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Abstract: F-contractions have inspired a branch of metric fixed point theory committed to the general-
ization of the classical Banach contraction principle. The study of these contractions and α-fuzzy map-
pings in b-metric spaces was attempted timidly and was not successful. In this article, the main objective
is to obtain common α-fuzzy fixed point results for F-contractions in b-metric spaces. Some multivalued
fixed point results in the literature are derived as consequences of our main results. We also provide a
non-trivial example to show the validity of our results. As applications, we investigate the solution
for fuzzy initial value problems in the context of a generalized Hukuhara derivative. Our results
generalize, improve and complement several developments from the existing literature.
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1. Introduction

Zadeh [1] introduced the notion of fuzzy set as a means of dealing with unpredictabil-
ity that is induced due to inaccuracy or obscurity in preference to haphazardness in 1960.
Heilpern [2] introduced a class of fuzzy mappings by using the notion of fuzzy sets.
He obtained fixed point results for fuzzy mappings in metric linear space and generalized
various results for multivalaued mappings. Estruch et al. [3] established the existence of a
fuzzy fixed point for fuzzy contraction mappings in the context of complete metric space.
Several mathematicians [4–12] extended the work of Estruch et al. [3] in different metric
spaces under generalized contractions. In 2014, Rashid et al. [13] introduced the notion
of β-admissible for a pair of fuzzy mappings by utilizing the concept of β-admissible,
which was first given by Samet et al. [14] in 2012.

On the other hand, Czerwik [15] initiated the notion of b-metric space to generalize
metric space in 1993. Later on, Czerwik [16,17] defined the Hausdorff b-metric induced by
the b-metric and obtained fixed point theorems for multivalued mappings.

In 2012, Wardowski [18] initiated a new notion of F-contraction and established a
generalized theorem regarding F-contractions in the context of complete metric spaces.
Many researchers [19–21] established several types of fixed point results by using and
extending the F-contraction. Recently, Cosentino et al. [22] utilized the concept of F-
contraction in the framework of b-metric space and proved fixed point theorems for
multivalued mappings. Ali et al. [23,24] used the notion of β-admissible mappings and F-
contractions to obtain Feng and Liu type fixed point results in the context of b-metric space.

In this paper, we establish some common α-fuzzy fixed point theorems for β-admissible
mappings and F-contractions in the setting of complete b-metric space to generalize the
main results of Ahmad et al. [7], Wardowski [18] and Cosentino et al. [22] and some
familiar theorems of the literature.
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2. Background and Preliminaries

In this section, we collect some basic definitions, lemmas and notation which will be
used throughout the paper (see [1,2,13–16,18,22–24] and the references therein). Let R+

represent the set of all positive real numbers and R+
0 represent the set of nonnegative

real numbers.
A fuzzy set inR is a function with domainR and values in [0, 1]. If L is a fuzzy set

and ω ∈ R, then the function values L(ω) are called the grade of membership of ω in L.
The α-level set of L is represented by [L]α and is given as follows:

[L]α = {ω : L(ω) ≥ α} if α ∈ (0, 1],

[L]0 = {ω : L(ω) > 0}

where L represents the closure of L. If V is a metric linear space, then a fuzzy set L in V is
said to be an approximate quantity if and only if [L]α is compact and convex in V for each
α ∈ [0, 1] and sup

ω∈V
L(ω) = 1. Let =(R) be the collection of all fuzzy sets in R. Suppose

R1 is any set, R2 is a metric space. A mapping O : R1 → =(R2) is a fuzzy subset on
R1 ×R2 with membership O(ω)(v), where O(ω)(v) denotes the grade of membership
of v in O(ω).

Definition 1. (see [2]) Let O1,O2 : R → =(R); then a point ω∗ ∈ R is called an α-fuzzy fixed
point of O1 if there exists α ∈ [0, 1] such that ω∗ ∈ [O1ω∗]α and ω∗ ∈ R is called a common
α-fuzzy fixed point of O1 and O2 if there exists α ∈ [0, 1] such that ω∗ ∈ [O1ω∗]α ∩ [O2ω∗]α.
Whenever α = 1, then ω∗ becomes a common fixed point of O1 and O2.

Samet et al. [14] initiated the notion of β-admissible mapping in 2012.

Definition 2. (see [14]) Let O :R → R and α : R×R → [0,+∞). Then the mapping O is
called β-admissible if

ω, v ∈ W , β(ω, v) ≥ 1 =⇒ β(Oω,Ov) ≥ 1.

In 2014, Rashid et al. [13] extended the concept of β-admissible for fuzzy mappings
and introduced the notion of β-admissible in this way.

Definition 3. (see [13]) Let (R, d) be a metric space, β : R×R → [0,+∞) and let O1,O2
be fuzzy mapping from R into =(R). The pair (O1,O2) is said to be β-admissible if these
conditions hold:

(i) For each ω ∈ R and v ∈ [O1ω]αO1
(ω), where αO1(ω) ∈ (0, 1], with β(ω, v) ≥ 1,

we have β(v, z) ≥ 1 for all z ∈ [O2v]αO2
(v) 6= ∅, where αO2(v) ∈ (0, 1],

(ii) For each ω ∈ R and v ∈ [O2ω]αO2
(ω), where αO2(ω) ∈ (0, 1], with β(ω, v) ≥ 1,

we have β(v, z) ≥ 1 for all z ∈ [O1v]αO1
(v) 6= ∅, where αO1(v) ∈ (0, 1].

Later on, many researchers [4–12] used this notion of fuzzy mapping and established
various fuzzy fixed point results.

On the other hand, Czerwik [15] introduced the notion of b-metric space to generalize
metric space in 1993 in this way:

Definition 4. Let R 6= ∅ and s ≥ 1. A function db: R×R → R+
0 is called b-metric if these

conditions hold:
(b1) db(ω, v) = 0⇔ ω = v,
(b2) db(ω, v) = db(v, ω),
(b3) db(ω, υ) ≤ s(db(ω, v) + db(v, υ))
for all ω, v, υ ∈ R.
Then (R, db, s) is called a b-metric space.
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Czerwik [16] defined the Hausdorff b-metric Hb induced by the b-metric db in this way.
Let Pcb(R) represent the class of all non-empty, closed and bounded subsets of R.

For Ω1, Ω2 ∈ Pcb(R), Hausdorff b-metric Hb : Pcb(R)× Pcb(R)→ R+ is defined as follows

Hb(Ω1, Ω2) = max

{
sup

ω∈Ω1

db(ω, Ω2), sup
v∈Ω2

db(v, Ω1)

}

where
db(v, Ω1) = inf

ω∈Ω1
db(v, ω).

We remember these properties from [15–17].

Lemma 1. (see. [16,17]) Let (R, db, s) be a b-metric space. For any Ω1, Ω2, Ω3 ∈ Pcb(R) and
any ω, v ∈ R, these hold:

(i) db(ω, Ω2) ≤ db(ω, v) for any v ∈ Ω2.
(ii) db(ω, Ω2) ≤ Hb(Ω1, Ω2) for any ω ∈ Ω1,
(iii) Hb(Ω1, Ω1) = 0,
(iv) Hb(Ω1, Ω2) = Hb(Ω2, Ω1)
(v) Hb(Ω1, Ω3) ≤ s[Hb(Ω1, Ω2) + Hb(Ω2, Ω3)]
(vi) db(ω, Ω1) ≤ s[db(ω, v) + db(v, Ω1)].
(vii) db is continuous in its variables.

In 2012, Wardowski [18] initiated a new notion of F-contraction and established a
generalized theorem regarding F-contractions in the context of complete metric spaces.

Definition 5. (see [18]) Let (R, d) be a metric space and O : R → R. Then O is called an
F-contraction if there exists τ > 0 such that ;

d(Oω,Ov) > 0 =⇒ τ + F
(
d(Oω,Ov)

)
≤ F

(
d(ω, v)

)
(1)

for ω, v ∈ R, where F : R+ → R satisfies the following assertions:

(F1) F(ω) < F(v) for ω < v;
(F2) For all {ωn} ⊆ R+, limn→∞ ωn = 0⇐⇒ limn→∞ F(ωn) = −∞;
(F3) There exists 0 < r < 1 such that limω→0+ ωrF(ω) = 0.

Many researchers [19–21,25] established several types of fixed point results by using and
extending the F-contraction. In the framework of b-metric space, Cosentino et al. [22] added a new
condition (F4) and opened a new area of research in this way:

(F4) For s ≥ 1 and each sequence {ωn} ⊆ R+ such that τ + F(sωn) ≤ F(ωn−1), ∀ n ∈ N and
some τ > 0 , then τ + F(snωn) ≤ F(sn−1ωn−1), for all n ∈ N.

We represent by zs the set of all functions continuous from the right, F : R+ → R, satisfying
(1) and (F1)–(F4).

Example 1. The following functions F : R+ → R are the elements of zs :
(1) F(ι) = ln(ι);
(2) F(ι) = ι + ln(ι);
(3) F(ι) = − 1√

ι
;

(4) F(ι) = ln(ι2 + ι)
for ι > 0.

3. Results and Discussion

We present our main theorem as follows:

Theorem 1. Let (R, db, s) be a complete b-metric space with coefficient s ≥ 1, β : R×R → [0, ∞)
and O1,O2 : R → =(R) satisfying the following conditions.
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(a) For each ω, v ∈ R, there exists αO1(ω), αO2(v) ∈ (0, 1] such that [O1ω]αO1
(ω),

[O2v]αO2
(v) ∈ Pcb(R),

(b) For ω0 ∈ R, there exists ω1 ∈ [O1ω0]αO1
(ω0)

with β(ω0, ω1) ≥ 1,
(c) There exist F ∈ zs and τ > 0 such that

2τ + max{β(ω, v), β(v, ω)}F(sHb([O1ω]αO1
(ω), [O2v]αO2

(v))) ≤ F(db(ω, v)) (2)

for all ω, v ∈ R with Hb([O1ω]αO1
(ω), [O2v]αO2

(v)) > 0,

(d) (O1,O1) is β-admissible,
(e) If {ωn}∈ R such that β(ωn, ωn+1) ≥ 1 and ωn → ω, then β(ωn, ω) ≥ 1.
Then there exists ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1

(ω∗) ∩ [O2ω∗]αO2
(ω∗).

Proof. For ω0 ∈ R. Then by supposition (a), there exists αO1(ω0) ∈ (0, 1] such that
[O1ω0]αO1

(ω0)
∈ Pcb(R) and ω1 ∈ [O1ω0]αO1

(ω0)
such that β(ω0, ω1) ≥ 1. For this ω1,

there exists αO2(ω1) ∈ (0, 1] such that [O2ω1]αO2
(ω1)
∈ Pcb(R). Since F ∈ zs is continuous

from the right function, there exists h > 1 such that

F
(

hsHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

))
< F

(
sHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

))
+ τ. (3)

Next, as d
(

ω1, [O2ω1]αO2
(ω1)

)
< hHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

)
, we deduce that

there exists ω2 ∈ [O2ω1]αO2
(ω1)

(obviously, ω2 6= ω1) such that db(ω1, ω2) ≤ hHb(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

)
. Thus, we have

F(sdb(ω1, ω2)) ≤ F
(

hsHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

))
< F

(
sHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

))
+ τ

which implies by (2) that

2τ + F(sdb(ω1, ω2)) ≤ 2τ + F
(

sHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

))
+ τ

≤ 2τ + max{β(ω0, ω1), β(ω1, ω0)}F
(

sHb

(
[O1ω0]αO1

(ω0)
, [O2ω1]αO2

(ω1)

))
+ τ

≤ F(db(ω0, ω1)) + τ

Thus we have
τ + F(sdb(ω1, ω2)) ≤ F(db(ω1, ω2)). (4)

Now, β(ω0, ω1) ≥ 1 and (O1,O1) is β-admissible, so β(ω1, ω2) ≥ 1. For this ω2, there
exists αO1(ω2) ∈ (0, 1] such that [O1ω2]αO1

(ω2)
∈ Pcb(R). Since F ∈ zs is continuous from

the right function, there exists h > 1 such that

F
(

hsHb

(
[O2ω1]αO2

(ω1)
, [O1ω2]αO1

(ω2)

))
= F

(
hsHb

(
[O1ω2]αO1

(ω2)
, [O2ω1]αO2

(ω1)

))
< F

(
sHb

(
[O1ω2]αO1

(ω2)
, [O2ω1]αO2

(ω1)

))
+ τ. (5)

Next, as db

(
ω2, [O1ω2]αO1

(ω2)

)
< hHb

(
[O2ω1]αO2

(ω1)
, [O1ω2]αO1

(ω2)

)
, we deduce that

there exists ω3 ∈ [O1ω2]αO1
(ω2)

(obviously, ω3 6= ω2) such that db(ω2, ω3) ≤ hHb(
[O2ω1]αO2

(ω1)
, [O1ω2]αO1

(ω2)

)
. Thus, we have

F(sdb(ω2, ω3)) ≤ F
(

hsHb

(
[O2ω1]αO2

(ω1)
, [O1ω2]αO1

(ω2)

))
< F

(
sHb

(
[O1ω2]αO1

(ω2)
, [O2ω1]αO2

(ω1)

))
+ τ.
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which implies by (2) that

2τ + F(sdb(ω2, ω3)) ≤ 2τ + F
(

sHb

(
[O1ω2]αO1

(ω2)
, [O2ω1]αO2

(ω1)

))
+ τ

≤ 2τ + max{β(ω1, ω2), β(ω2, ω1)}F
(

sHb

(
[O1ω2]αO1

(ω2)
, [O2ω1]αO2

(ω1)

))
+ τ

≤ F(db(ω2, ω1)) + τ = F(db(ω1, ω2)) + τ.

Consequently, we get

τ + F(sdb(ω2, ω3)) ≤ F(db(ω1, ω2)). (6)

By pursuing a solution in this way, we obtain a sequence {ωn} inR such that ω2n+1 ∈
[O1ω2n]αO1

(ω2n)
, ω2n+2 ∈ [O2ω2n+1]αO2

(ω2n+1)
, β(ωn−1, ωn) ≥ 1 and

τ + F(sdb(ω2n+1, ω2n+2)) ≤ F(db(ω2n, ω2n+1)) (7)

and
τ + F(sdb(ω2n+2, ω2n+3)) ≤ F(db(ω2n+1, ω2n+2)) (8)

for all n ∈ N. From (7) and (8), we get

τ + F(sdb(ωn, ωn+1)) ≤ F(db(ωn−1, ωn)) (9)

for all n ∈ N. It follows by (9) and property (F4) that

τ + F(sndb(ωn, ωn+1)) ≤ F(sn−1db(ωn−1, ωn)). (10)

Therefore by (10), we have

F(sndb(ωn, ωn+1)) ≤ F
(

sn−1db(ωn−1, ωn)
)
− τ ≤ F

(
sn−2db(ωn−2, ωn−1)

)
− 2τ

≤ ... ≤ F(db(ω0, ω1))− nτ. (11)

Taking n→ ∞, we get lim
n→∞

F(sndb(ωn, ωn+1)) = −∞ that together with (F2) gives

lim
n→∞

sndb(ωn, ωn+1) = 0.

By (F3), there exists r ∈ (0, 1) such that

lim
n→∞

[sndb(ωn, ωn+1)]
rF(sndb(ωn, ωn+1)) = 0.

From (11) we have

[sndb(ωn, ωn+1)]
rF(sndb(ωn, ωn+1))− [sndb(ωn, ωn+1)]

rF(db(ω0, ω1))

≤ [sndb(ωn, ωn+1)]
r[F(db(ω0, ω1))− nτ]− [sndb(ωn, ωn+1)]

rF(db(ω0, ω1))

≤ −nτ[sndb(ωn, ωn+1)]
r ≤ 0.

Taking n→ ∞, we get

lim
n→∞

n[sndb(ωn, ωn+1)]
r = 0. (12)

Thus lim
n→∞

n
1
r sndb(ωn, ωn+1) = 0. Hence ∑∞

n=1 sndb(ωn, ωn+1) is convergent and thus

{ωn} is a Cauchy sequence inR. Since (R, db, s) is complete, there exists ω∗ ∈ R such that

lim
n→∞

ωn = ω∗. (13)
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By condition (e), we have β(ωn, ω∗) ≥ 1 for all n ∈ N. Now, we prove that ω∗ ∈
[O2ω∗]αO2

(ω∗). We assume on the contrary that ω∗ 6∈ [O2ω∗]αO2
(ω∗), so there exist n0 ∈ N

and {ωnk} of {ωn} such that db(ω2nk+1, [O2ω∗]αO2
(ω∗)) > 0, ∀ nk ≥ n0. Now, using (2)

with ω = ω2nk+1 and v = ω∗, we obtain

2τ + F
[

sHb(
[
O1ω2nk

]
αO1

(ω2nk
), [O2ω∗]αO2

(ω∗))

]
≤ F(d(ω2nk , ω∗)).

This implies that

2τ + F
[
db(ω2nk+1, [O2ω∗]αO2

(ω∗))
]

≤ 2τ + F
[

sHb(
[
O1ω2nk

]
αO1

(ω2nk
), [O2ω∗]αO2

(ω∗))

]
≤ 2τ + max

{
β(ω2nk , ω∗), β(ω∗, ω2nk )

}
F
[

sHb(
[
O1ω2nk

]
αO1

(ω2nk
), [O2ω∗]αO2

(ω∗))

]
≤ F(db(ω2nk , ω∗)).

As τ > 0, by (F1) we obtain

db(ω2nk+1, [O2ω∗]αO2
(ω∗)) < db(ω2nk , ω∗).

Letting n→ ∞, we have

db(ω
∗, [O2ω∗]αO2

(ω∗)) ≤ 0.

Hence ω∗ ∈ [O2ω∗]αO2
(ω∗). Similarly, one can easily prove that ω∗ ∈ [O1ω∗]αO1

(ω∗).

Thus ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗).

From now on, we denote a complete b-metric space with coefficient s ≥ 1 as (R, db, s).

Theorem 2. Let O1,O2 : R → =(R) and for each ω, v ∈ R, there exists αO1(ω), αO2(v) ∈
(0, 1] such that [O1ω]αO1

(ω), [O2v]αO2
(v) ∈ Pcb(R). Assume that there exist F ∈ zs and τ > 0

such that
2τ + F(sHb([O1ω]αO1

(ω), [O2v]αO2
(v))) ≤ F(db(ω, v)) (14)

for all ω, v ∈ R with Hb([O1ω]αO1
(ω), [O2v]αO2

(v)) > 0.

Then there exists ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗).

Proof. Set β(ω, v) = 1 for all ω,v ∈ R in Theorem 1.

Theorem 3. Let O1,O2 : R → =(R) and for each ω, v ∈ R, there exists αO1(ω), αO2(v) ∈
(0, 1] such that [O1ω]αO1

(ω), [O2v]αO2
(v) ∈ Pcb(R). Suppose that there exists λ ∈ (0, 1)

such that
sHb([O1ω]αO1

(ω), [O2v]αO2
(v)) ≤ λdb(ω, v) (15)

for all ω, v ∈ R. Then there exists ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗).

Proof. Let 0 < λ < 1 be in this way that λ = e−2τ where τ > 0 and F(ι) = ln(ι) for ι > 0.
By (15), with Hb([O1ω]αO1

(ω), [O2v]αO2
(v)) > 0, we get

F(sHb([O1ω]αO1
(ω), [O2v]αO2

(v))) ≤ −2τ + F(db(ω, v))
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that is
2τ + F(sHb([O1ω]αO1

(ω), [O2v]αO2
(v))) ≤ F(db(ω, v))

for all ω, v ∈ R. Thus by Theorem 2, there exist ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩

[O2ω∗]αO2
(ω∗).

Corollary 1. Let O1,O2 : R→ =(R) and for each ω, v ∈ R, there exists αO1(ω), αO2(v) ∈
(0, 1] such that [O1ω]αO1

(ω), [O2v]αO2
(v) ∈ Pcb(R). Assume that there exist λ ∈ (0, 1) such that

sHb([O1ω]αO1
(ω), [O2v]αO2

(v))e
sHb([O1ω]αO1

(ω),[O2v]αO2
(v))−db(ω,v)

≤ λdb(ω, v) (16)

for all ω, v ∈ R. Then there exist ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗).

Proof. Let 0 < λ < 1 be such that λ = e−2τ where τ > 0 and F(ι) = ι + ln(ι) for ι > 0.
By (16), with Hb([O1ω]αO1

(ω), [O2v]αO2
(v)) > 0, we get

F(sHb([O1ω]αO1
(ω), [O2v]αO2

(v))) ≤ −2τ + F(db(ω, v))

for all ω, v ∈ R, that is, 2τ + F(sHb([O1ω]αO1
(ω), [O2v]αO2

(v))) ≤ F(db(ω, v)). Thus by

Theorem 2, we get ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O1ω∗]αO1

(ω∗).

Corollary 2. Let O1,O2: R → =(R) and for each ω, v ∈ R, there exist αO1(ω), αO2(v) ∈
(0, 1] such that [O1ω]αO1

(ω), [O2v]αO2
(v) ∈ Pcb(R). Assume that there exists λ ∈ (0, 1)

such that

sHb([O1ω]αO1
(ω), [O2v]αO2

(v))(sHb([O1ω]αO1
(ω), [O2v]αO2

(v)) + 1)

≤ λdb(ω, v)(db(ω, v) + 1)
(17)

for all ω, v ∈ R. Then there exist ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗).

Proof. Let 0 < λ < 1 be such that λ = e−2τ where τ > 0 and F(ι) = ln(ι2 + ι) for ι > 0.
By (17), with Hb([O1ω]αO1

(ω), [O2v]αO2
(v)) > 0; we get

F(sHb([O1ω]αO1
(ω), [O2v]αO2

(v))) ≤ −2τ + F(db(ω, v));

that is,
2τ + F(sHb([O1ω]αO1

(ω), [O2v]αO2
(v))) ≤ F(db(ω, v))

for all ω, v ∈ R. Thus by Theorem 2, there exists ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩

[O2ω∗]αO2
(ω∗).

Corollary 3. Let O : R → =(R) and for each ω, v ∈ R, ∃ αO(ω), αO(v) ∈ (0, 1] such that
[Oω]αO(ω), [Ov]αO(v) ∈ CB( R). Assume that there exist F ∈ zs and τ > 0 such that

2τ + F(sHb([Oω]αO(ω), [Ov]αO(v))) ≤ F(db(ω, v)) (18)

for all ω, v ∈ R with Hb([Oω]αO(ω), [O2v]αO(v)) > 0. Then there exist ω∗ ∈ R such that
ω∗ ∈ [Oω∗]αO(ω∗).
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Example 2. LetR = {0, 1, 2}. Define db : R×R → R+
0 by

db(ω, v) =


0, if ω = v

1, if ω 6= v and ω, v ∈ {1, 2}
1
6 , if ω 6= v and ω, v ∈ {0, 1}
1
2 , if ω 6= v and ω, v ∈ {0, 2}.

It is very simple to show that (R, d) is a complete b-metric space with coefficient s = 3
2 . Define

(O0)(ι) = (O21)(ι) =
{ 1

2 , if ι = 0
0, if ι = 1, 2

and

(O2)(ι) =
{

0, if ι = 0, 2
1
2 , if ι = 1.

Define α : R → (0, 1] by α(ω) = 1
2 for all ω ∈ R. Now we obtain that

[Oω] 1
2
=

{
{0}, if ω = 0, 1
{1}, if ω = 2.

For ω, v ∈ R, we get

Hb([O0] 1
2
, [O2] 1

2
) = Hb([O1] 1

2
, [O2] 1

2
) = Hb({0}, {1}) =

1
6

.

Taking F(ι) = ι + ln(ι), for ι > 0 and τ = 1
100 > 0. Then

2τ + F(sHb([O0] 1
2
, [O2] 1

2
)) =

1
50

+
1
4
+ ln(

3
2

.
1
6
) ≤ 1

2
+ ln(

1
2
) = F(db(0, 2))

also

2τ + F(sHb([O1] 1
2
, [O2] 1

2
)) =

1
50

+
1
4
+ ln(

3
2

.
1
6
) ≤ 1 + ln(1) = F(db(1, 2))

for all ω, v ∈ R. Therefore, all conditions of Corollary 3 hold and there exists a point 0 ∈ R such
that 0 ∈ [O0] 1

2
is an α-fuzzy fixed point of O.

Now we derive some multivalued mappings fixed point results from our main result.

Theorem 4. Let G1, G2 : R→ Pcb(R). If there exist F ∈ zs and τ > 0 such that

2τ + F(sHb(G1ω, G2v)) ≤ F(db(ω, v))

for all ω, v ∈ R with Hb(G1ω, G2v) > 0, then there exist ω∗ ∈ R such that ω∗ ∈ G1ω∗ ∩
G2ω∗.

Proof. Consider α : R → (0, 1] and O1,O2 : R → =(R) defined by

O1(ω)(ι) =

{
α(ω), if ι ∈ G1ω,

0, if ι 6∈ G1ω

and

O2(ω)(ι) =

{
α(ω), if ι ∈ G2ω,

0, if ι 6∈ G2ω.

Then



Mathematics 2021, 9, 277 9 of 14

[O1ω]α(ω) = {ι : O1(ω)(ι) ≥ α(ω)} = G1ω and [O2ω]α(ω) = {ι : O2(ω)(ι) ≥ α(ω)} = G2ω.

Thus by Theorem 2 there exist ω∗ ∈ R such that ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗) =

G1ω∗ ∩ G2ω∗.

The main result of Cosentino et al. [22] can be derived by taking a single multivalued
mapping in the above Corollary.

Corollary 4. [22] Let G : R→ Pcb(R). If there exist F ∈ zs and τ > 0 such that

2τ + F(sHb(Gω, Gv)) ≤ F(db(ω, v))

for all ω, v ∈ R with Hb(Gω, Gv) > 0, then there exist ω∗ ∈ R such that ω∗ ∈ Gω∗.

Remark 1. If we put s = 1 in the above result and consider G : R → R, then we get the main
result of Wardowski [7] .

Now we state some fuzzy fixed point results in the context of metric spaces.

Theorem 5. Let (R, d) be a complete metric space and let O1,O2 : R → =(R) and for each
ω, v ∈ R, there exist αO1(ω), αO2(v) ∈ (0, 1] such that [O1ω]αO1

(ω), [O2v]αO2
(v) ∈ Pcb(R).

Assume that there exist F ∈ z and τ > 0 such that

2τ + F(H([O1ω]αO1
(ω), [O2v]αO2

(v))) ≤ F(d(ω, v))

for all ω, v ∈ R with H([O1ω]αO1
(ω), [O2v]αO2

(v)) > 0. Then there exists ω∗ ∈ R such that

ω∗ ∈ [O1ω∗]αO1
(ω∗) ∩ [O2ω∗]αO2

(ω∗).

For the single fuzzy mapping, we have the following result.

Corollary 5. [7] Let (R, d) be a complete metric space and let O : R → =(R), and for each
ω, v ∈ R, there exist αO(ω), αO(v) ∈ (0, 1] such that [Oω]αO(ω), [Ov]αO(v) ∈ Pcb(R).
Assume that there exist F ∈ z and τ > 0 such that

2τ + F(H([Oω]αO(ω), [Ov]αO(v))) ≤ F(d(ω, v))

for all ω, v ∈ R with H([Oω]αO(ω), [Ov]αO(v)) > 0. Then there exists ω∗ ∈ R such that
ω∗ ∈ [Oω∗]αO(ω∗) ∩ [Oω∗]αO(ω∗).

4. Applications

Fuzzy differential equations and fuzzy integral equations play significant roles in
modeling dynamic systems in which uncertainties or vague notions of flourishing. These
notions have been set up in distinct theoretical directions, and many applications [26–30]
in practical problems have been investigated. Various frameworks for investigating fuzzy
differential equations have been presented. The primary and most attractive approach is
using the Hukuhara differntiability (H-differentiability) for fuzzy valued functions (see
[31,32]). Consequently, the theory of fuzzy integral equations was introduced by Kaleva
[33] and Seikkala [34]. In the study of existence and uniqueness conditions for solutions
of fuzzy differential equations and fuzzy integral equations, numerous researchers have
applied distinct fixed point results. Subrahmanyam et al. [35] established an existence
and uniqueness theorem for some Volterra integral equations regarding fuzzy set-valued
mappings by using the classical Banach’s fixed point theorem. Villamizar-Roa et al. [36]
studied the existence and uniqueness of solution of fuzzy initial value problem in the
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context of a generalized Hukuhara derivatives. For more details in this direction, we refer
the readers to [32,33,37].

We represent Kc(R) the set of all nonempty compact and convex subsets ofR. The Haus-
dorff metric H in Kc(R) is defined as follows:

H(A, B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖R, sup

b∈B
inf
a∈A
‖a− b‖R

}

where A, B ∈ Kc(R). Then (Kc(R), H) is a complete metric space (see [38]).

Definition 6. A function x : R→ [0, 1] is said to be a fuzzy number in R if it satisfies:
(i) x is normal, i.e, ∃ t0 ∈ R such that x(t0) = 1.
(ii) x is fuzzy convex; i.e, for 0 ≤ λ ≤ 1,

x(λt1 + (1− λ)t2) ≥ min{x(t1), x(t2)}

∀t1, t2 ∈ R.
(iii) x is upper semicontinuous.
(iv) [x]0 = cl{t ∈ R : x(t) > 0} is compact.

Consequently, the symbol E1 will be used to represent the collection of fuzzy number
in R satisfying the above properties.

For α ∈ (0, 1], [x]α = {t ∈ R : x(t) > α} =
[
xα

l , xα
r
]

represents α-cut of the fuzzy set
x. For x ∈ E1 one has that [x]α ∈ Kc(R) for every α ∈ [0, 1]. The supremum on E1 is
defined by

d∞(x1, x2) = sup
α∈[0,1]

max
{∣∣∣xα

1,l − xα
2,l

∣∣∣, ∣∣xα
1,r − xα

2,r
∣∣}

for every x1, x2 ∈ E1, where xα
r − xα

l = diam([x]) is said to be the diameter of [x]. We repre-
sent the set of all continuous fuzzy functions defined on [0, Λ], for Λ > 0 as C([0, Λ], E1).

From [39], it is well-known that C([0, Λ], E1) is a complete metric space with respect
to the metric

d(x1, x2) = sup
t∈[0,1]

d∞(x1(t), x2(t)), x1, x2 ∈ C([0, Λ], E1).

Lemma 2. ([33]) Let x1, x2 : [0, Λ]→ E1 and η ∈ R. Then
(i) t

0(x1 + x2)(t)dt =t
0 x1(t)dt +t

0 x2(t)dt;
(ii) t

0ηx1(t)dt = η1
0 x1(t)dt;

(iii) d∞(x1(t), x2(t)) is integrable;
(iv) d∞(t

0x1(t)dt,t0 x2(t)dt) ≤t
0 d∞(x1(t), x2(t))dt

for t ∈ [0, Λ].

Definition 7. ([36]) Let En denote the set of all fuzzy numbers in Rn and x, y, z ∈ En. A point z
is said to be the Hukuhara difference of x and y, if the equation x = y + z holds. If the Hukuhara
difference of x and y exists, then it is represented by x ΘH y (or x− y ). It is very simple to see that
x ΘH x = {0}, and if x ΘH y exists, it is unique.

Definition 8. ([36] ) Let f : (0, Λ) → En. The function f is said to be strongly generalized
differentiable (or GH-differentiable) at t0 ∈ (0, Λ), if there exists an element f /

G(t0) ∈ En such that
there exist the Hukuhara differences:

f (t0 + δ)ΘH f (t0), f (t0)ΘH f (t0 − δ)
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and

lim
δ→0+

f (t0 + δ)ΘH f (t0)

δ
= lim

δ→0+

f (t0)ΘH f (t0 − δ)

δ
= f /

G(t0).

Consider the following fuzzy initial value problem{
x/(t) = f (t, x(t)), t ∈ J = [0, Λ]

x(0) = x0,
(19)

where x/ is taken as GH-differentiable and the fuzzy function f : J× E1 → E1 is continuous.
The initial datum x0 is assumed in E1. We represent the set of all continuous fuzzy functions
f : J → E1 with continuous derivatives as C1(J, E1).

Lemma 3. A function x ∈ C1(J, E1) is a solution of the fuzzy initial value problem (19) if and
only if it satisfies the fuzzy Volterra integral equation:

x(t) = x0ΘH(−1)t
0 f (s, x(s))ds, t ∈ J = [0, Λ].

Theorem 6. Let f : J × E1 → E1 be continuous such that
(i) The function f is strictly increasing in the second variable; that is, if x < y,then f (t, x) <

f (t, y),
(ii) There exists τ ∈ [1,+∞) such that

‖ f (t, x(t))− f (t, y(t))‖ ≤ τe−2τ max
t∈J

{
d∞(x, y)e−τt}.

if x < y for each t ∈ J and x, y ∈ E1, where d∞(x, y) is the supremum on E1. Then the fuzzy
initial valued problem (19) has a fuzzy solution in C1(J, E1).

Proof. Let τ > 0. We consider the space C1(J, E1) endowed with the weighted metric

dτ(x, y) = sup
t∈J

{
d∞(x(t), y(t))e−τt},

x, y ∈ C1(J, E1). Let M, Q : X → (0, 1] be any two mappings. For x ∈ X, take

Lx(t) = x0ΘH(−1)t
0 f (s, x(s))ds.

Assume x < y. Then by hypothesis (i),

Lx(t) = x0ΘH(−1)t
0 f (s, x(s))ds

< x0ΘH(−1)t
0 f (s, y(s))ds

= Ry(t).

Hence Lx(t) 6= Ry(t). Consider two fuzzy mappings O1, O2 : X → EX defined by

µO1x(r) =
{

M(x), if r(t) = Lx(t)
0, otherwise.

µO2y(r) =
{

Q(y), if r(t) = Ry(t)
0, otherwise.

By taking αO1(x) = M(x) and αO2(y) = Q(y), we have

[O1x]αO1
(x) = {r ∈ X : (O1x)(t) ≥ M(x)}

= {Lx(t)}
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and similarly [O2y]αO1
(y) =

{
Ry(t)

}
. Therefore

H
(
[O1x]αO1

(x), [O2y]αO1
(y)

)
= max


supx∈[O1x]αO1

(x),y∈[O2y]αO1
(y)

inf‖x− y‖R,

supy∈[O2y]αO1
(y),x∈[O1x]αO1

(x)
inf‖x− y‖R


≤ max

{
sup
t∈J

∥∥Lx(t)− Ry(t)
∥∥
R

}
= sup

t∈J

∥∥Lx(t)− Ry(t)
∥∥
R

= sup
t∈J

∥∥t
0 f (s, x(s))ds−t

0 f (s, y(s))ds
∥∥
R

≤ sup
t∈J

{t
0‖ f (s, x(s))− f (s, y(s))‖ds

}
≤ sup

t∈J

{
t
0τe−2τ‖x(s)− y(s)‖e−τseτsds

}
= τe−2τ 1

τ
dτ(x, y)eτt.

This implies that

H
(
[O1x]αO1

(x), [O2y]αO1
(y)

)
e−τt ≤ e−2τdτ(x, y)

or equivalently
Hτ

(
[O1x]αO1

(x), [O2y]αO1
(y)

)
≤ e−2τdτ(x, y).

By passing to logarithms, we can write this as

ln
(

Hτ

(
[O1x]αO1

(x), [O2y]αO1
(y)

))
≤ ln

(
e−2τdτ(x, y)

)
and, after routine calculations, we get

2τ + ln
(

Hτ

(
[O1x]αO1

(x), [O2y]αO1
(y)

))
≤ ln(dτ(x, y)).

Now, we observe that the function F : R+ → R defined by F(t) = ln t, for each
t ∈ C1(J, E1) is in zs. Thus

2τ + F
(

Hτ

(
[O1x]αO1

(x), [O2y]αO1
(y)

))
≤ F(dτ(x, y)).

It follows that there exists x∗ ∈ C1(J, E1) such that x∗ ∈ [O1x∗]αO1
(x∗) ∩ [O2x∗]αO1

(x∗).
Thus all the hypotheses of Theorem 5 are satisfied and consequently x∗ is a fuzzy solution
of the fuzzy initial valued problem (19).

5. Conclusions

In this paper, we have obtained some generalized common α-fuzzy fixed point results
for α-fuzzy mappings regarding F-contractions in the context of b-metric spaces. The re-
sults which we obtained improved and extended certain famous theorems in literature.
As applications, we investigated the solution for fuzzy initial value problems in the context
of a generalized Hukuhara derivative. Our results are up to date and contemporary con-
tributions to the existing literature in the theory of fixed points. Some related extensions
of these results for the L-fuzzy mappings O1,O2 : R → =L(R) would be a well defined
subject for future work. One can use our theorems in the solution of fractional differential
inclusions as a subsequent study.
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