
m0g− k

c2

g

]
e−

g
c2 x

+ k
c2

g
= 0, (18)

where γ and e−
g

c2 x can be eliminated via Equations (11) and (14), respectively. After some
lengthy but straightforward simplification, we arrive at the following equivalent and for
numerical implementation more convenient form

α(x) ẍ + β(x)g = 0, (19a)

α(x) =

(
1−

1
2 kx2 + Vg(x)

m0c2

)3

,

β(x) =

1
2 k
(

2c2

g
− x
)

x + m0c2 −Vg(x)

m0c2 ,

(19b)

where Vg is given by Equation (14). Observe that α, β are dimensionless factors, and in
particular it is α(0) = β(0) = 1, such that ẍ = −g at the initial position x = 0, as is
expected. Furthermore, we obtain ẍ = −g at all positions, when k = 0 and Vg ≡ 0. This
represents the non-relativistic case in the absence of harmonic forces, that is, classical
free fall. Similarly, for k > 0 and Vg ≡ 0, it is easily checked that the result reduces to
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that of a classical spring in a gravitational field: m0 ẍ = −kx−m0g with general solutions
Equation (3). Anyhow, Equations (19a) and (19b) embraces the full relativistic case provided
that constraint Equation (11) is satisfied. The constraint Equation (11) may simply be
rewritten as

Vg(x) ≤ − 1
2 kx2. (20)

Therefore, the physically relevant gravitational potential Vg always has to lie below this
concave down parabola. Figure 2 shows that this will approximately hold for the range
−x0 ≤ x ≤ 0, where no sign-flip for the gravitational force occurs. Recall that with the
aforementioned parameters (all set to unity except for k = 2 kg/s2), we found x0 ≈ 0.77 m,
viz. Equation (17).

The particular structure of the relativistic equation of motion, Equations (19a) and
(19b), also implies existence and uniqueness of periodic solutions. During the past two
decades, considerable progress has been made in the study of second-order differential
equations and the periodic properties of their solutions [11]. For a closer analysis, we recast
Equation (19a) into the form

ẍ(t) = − β(x)
α(x)

g =: f (x), (21)

where in this case the continuous function f (assuming α(x) 6= 0) does not explicitly
depend on the variables t or ẋ. Moreover, recall that f (x(0)) = −g. To guarantee existence
and uniqueness, we have to check that f ′ is bounded by two continuous functions for all
t ∈ [0, T], with period T > 0 [11]. For this purpose, we also use the following general
results for the limits of Equation (19b) and its derivatives:

lim
x→∞

α = −∞, lim
x→∞

β =
k

m0

(
c
g

)2
,

lim
x→∞

α′ = −∞, lim
x→∞

β′ = 0,

and lim
x→∞

α′

α
= 0.

(22)

Now, we can conclude that

lim
x→∞

f ′ = lim
x→∞

α′β− αβ′

α2 g = 0. (23)

As f ′(x) and x(t) are continuous, f ′ necessarily has to be bounded by a lower and an upper
continuous function for t ≥ 0, and we affirm that the equation of motion, Equations (19a)
and (19b), has unique periodic solutions.

The series expansion in the non-relativistic limit of Equations (19a) and (19b) up to
first order in the dimensionless parameter g`/c2 gives

m0 ẍ + m0g + kx +

(
2m0g
`

x +
4k
`

x2 +
3k2

2m0g`
x3
)

g`
c2 = 0, (24)

and analytical integration is possible but will already yield a rather convoluted list of elliptic
integrals. Therefore, for the full relativistic result—including all higher orders—numerical
integration is the most appropriate, if not the only possible, open pathway.

For the actual numerical integration of Equations (19a) and (19b), we decided to
implement the code in the Julia programming language due to its efficiency and high per-
formance [12]. Figure 3 displays the computed amplitudes for the classical and relativistic
case over the time interval t ∈ [0, 50] in SI units of seconds, again with all parameters
set equal to unity, except for the spring constant k = 2 kg/s2. Using the Julia library
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DifferentialEquations.jl [13], we chose the algorithm based on first-order interpola-
tion with at least stepsize ∆t = 0.05 s and a relative tolerance of 10−8 in the adaptive
timestepping. Note that a long-time analysis has shown that no significant numerical
errors materialize.

As shown in Figure 3, the difference between the simple classical result, resulting from
Equation (3) with conditions Equation (8),

x(t) =
m0g

k

[
cos

(√
k

m0
t

)
− 1

]
(25)

and the relativistic numerical estimate is quite pronounced—not only in amplitude but
also in phase, with a positive phase shift. The physical results for the relativistic oscillator
always possess longer amplitude and period than the classical analogue by cause of the
relativistic mass increase.

−1.5

−1.35

−1.2

−1.05

−0.9

−0.75

−0.6

−0.45

−0.3

−0.15

 0

 0  10  20  30  40  50

x(t)

t

classical

relativistic
x(0)=0, x

.
(0)=0

Figure 3. Amplitudes for the relativistic harmonic oscillator compared to the classical model, both
suspended in a uniform gravitational field, either using the simple classical solution, viz. Equation (3),
or the relativistic estimates resulting by numerical integration of Equations (19a) and (19b). The
gravitational field is strong with g/c2 ∼ 1 m−1, choosing again all parameters unity, except for
k = 2 kg/s2, see Figure 2. The two initial conditions are x(0) = ẋ(0) = 0, see Equation (8).

For an extended time interval t ∈ [0, 100] in units of seconds, Figure 4 shows the dif-
ference between relativistic and classical predictions, ∆x(t) = xrel(t)− xclas(t), as already
individually shown in Figure 3. As found before from the two curves in Figure 3, the
relativistic corrections—now more easily recognized—propagate with a positive phase
while significantly modulating the amplitude of the classical model. These contributions
are substantial and cannot be neglected. Remarkably, these relativistic corrections take the
shape of pronounced wave packets.

Figure 5 depicts the phase space for the relativistic harmonic oscillator with poten-
tial Vg in comparison with the classical model, using the same parameters as before, viz.
Figure 2. This phase portrait provides a global overview about the dynamics of the oscillat-
ing system and shows the quantitative difference between the two models.
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The relativistic phase-space trajectories emerge from the equation of motion,
Equation (18), with the preserved quantity

m0c2√
1− ẋ2

c2

+ 1
2 kx2 + Vg(x) = E0 + m0c2, (26)

which represents energy conservation with total energy E0 + m0c2 in Equation (7). In the
non-relativistic limit, we may use γ ≈ 1+ 1

2
ẋ2

c2 and Vg(x) ≈ m0gx in Equation (26) to obtain

1
2 m0 ẋ2 + 1

2 kx2 + m0gx = E0, (27)

which is just the well-known result for the harmonic oscillator with uniform Newto-
nian gravity.

The classical solutions are then reproduced in the phase plane (x, ẋ) as the level
curves of Equation (27) by varying E0 ≥ 0. Similarly, we obtain the relativistic solutions
in the phase plane by drawing the level curves of Equation (26). With the chosen initial
conditions in Equation (8), we have E0 = 0 for both cases (which is equivalent to E = m0c2).
Figure 5 shows the two corresponding curves. Observe that Equations (26) and (27) always
produce phase-space trajectories (relativistically and classically) which are closed. As a
consequence, both types of solutions have to be periodic. The phase portraits of both cases
represent center stable dynamics. Another characteristic effect is that the phase-space path
for the relativistic case is larger than for the classical path—an effect which also has been
observed for the relativistic pendulum [2] and a harmonic oscillator satisfying a relativistic
isochronicity principle [4].
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Figure 4. Amplitude changes, ∆x(t) = xrel(t)− xclas(t), characterizing the relativistic corrections
for the classical harmonic oscillator in a strong uniform gravitational field, corresponding to the
physical configuration of Figure 3, but for the larger time interval t ∈ [0, 100] in units of seconds.
These corrections are significant and modulate in both amplitude and phase.
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Figure 5. The phase-space diagrams for the harmonic oscillator in a uniform gravitational field
corresponding to the classical and the relativistic case. We are using the same parameters as in
Figure 2. The characteristics for both cases are similar: the closed trajectories represent periodic
solutions, and their phase portraits represent center stable dynamics.

5. Conclusions

We have derived and studied the relativistic generalization of an oscillating body
in motion under a Hookean potential and in parallel alignment with a uniform gravita-
tional field.

If gravity is strong, these relativistic corrections differ substantially from the classical
predictions and are relevant. These amplitude corrections can be pictured as fluctuating
wave packets traveling on top of the classically predicted oscillations.

Quantitatively, the relativistic oscillator always acquires longer amplitudes and peri-
ods than the classical analogue. This is the dynamical effect due to the increase in mass
of a moving object as dictated by special relativity. In spite of this fundamental difference
between the relativistic and non-relativistic framework, we have proven that the corre-
sponding relativistic equation of motion still maintains unique periodic solutions, similar
to the well-known classical case.

For practical purposes, we have also presented approximations in the non-relativistic
limit (keeping the next-to-leading-order term) for the relativistic gravitational potential
and for the equation of motion of the harmonic oscillator—an approximate equation which
could still be solved analytically in terms of elliptic integrals. However, all estimates in the
fully relativistic regime have to be solved by numerical integration. Toward this end, we
implemented the integration code with high precision in the Julia programming language
by using efficient first-order interpolation. This simulation also allowed to represent the
classical and relativistic phase space and to explore the dynamics of both models with their
common and quantitatively different features.
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