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Abstract: This paper introduces a new approach for the fabrication of generalized developable cubic
trigonometric Bézier (GDCT-Bézier) surfaces with shape parameters to address the fundamental issue
of local surface shape adjustment. The GDCT-Bézier surfaces are made by means of GDCT-Bézier-
basis-function-based control planes and alter their shape by modifying the shape parameter value.
The GDCT-Bézier surfaces are designed by maintaining the classic Bézier surface characteristics
when the shape parameters take on different values. In addition, the terms are defined for creating a
geodesic interpolating surface for the GDCT-Bézier surface. The conditions appropriate and suitable
for G1, Farin–Boehm G2, and G2 Beta continuity in two adjacent GDCT-Bézier surfaces are also
created. Finally, a few important aspects of the newly formed surfaces and the influence of the shape
parameters are discussed. The modeling example shows that the proposed approach succeeds and
can also significantly improve the capability of solving problems in design engineering.

Keywords: developable surfaces; shape parameters; geodesic; geometric continuity; trigonometric

1. Introduction

The developable structure, as a kind of special and meaningful ruled structure, may
be expanded onto a plane rather than being stretched or broken. Because of this particular
feature, developable surfaces are of great importance in geometric design [1,2] and have
broad applications in the manufacture of materials such as automotive components, aircraft
skins, ship hull pipes, shoes, and clothing [3–7]. The specification of the surface to be
produced is therefore of great significance for the metal plate and sheet metal industries.
There are three basic types of producing surfaces: a conical surface, a tangent surface, and
a cylindrical surface. Of course, a complex mixture of such surfaces may also be created.

A variety of experiments on developable surfaces have been carried out by researchers
in the construction of the developable surfaces. The material mainly involves the de-
sign and precise description of the developable surface [8], quasi-developable surface [9],
fitting [10], geometrical restriction [11,12], and smooth splicing [13]. The numerical repre-
sentation advances the use of developable surfaces in architecture and engineering that
can be classified into two groups: one is the representation of geometric points and the
other is the representation of geometric lines and planes [11,14–17]. Aumann [14] sug-
gested sufficient conditions for the construction of a developable Bézier surface with two
boundary curves confined to parallel planes and deduced a basic criterion. The general
characterization (weights and control nets) of the developable rational Bézier surface was
introduced by Lang and Roschel [15]. The biggest downside to this approach is that the
characterizing equations are not linear. Nevertheless, another model of geometry proposed
by Pottmann and Farin [16] is projective geometry, which describes developable surfaces
as a projective space curve and avoids the non-linearity of the characterizing equations.
However, to research developable surfaces, there is another much more suitable model
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called Laguerre geometry. Laguerre geometry is typically a geometric analysis of oriented
circles and lines in two dimensions, or of higher dimensional orientated spheres and hy-
perplanes where the transformations of Laguerre reflect bijective maps that retain oriented
contact [18,19]. Since a developable surface conserves tangent planes along each of its
rulings, it is transformed into a curve in the Laguerre geometry [20]. Moreover, a study of
using Laguerre geometry for envelopes of rotational cones and plane-based higher order
interaction between revolution cones and a given reference surface that operates on a point
model of a group of aligned planes is provided in [20]. However, a new dimension of
Laguerre geometry is its function in geometrical design work. It turns out that if one uses
the Laguerre geometry, it is surprisingly simple to overcome many geometric architecture
issues [21].

Bodduluri and Ravani [17] created a new geometric representation for forming sur-
faces using the duality that occurs between the point and the plane. Meanwhile, [11,22]
have designed the surface to interpolate curvature and geodesic curves, respectively.
The above methods are almost limited to only the surfaces of the Bézier or B-spline. It is
therefore uncontrollable, and due to its limited degrees of freedom, it is difficult to alter the
structure of the surface. These drawbacks make it very difficult to follow the requirements
of practical engineering. Of course, the use of a rational Bézier surface can be considered,
but a higher power of rational Bézier can lead to various shortcomings as stated in [23,24].
In rational curves and surfaces, each control point has a weight and the collection of that
weight is generally uncertain. That added weight freedom will create greater nuisance
than genuine assistance [25]. Even transcendental curves like the helix and cycloid cannot
be accommodated by the rational model. In addition, the repeated differentiation of the
rational curve produces a higher degree of curve.

Some researchers have implemented curves and surfaces with shape parameters
to address these deficiencies. Refs. [26,27] constructed a QTB-spline and a rational cu-
bic trigonometric (CT)-Bézier curve with adjusting parameters respectively. Majeed and
Qayyum [28] constructed a new rational cubic trigonometric B-spline where this proposed
curve applies with various applicability and flexibility by using different weights and shape
parameters. In [29], the authors have derived C3 and C5 continuity of the cubic trigono-
metric B-spline curves with uniform and non-uniform knots. Bashir et al. [30] provided
a quadratic trigonometric (QT)-Bézier curve with two shape parameters. Yang et al. [31]
explored the extension of the Bézier quartic trigonometric curve of G2 and C3 continuity.
The quintic trigonometric Bézier curve with two dynamic shape parameters was developed
by Misro et al. [32], which was then used to build five transition curve templates [33] and to
estimate the maximum speed in highway designs [34]. Ammad and Misro [35] constructed
a biquintic trigonometric Bézier surface with four shape parameters. Hu et al. [36,37]
proposed a method for constructing generalized developable Bézier and H-Bézier surfaces.
Recently, Bibi et al. [38] modeled symmetric revolutionary and rotational surfaces using a
hybrid trigonometric Bézier surface that was later applied in engineering applications [39].

This paper attempts to resolve the issue of shape handling in developing surfaces using
the cubic trigonometric Bézier basis functions and to analyze their favorable properties by
extending the discussion to curves and surfaces. By enveloping developable and tangent
curves of the spine, we build developable surfaces using a generalized developable cubic
trigonometric Bézier (GDCT-Bézier) basis function. However, the shape of the surface is
being managed by the design variables, making the design process of a particular product
more manageable.

The rest of the paper is structured as follows. The definition of the GDCT-Bézier curve
and properties are set out in Section 2. A new technique for developing GDCT-Bézier
surfaces is presented in Section 3. The continuity conditions for the GDCT-Bézier surfaces
are derived in Section 4. Practical examples are given in Section 5. Finally, Section 6
provides a brief conclusion.
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2. Definition and Properties of Cubic Trigonometric Bézier Curves
2.1. Cubic Trigonometric Bézier Basis Functions

The definition of a cubic trigonometric Bézier (CT-Bézier) basis function is given as
follows [40].

Definition 1. Let γ1, γ2 ∈ [−2, 1], for any u ∈ [0, 1]. The four polynomial functions below





w0,3(u)=
(

1− sin
πu
2

)2(
1− γ1 sin

πu
2

)
,

w1,3(u)= sin
πu
2

(
1− sin

πu
2

)(
2 + γ1 − γ1 sin

πu
2

)
,

w2,3(u)= cos
πu
2

(
1− cos

πu
2

)(
2 + γ2 − γ2 cos

πu
2

)
,

w3,3(u)=
(

1− cos
πu
2

)2(
1− γ2 cos

πu
2

)
,

(1)

are called CT-Bézier basis functions with the shape parameters γ1, γ2. In the case of γ1 = γ2 = 0,
the basis functions are quadratic trigonometric (QT) polynomials.

The CT-Bézier basis functions for two randomly chosen real values of shape parame-
ters γ1 and γ2 are shown in Figure 1. The proof of Theorem 1 is provided in [40].
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Figure 1. Cubic trigonometric (CT)-Bézier basis functions for different combinations of shape
parameters. (a) γ1 = 1, γ2 = 1, (b) γ1 = 1, γ2 = −1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = −2.

Figure 1. Cubic trigonometric (CT)-Bézier basis functions for different combinations of shape param-
eters. (a) γ1 = 1, γ2 = 1, (b) γ1 = 1, γ2 = −1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = −2.

Theorem 1. The CT-Bézier basis functions in (1) have the following properties:

(a) Non-negativity: wi,3(u) ≥ 0, i = 0, . . . , 3.
(b) Partition of unity: ∑3

i=0 wi,3(u) = 1.
(c) Monotonicity: with the given parameter u, w0,3(u) and w3,3(u) are monotonically decreasing

while w1,3(u) and w2,3(u) are monotonically increasing for the shape parameters γ1 and γ2,
respectively.

(d) Symmetry: wi,3(u, γ1, γ2) = w3−i,3(1− u, γ1, γ2) for i = 0, . . . , 3.
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2.2. Construction of CT-Bézier Curve

Definition 2. Given control points bi(i = 0, . . . , 3) in R2 or R3, the curve

B(u; γ1, γ2) =
3

∑
i=0

wi,3(u)bi, u ∈ [0, 1], (2)

is called the CT-Bézier curve with shape parameters, where γ1, γ2 ∈ [−2, 1] and wi,3(u) are the
basis functions defined in Equation (1).

By using the interpretation of the basic functions, the CT-Bézier curves have the
following properties.

(a) Boundary properties: B(0; γ1, γ2) = b0, B(1; γ1, γ2) = b3, B′(0; γ1, γ2) =
π
2 (2 + γ1)

(b1 − b0), B′(1; γ1, γ2) =
π
2 (2+ γ2)(b3− b2), B′′ (0; γ1, γ2) =

π2

2 ((1+ 2γ1)b0− (2+ 2γ1)

b1 + b2), B′′ (1; γ1, γ2) =
π2

2 ((1 + 2γ2)b3 − (2 + 2γ2)b2 + b1).
(b) Symmetry: b0, b1, b2, b3 and b3, b2, b1, b0 define the same CT-Bézier curve in differ-

ent parameterizations, i.e., B(u; γ1, γ2; b0, b1, b2, b3)=B(1− u; γ1, γ2; b3, b2, b1, b0), u ∈
[0, 1], γ1, γ2 ∈ [−2, 1].

(c) Geometric invariance: The CT-Bézier curve has a shape that is independent of the
selection of the coordination, i.e., Equation (2) satisfies the following two equations:
B(u; γ1, γ2; b0 + q, b1 + q, b2 + q, b3 + q) = B(u; γ1, γ2; b0, b1, b2, b3)+ q, B(u; γ1, γ2; b0∗
T, b1 ∗ T, b2 ∗ T, b3 ∗ T)=B(u; γ1, γ2; b0, b1, b2, b3) ∗ T. where q is an arbitrary vector in
R2 or R3 and T is an arbitrary d× d matrix, d = 2 or 3.

(d) Convex hull property: The entire segment of the CT-Bézier curve must lie inside the
control polygon.

3. Construction of GDCT-Bézier Surfaces
3.1. Dual Generation of Single-Parameter Family of Planes

Duality is a concept adapted from projective geometry. This concept is useful to
construct developable surfaces. As per the duality theory among points and planes,
the single parameter family of control points of a curve is dual to a single parameter family
of planes. The single parameter family of planes {∏u} can easily be reached if the control
points Ri in a CT-Bézier curve are treated as a control plane. Thus by Equation (2), the single
parameter family of plane {∏u} can be defined as

{
∏

u

}
: S(u; γ1, γ2) =

3

∑
i=0

wi,3(u)Ri, (3)

where Ri(i = 0, . . . , 3) are control points of {∏u}, u is the family of parameter, and γ1, γ2
are shape control parameters of {∏u}. In a three-dimensional projective space, if the
coordinates of the control plane are Ri = (ai, bi, ci, di) with i = 0, . . . , 3, the Equation (3)
can be written as

S(u; γ1, γ2)=
3

∑
i=0

wi,3(u)Ri,

=
3

∑
i=0

wi,3(u)(ai, bi, ci, di),

= {g0(u), g1(u), g2(u), g3(u)},

(4)

where, 



g0(u) = ∑3
i=0 wi,3(u)ai,

g1(u) = ∑3
i=0 wi,3(u)bi,

g2(u) = ∑3
i=0 wi,3(u)ci,

g3(u) = ∑3
i=0 wi,3(u)di.

(5)
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3.2. Generalized Enveloping Developable CT-Bézier Surface

Based on the properties and definition of a developable surface, it is comprehended
that the envelope of a single-parameter family of planes is a developable surface. The plane
corresponding to every value of u in Equation (2) can be defined as

g0(u)x + g1(u)y + g2(u)z = g3(u). (6)

Equation (6) when differentiated will yield,

g0
′(u)x + g1

′(u)y + g2
′(u)z = g3

′(u). (7)

According to the third definition from [41], the intersecting line between plane
Equations (6) and (7) is the generator of a developable surface, which is symbolized
by L(u; γ1, γ2) and can be computed in terms of its Plücker coordinates L(u; γ1, γ2) =
( f (u), h(u)) where

f (u)= (g0(u), g1(u), g2(u)) ×
(

g0
′(u), g1

′(u), g2
′(u)

)
,

=
(

g1(u)g2
′(u)− g2(u)g1

′(u), g0
′(u)g2(u)− g0(u)g2

′(u), g0(u)g1
′(u)− g1(u)g0

′(u)
)
,

(8)

and

h(u)= g3
′(u)(g0(u), g1(u), g2(u)) − g3(u)

(
g0
′(u), g1

′(u), g2
′(u)

)
,

=
(

g0(u)g3
′(u)− g3(u)g0

′(u), g1(u)g3
′(u)− g3(u)g1

′(u), g2(u)g3
′(u) − g3(u)g2

′(u)
)
.

(9)

Assume φ(u) to be the nearest point to the origin that lies on the two planes, so it
satisfies





g0(u)x + g1(u)y + g2(u)z = g3(u),

g0
′(u)x + g1

′(u)y + g2
′(u)z = g3

′(u),(
g1(u)g2

′(u)− g2(u)g1
′(u)

)
x +

(
g0
′(u)g2(u)− g0(u)g2

′(u)
)
y+(

g0(u)g1
′(u)− g1(u)g0

′(u)
)
z = 0.

By solving this system of equations, we get

φ(u) = f×h
f · f ,

= {[g2(u)g0
′(u)− g0(u)g2

′(u)][g2(u)g3
′(u)− g3(u)g2

′(u)]− [g0(u)g1
′(u)− g1(u)g0

′(u)]
[g1(u)g3

′(u)− g3(u)g1
′(u)], [g0(u)g1

′(u)− g1(u)g0
′(u)][g0(u)g3

′(u)− g3(u)g0
′(u)]−

[g1(u)g2
′(u)− g2(u)g1

′(u)][g2(u)g3
′(u)− g3(u)g2

′(u)], [g1(u)g2
′(u)− g2(u)g1

′(u)]
[g1(u)g3

′(u)− g3(u)g1
′(u)]− [g2(u)g0

′(u)− g0(u)g2
′(u)][g0(u)g3

′(u)− g3(u)g0
′(u)]}

/{[g1(u)g2
′(u)− g2(u)g1

′(u)]2 + [g2(u)g0
′(u)− g0(u)g2

′(u)]2 + [g0(u)g1
′(u)− g1(u)g0

′(u)]2}.

Therefore, the line L(u; γ1, γ2) can be represented as

T(k, u; γ1, γ2) = k f (u) + φ(u), k ∈ (−∞, ∞), (10)

when the parameter u family range is [0, 1] and the line L(u; γ1, γ2) produces a developable
surface with shape parameter γ1, γ2. It is apparent from the above calculation process that
a developable surface can be created when the control planes are provided.

3.3. Generalized Spine Curve Developable CT-Bézier surface

This section includes one more approach in constructing developable surfaces. With
regard to Definition 3 in [41], the three successive planes in the family of a plane {∏u}
intersect at a characteristic point and can be achieved by intersecting Equations (6) and (7),
and the second derivative of Equation (6) produces the third plane.
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g′′0 (u)x + g′′1 (u)y + g′′2 (u)z = g′′3 (u). (11)

Significantly, the characteristic argument can be reached by solving the following set
of equations: 




g0(u)x + g1(u)y + g2(u)z = g3(u),
g0
′(u)x + g1

′(u)y + g2
′(u)z = g3

′(u),
g′′0 (u)x + g′′1 (u)y + g′′2 (u)z = g′′3 (u).

(12)

Hence, the coordinate of the characteristic point ρ(u) is given by

x =




g3(u) g1(u) g2(u)
g3
′(u) g1

′(u) g2
′(u)

g′′3 (u) g′′1 (u) g′′2 (u)







g0(u) g1(u) g2(u)
g0
′(u) g1

′(u) g2
′(u)

g′′0 (u) g′′1 (u) g′′2 (u)




, y =




g0(u) g3(u) g2(u)
g0
′(u) g3

′(u) g2
′(u)

g′′0 (u) g′′3 (u) g′′2 (u)







g0(u) g1(u) g2(u)
g0
′(u) g1

′(u) g2
′(u)

g′′0 (u) g′′1 (u) g′′2 (u)




, z =




g0(u) g1(u) g3(u)
g0
′(u) g1

′(u) g3
′(u)

g′′0 (u) g′′1 (u) g′′3 (u)







g0(u) g1(u) g2(u)
g0
′(u) g1

′(u) g2
′(u)

g′′0 (u) g′′1 (u) g′′2 (u)




.

When parameter u varies in the range [0, 1], ρ(u) can generate a spine curve which
can be represented in parametric form such as below:

T(m, u; γ1, γ2) = ρ(u) + mρ′(u), u ∈ [0, 1], m ∈ (−∞, ∞). (13)

3.4. Developable Surface Interpolating Geodesic CT-Bézier Curve with Parameters

A geodesic is the shortest possible line between two points on a sphere or other curved
surface. This section involves the construction of developable surface through a given
cubic trigonometric Bézier curve, where the curve is the geodesic of the surface.

Theorem 2. A curve is a geodesic on the surface T(m, u) only when the principal normal ζ(u) is
|| to the normal N(m0, u) at every point on the curve.

Proof. Suppose that c(u) is a curve on the surface T(m, u) and φ is an arbitrary point on
the curve c(u), N(m0, u) is the normal vector at point φ, ζ(u) is the principal normal, θ is
the angle between ζ(u) and N(m0, u) and kg is the geodesic curvature. Then, according to
the definitions of geodesic curve and kg

kg = ±k sin θ = 0.

Since k 6= 0, the θ = 0 or θ = π then ζ(u) is ||N(m0, u). This proves the theorem. �

Theorem 3. When a CT-Bézier curve with shape parameters γ1, γ2 is given, a developable surface
that is geodesic to the developable surface must exist through it.

Proof. Given a CT-Bézier curve c(u; γ1, γ2), we have the respective ruled surface

T(m, u; γ1, γ2) = c(u; γ1, γ2) + mc1(u; γ1, γ2), u ∈ [0, 1], m ∈ (−∞,+∞).

When a curve c(u; γ1, γ2) is geodesic to Theorem 2, we have

T(0, u; γ1, γ2) = c(u; γ1, γ2), ζ(u; γ1, γ2)||N(0, u; γ1, γ2),

where ζ(u; γ1, γ2) and N(0, u; γ1, γ2) are the principal normal and normal vector of the
curve. For simplicity we omit the variable and parameters.

N(0, u; γ1, γ2) = Tu × Tm =
(
c′ + mc1

′)× c1|m=0 = c′ × c1
′
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and

ζ(u; γ1, γ2) =
(c′·c′)·c′′ − (c′·c′′)·c′
|c ′||c ′ × c′′ | .

Because ζ(u; γ1, γ2) is parallel to N(0, u; γ1, γ2) and c′ is perpendicular to N, the vector
c1 must be in the plane spanned by c′ and c′×c′′. Let

c1 = µ1c′ + µ2
(
c′ × c′′

)
.

According to the developable conditions, we have

(c′, µ1c′ + µ2(c′ × c′′), (µ1c′ + µ2(c′ × c′′))′) = 0
⇔ (c′, µ1c′ + µ2(c′ × c′′), µ1

′c′ + µ1c′′ + µ2
′c′ × c′′ + µ2c′ × c′′′ = 0

⇔ (c′, µ2(c′ × c′′), µ1c′′ + µ2
′c′ × c′′ + µ2c′ × c′′′ ) = 0

µ2 6=0⇔ [(c′ × c′′)× c′]·(µ1c′′ + µ2c′ × c′′′ ) = 0
⇔ [(c′·c′)c′′ − (c′′·c′)c′]·(µ1c′′ + µ2c′ × c′′′ ) = 0
⇔ (|c ′|2|c ′′|2−|c ′·c′′|2)µ1 = |c′|2(c′, c′′, c′′′ )µ2.

(14)

that is,

T(m, u; γ1, γ2) = c(u; γ1, γ2) + m(µ1c′(u; γ1, γ2) + µ2(c′(u; γ1, γ2)× c′′(u; γ1, γ2))),
u ∈ [0, 1], m ∈ (−∞,+∞).

(15)

Which interpolate the given curve c(u) and c(u) is a geodesic of the developable
surface, where µ1 and µ2 satisfy the Equation (14). �

In a special case, if we choose l2(t) = 1.

3.5. Analysis Properties of the GDCT-Bézier Surface

According to the single parameter family of planes {∏u}, the 1st and 2nd derivatives
of Equation (3) are

{
S′(u; γ1, γ2) = R0w0,3

′(u) + R1w1,3
′(u) + R2w2,3

′(u) + R3w3,3
′(u),

S′′(u; γ1, γ2) = R0w′′0,3(u) + R1w′′1,3(u) + R2w′′2,3(u) + R3w′′3,3(u).
(16)

Therefore, the planes corresponding to u = 0 and u = 1 in {∏u} have the following
characteristics:





S(0; γ1, γ2)= R0,

S′(0; γ1, γ2)=
π

2
(2 + γ1)(R1 − R0),

S′′(0; γ1, γ2)=
π2

2
((1 + 2γ1)R0 − (2 + 2γ1)R1 + R2),

(17)

and 



S(1; γ1, γ2)= R3,

S′(1; γ1, γ2)=
π

2
(2 + γ2)(R3 − R2),

S′′(1; γ1, γ2)=
π2

2
((1 + 2γ2)R3 − (2 + 2γ2)R2 + R1).

(18)

The first Equations of (17) and (18) shows that the first and last planes corresponding
to u = 0 and u = 1 in {∏u} are given by the designer as the first and last control planes
and they are both tangential to the GDCT-Bézier surface along its generator, at u = 0 and
u = 1. In addition, the generator of the GDCT-Bézier surface at u = 0 is the intersection
between two planes, represented by the first two Equations of (17), called the starting
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generator. Therefore, the generator L(0; γ1, γ2) is the intersection of two planes R0 and
π
2 (2 + γ1)(R1 − R0) and can be written as





r0·X= d0,
π

2
(2 + γ1)(r1 − r0)·X=

π

2
(2 + γ1)(d1 − d0),

(19)

where r0 = (a0, b0, c0), r1 = (a1, b1, c1), and X = (x, y, z).
R1 can be accomplished by the linear combination of two planes in Equation (19)

and the generator L(0; γ1, γ2) is the intersection of R0 and R1. Furthermore, the generator
L(0; γ1, γ2) dual to the line that connects the points R0 and R1, which is tangential to
GDCT-Bézier curve defined by R0, R1, R2, R3. Similarly, the ending generator L1;γ1,γ2

corresponding to u = 1 is the intersection of R2 and R3 in Equation (18).
In addition, the Equations (17) and (18) can be written in matrix form as:




R0
R1
R2


 =




1 0 0
1 1

π
2 (2+γ1)

0

1 π2(1+γ1)
π3
4 (2+γ1)

1
π2
2







S(0; γ1, γ2)
S′(0; γ1, γ2)
S′′(0; γ1, γ2)


 (20)

and



R3
R2
R1


 =




1 − π2(1+γ2)
π3
4 (2+γ2)

1
π2
2

1 − 1
π
2 (2+γ1)

0

1 0 0







S(1; γ1, γ2)
S′(1; γ1, γ2)
S′′(1; γ1, γ2)


 (21)

Since the intersection of the S, S′, S′′ planes is the spine curve of the GDCT-Bézier
surface, the characteristic point and plane coordinates of R0, R1, R2 will be achieved through
the linear combination of S, S′, S′′ according to Equation (20). So, the intersection of
plane coordinates R0, R1, R2 is the spine curve GDCT-Bézier surface characteristic point
on T(m, 0; γ1, γ2). Similarly, in Equation (21), the control points R1, R2, R3 define the
characteristic point on T(m, 1; γ1, γ2).

4. Continuity Conditions between GDCT-Bézier Surfaces

Many complex engineering surfaces are built in on CAD/CAM systems, but the
construction of a complex surface with a single surface is highly challenging. Therefore,
the promising features seem very important to ensure a smooth relationship between the
adjacent GDCT-Bézier surfaces [13,42]. However, the G1, Farin–Boehm G2, and G2 Beta
continuity are currently the standards for continuity measurement between two adjacent
developable surfaces [17,43,44].

Assuming two GDCT-Bézier surfaces must be spliced together, this is represented by
the expression

{ {
∏u,1

}
: S1(u; γ1,1, γ2,1) = {g0,1(u), g1,1(u), g2,1(u), g3,1(u)}, 0 ≤ u ≤ 1,{

∏u,2
}

: S2(u; γ1,2, γ2,2) = {g0,2(u), g1,2(u), g2,2(u), g3,2(u)}, 0 ≤ u ≤ 1.
(22)

where γ1,i, γ2,i(i = 1, 2) are shape parameters and Ri,1, Ri,2(i = 0, 1, 2, 3) are control planes.

4.1. The G1 Continuity Conditions of GDCT-Bézier Surfaces

In accordance with the description and analysis for G1 smooth continuity between two
parametrical curves in [43], the G1 continuity conditions in Equation (22) can be computed
as follows.
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Theorem 4. The necessary and sufficient conditions for G1 smooth continuity between two adjacent
GDCT-Bézier surfaces in Equation (22) at the joint are





R0,2= R3,1,

R1,2=

(
1 +

(2 + γ2,1)

ϕ(2 + γ1,2

)
R3,1 −

(2 + γ2,1)

ϕ(2 + γ1,2)
R2,1,

(23)

where ϕ > 0 is a constant.

Proof. To ensure G1 continuity at the joint, the two developable surfaces must fulfill the
following conditions: {

S1(1)= S2(0),

S1
′(1)= ϕS2

′(0).
(24)

Based on Equations (17) and (18), S1(1) and S2(0) can be given by
{

S1(1; γ1,1, γ2,1) = R3,1,
S2(0; γ1,2, γ2,2) = R0,2.

Substituting the values of S1(1; γ1,1, γ2,1) and S2(0; γ1,2, γ2,2) into Equation (24), we
get

R0,2 = R3,1. (25)

This implies that for the stability of G1, the two surfaces first require a shared control
plane. Next, based on Equations (17) and (18), S1

′(1) and S2
′(0) can be given by

{
S1
′(1; γ1,1, γ2,1) =

π
2 (2 + γ2,1)(R3,1 − R2,1),

S2
′(0; γ1,2, γ2,2) =

π
2 (2 + γ1,2)(R1,2 − R0,2).

(26)

Combining Equation (26) according to the second Equation of (24), we get

π

2
(2 + γ2,1)(R3,1 − R2,1) = ϕ

π

2
(2 + γ1,2)(R1,2 − R0,2). (27)

Finally, from Equation (25), the Equation of (27) can be written as

R1,2 =

(
1 +

(2 + γ2,1)

ϕ(2 + γ1,2)

)
R3,1 −

(2 + γ2,1)

ϕ(2 + γ1,2)
R2,1. (28)

Thus, Equations (25) and (28) are the G1 continuity conditions of the two adjacent
GDCT-Bézier surfaces. �

4.2. Farin–Boehm G2 Continuity Conditions of GDCT-Bézier Surfaces

Theorem 5. The conditions needed and necessary for Farin–Boehm G2 continuity between the two
GDCT-Bézier surfaces in Equation (22) are





R0,2= R3,1,

R1,2=

(
1 +

(2 + γ2,1)

(2 + γ1,2

)
R3,1 −

(2 + γ2,1)

(2 + γ1,2)
R2,1,

R2,2= 2
(
(1 + γ2,1)(2 + γ1,2) + (1 + γ1,2)(2 + γ2,1)

(2 + γ1,2)

)
(R3,1 − R2,1) + R1,1.

(29)
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Proof. In order to obtain the Farin–Boehm G2 continuity, the two surfaces need to satisfy
the following 




S2(0)= S1(1),

S2
′(0)= S1

′(1),

S′′2 (0)= S′′1 (1).

(30)

Based on Equations (17) and (18), we have




S2(0; γ1,2, γ2,2)= R0,2,

S2
′(0; γ1,2, γ2,2)=

π

2
(2 + γ1,2)(R1,2 − R0,2),

S′′2 (0; γ1,2, γ2,2)=
π2

2
((1 + 2γ1,2)R0,2 − (2 + 2γ1,2)R1,2 + R2,2),

(31)

and 



S1(1; γ1,1, γ2,1)= R3,1,

S1
′(1; γ1,1, γ2,1)=

π

2
(2 + γ2,1)(R3,1 − R2,1),

S′′1 (1; γ1,1, γ2,1)=
π2

2
((1 + 2γ2,1)R3,1 − (2 + 2γ2,1)R2,1 + R1,1).

(32)

Substitute Equations (31) and (32) into Equation (30), the conclusion in Equation (29)
can be obtained. �

4.3. G2 Beta Continuity Conditions of GDCT-Bézier Surfaces

Theorem 6. The conditions needed and necessary for G2 Beta continuity continuity between the
two GDCT-Bézier surfaces in Equation (22) are





R0,2= R3,1,

R1,2=

(
1 + ϕ

(2 + γ2,1)

(2 + γ1,2

)
R3,1 − ϕ

(2 + γ2,1)

(2 + γ1,2)
R2,1,

R2,2=



(2 + γ1,2)

(
1 + ϕ2(1 + 2γ2,1) +

ψ
π (2 + γ2,1)

)
+ 2ϕ(1 + γ1,2)(2 + γ2,1)

(2 + γ1,2)


R3,1

−


(2 + γ1,2)

(
2ϕ2(1 + γ2,1) +

ψ
π (2 + γ2,1)

)
+ 2ϕ(1 + γ1,2)(2 + γ2,1)

(2 + γ1,2)


R2,1

+ϕ2R1,1.

(33)

where ϕ > 0, and ψ is an arbitrary constant.

Proof. To reach G2 Beta continuity, the two surfaces need to satisfy





S2(0)= S1(1),

S2
′(0)= ϕS1

′(1),

S′′2 (0)= ϕ2S′′1 (1) + ψS1
′(1).

(34)

Substituting Equations (31) and (32), the derivatives of S1(u; γ1,1, γ2,1) and S2(u; γ1,2, γ2,2)
at u = 1 and u = 0, into Equation (34), then Equation (33) can be obtained. �
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5. Design Examples of GDCT-Bézier Surface

In this section, some examples are presented to demonstrate the construction of cubic
trigonometric surfaces by means of control planes. Here, the plane coordinates (ai, bi, ci, di)
of each Ri(i = 0, 1, 2, 3) control plane can be defined by its center point (ai, bi, ci) and
di = a2

i + b2
i + c2

i is the distance. It should be noted that this sort of representation is not
valid where the origin is the center point.

Distinctly, the envelop and spine curve family of developable surfaces, as well as
piecewise- developable surfaces with some smooth continuity, are being generated by
the proposed method used in this paper. The resulting shapes are shown in Figures 2–8.
These surfaces can be viewed from different angles and the designer can change the shape
manually by adjusting their shape parameter values without re-determining the control
planes, which solves the problems of the methods in [1,45–50]. Moreover, the GDCT-Bézier
surfaces reserve many properties of the traditional Bézier surfaces, especially when the
shape parameters have values equal to 1.
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Figure 2. The effect of parameter γ1 on the 1× 3 enveloping developable surface (a) γ1 = 1, γ2 = 1,
(b) γ1 = 0, γ2 = 1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = 1.
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(c) (d)

Figure 3. The effect of parameter γ2 on the 1× 3 enveloping developable surface (a) γ1 = 1, γ2 = 1,
(b) γ1 = 1, γ2 = 0, (c) γ1 = 1, γ2 = −1 (d) γ1 = 1, γ2 = −2.

(a) (b)

(c) (d)

Figure 4. The effects of parameter γ1 on the 1× 3 tangent of the spine curve developable surface
(a) γ1 = 0, γ2 = 0, (b) γ1 = −0.7, γ2 = 0, (c) γ1 = −1.4, γ2 = 0, (d) γ1 = −2, γ2 = 0.

Figure 2. The effect of parameter γ1 on the 1× 3 enveloping developable surface (a) γ1 = 1, γ2 = 1,
(b) γ1 = 0, γ2 = 1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = 1.

Mathematics 2020, 11, 64 12 of 18

(a) (b)

(c) (d)

Figure 2. The effect of parameter γ1 on the 1× 3 enveloping developable surface (a) γ1 = 1, γ2 = 1,
(b) γ1 = 0, γ2 = 1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = 1.

(a) (b)

(c) (d)

Figure 3. The effect of parameter γ2 on the 1× 3 enveloping developable surface (a) γ1 = 1, γ2 = 1,
(b) γ1 = 1, γ2 = 0, (c) γ1 = 1, γ2 = −1 (d) γ1 = 1, γ2 = −2.

(a) (b)

(c) (d)
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Figure 3. The effect of parameter γ2 on the 1× 3 enveloping developable surface (a) γ1 = 1, γ2 = 1,
(b) γ1 = 1, γ2 = 0, (c) γ1 = 1, γ2 = −1 (d) γ1 = 1, γ2 = −2.
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Figure 4. The effects of parameter γ1 on the 1× 3 tangent of the spine curve developable surface (a)
γ1 = 0, γ2 = 0, (b) γ1 = −0.7, γ2 = 0, (c) γ1 = −1.4, γ2 = 0, (d) γ1 = −2, γ2 = 0.
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(a) (b)

(c) (d)

Figure 5. The effects of parameter γ2 on the 1× 3 tangent of the spine curve developable surface (a)
γ1 = 0, γ2 = 0, (b) γ1 = 0, γ2 = −0.7, (c) γ1 = 0, γ2 = −1.4, (d) γ1 = 0, γ2 = −2.

(a) (b)

(c) (d)

Figure 6. The effects of parameter γ1 on the developable surface through the geodesic (a) γ1 = 1,
γ2 = 1, (b) γ1 = 0, γ2 = 1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = 1.

Figure 5. The effects of parameter γ2 on the 1× 3 tangent of the spine curve developable surface (a)
γ1 = 0, γ2 = 0, (b) γ1 = 0, γ2 = −0.7, (c) γ1 = 0, γ2 = −1.4, (d) γ1 = 0, γ2 = −2.
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Figure 5. The effects of parameter γ2 on the 1× 3 tangent of the spine curve developable surface (a)
γ1 = 0, γ2 = 0, (b) γ1 = 0, γ2 = −0.7, (c) γ1 = 0, γ2 = −1.4, (d) γ1 = 0, γ2 = −2.

(a) (b)

(c) (d)

Figure 6. The effects of parameter γ1 on the developable surface through the geodesic (a) γ1 = 1,
γ2 = 1, (b) γ1 = 0, γ2 = 1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = 1.
Figure 6. The effects of parameter γ1 on the developable surface through the geodesic (a) γ1 = 1,
γ2 = 1, (b) γ1 = 0, γ2 = 1, (c) γ1 = −1, γ2 = 1, (d) γ1 = −2, γ2 = 1.
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Figure 7. The effects of parameter γ2 on the developable surface through the geodesic (a) γ1 = 1,
γ2 = 1, (b) γ1 = 1, γ2 = 0, (c) γ1 = 1, γ2 = −1, (d) γ1 = 1, γ2 = −2.

(a) (b)

Figure 8. G1 smooth continuity between two enveloping generalized developable cubic trigonometric
(GDCT)-Bézier surfaces. (a) γ1,1 = 0, γ2,1 = 0, γ1,2 = 0, γ2,2 = 1, (b) γ1,1 = 0, γ2,1 = 0, γ1,2 = 0,
γ2,2 = −2.

5.1. Examples of Enveloping GDCT-Bézier Surfaces

In this example, the construction of the cubic trigonometric enveloping developable Bézier surface
is shown. Assume the coordinates of the control planes are

R0 = (5
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√
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√
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R2 = (−5
√
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√
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Here, we presume that in designing the enveloping developable surfaces, the center points of
four control planes are coplanar and each has an equal distance to the origin. When γ1, γ2 assumes

Figure 7. The effects of parameter γ2 on the developable surface through the geodesic (a) γ1 = 1,
γ2 = 1, (b) γ1 = 1, γ2 = 0, (c) γ1 = 1, γ2 = −1, (d) γ1 = 1, γ2 = −2.
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γ2,2 = −2.

5.1. Examples of Enveloping GDCT-Bézier Surfaces

In this example, the construction of the cubic trigonometric enveloping developable
Bézier surface is shown. Assume the coordinates of the control planes are

R0 =
(

5
√

2,−5
√

2, 5, 125
)

, R1 =
(
−5
√

2,−5
√

2, 5, 125
)

,

R2 =
(
−5
√

2, 5
√

2, 5, 125
)

, R3 =
(

5
√

2, 5
√

2, 5, 125
)

.

Here, we presume that in designing the enveloping developable surfaces, the center
points of four control planes are coplanar and each has an equal distance to the origin.
When γ1, γ2 assumes different values, a family of enveloping GDCT-Bézier surfaces with
different shapes can be constructed under the conditions of the specified control planes
(see Figures 2 and 3).

• When modifying the value of γ1 and keeping γ2 unchanged, the T(1; γ1, γ2) generator
retains the same length and location. However, the length of the generator T(0; γ1, γ2)
becomes longer when we increase the value of γ1, but its position remains unchanged.

• If the value of shape parameter γ1 is constant and γ2 is adjusted, the generator
T(0; γ1, γ2) retains the same length and position. However, the position of generator
T(1; γ1, γ2) also remains unchanged, but its length increases when we increase the
value of γ2.

5.2. Examples of Spine Curve GDCT-Bézier Surfaces

In this example, the construction of the spine curve GDCT-Bézier surface is demon-
strated. Assume the coordinates of the control planes are

R0 =
(

13/2, 13/2, 13
√

2/2, 169
)

, R1 =
(
−15/2,−15/2, 13

√
2/2, 225

)
,

R2 =
(
−10,−10, 10

√
2, 400

)
, R3 =

(
25/2,−25/2, 25

√
2/2, 625

)
.

In designing the developable surface of the spine curve, we assume that the four
control planes have their center points in four different quadrants and that the distance to
the origin is not equivalent from these center points.

In Figures 4 and 5, we can see the impact of shape parameters γ1, γ2 on the spine
curve developable surface as follows:

• When modifying the value of γ1, and keeping γ2 unchanged, the T(0; γ1, γ2) generator
retains the same length and location. However, the length of the generator T(1; γ1, γ2)
becomes shorter when we increase the value of γ1, but its position remains unchanged.
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• If the value of shape parameter γ1 is constant and γ2 is adjusted, the generator
T(1; γ1, γ2) retains the same length. However, the length of the generator T(0; γ1, γ2)
becomes shorter when we increase the value of γ2, but its position remains unchanged.

5.3. Example of Developable Surface Interpolating Geodesic Cubic Trigonometric Bézier Curve with
Parameters

In order to illustrate the effectiveness of the method constructed in Section 3.4, we
design a developable surface with a special case when µ2 = 1. The resulting developable
surface interpolates the curve created by control points b0 = [3, 3, 3], b1 = [4, 3, 5], b2 =
[5, 3, 5], b3 = [6, 3, 3]. Although the curve is geodesic to the developable surface, note that
the shape parameters have an influence on the developable surface as shown in Figures 6
and 7.

5.4. Example of Smooth Continuity Between Two Adjacent GDCT-Bézier Surfaces

In the field of Computer Aided Design, product appearance modeling is often under-
taken by splicing together several developable patches. However, this paper has portrayed
many dynamic surfaces being placed directly using the developable surfaces and their
smooth continuity. Figure 8a,b show the G1 smooth continuity example between two
enveloping GDCT-Bézier surfaces. In Figure 8, the orange surface is the first enveloping
GDCT-Bézier surface S1(u; γ1,1, γ2,1), whose shape parameters are γ1,1 = 1,γ2,1 = 1 and
with control planes

R0,1 = (0,−17.32, 10., 400), R1,1 = (0,−10., 17.32, 400),

R2,1 = (0, 10., 17.32, 400), R3,1 = (0, 17.32, 10., 400).

The green surface is the second enveloping GDCT-Bézier surface S2(u; γ1,2, γ2,2),
which satisfies G1 smooth continuity with S1(u; γ1,1, γ2,1), having the control planes

R0,2 = (0, 17.32, 10., 400), R1,2 = (0, 24.641, 2.679, 400),

R2,2 = (0, 20,−13, 400), R3,2 = (0, 15,−20, 400).

When the shape parameter γ1,2 = 1, the control plane coordinates R0,2 and R1,2 are
obtained by Equation (23) with the constant value of φ = 1, and the control planes R2,2
and R3,2 are chosen freely. According to Equation (23), γ2,2 is independent of G1 smooth
continuity. Figure 8a,b show the G1 piecewise enveloping developable surfaces with
γ1,1 = 0,γ2,1 = 0,γ1,2 = 0,γ2,2 = 1 and γ1,1 = 0,γ2,1 = 0,γ1,2 = 0,γ2,2 = −2, respectively.
This concludes that the process of modeling a complex product using continuity constraints
is quick and easy to control, making it easier to meet the actual need. Additionally, we are
able to achieve smooth continuity between spine curve GDCT-Bézier surfaces using the
same technique.

6. Conclusions

Based on the CT-Bézier basis function with two shape parameters, this article has
presented a novel approach for constructing a class of GDCT-Bézier function with local
control for enveloping and spine developable surfaces. Furthermore, the conditions and
evaluation of some interesting properties of the GDCT-Bézier surface to create geodesic
interpolating surfaces are successfully derived. The shapes of the GDCT-Bézier surfaces can
be easily modified due to the inclusion of a shape parameter without changing the control
planes. This suggests that the Bézier trigonometric surfaces have increased surface design
efficiency with added versatility. This developable surface inherits the properties of the
classical developable Bézier surface. In addition, in order to handle complex shapes in engi-
neering and architectural design, we have also derived sufficient and necessary continuity
conditions between two adjacent GDCT-Bézier surfaces. Theoretical discussion and design
examples, however, suggest that the GDCT-Bézier surfaces and their smooth continuity
are not only easy and convenient to integrate but also provide a great deal of flexibility in
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the design of developing surfaces. Thus, they are prominently useful in constructing com-
plex developable surfaces in CAD/CAM with different degrees of smoothness. However,
our future aim is to investigate the approximation and interpolation of cubic trigonometric
Bézier surfaces by exploring special algorithms for developable surfaces.
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