
mathematics

Article

A Simple and Effective Approach for Tackling the Permutation
Flow Shop Scheduling Problem

Mohamed Abdel-Basset 1, Reda Mohamed 1, Mohamed Abouhawwash 2,3,* , Ripon K. Chakrabortty 4 and
Michael J. Ryan 4

����������
�������

Citation: Abdel-Basset, M.;

Mohamed, R.; Abouhawwash, M.;

Chakrabortty, R.K.; Ryan, M.J. A

Simple and Effective Approach for

Tackling the Permutation Flow Shop

Scheduling Problem. Mathematics

2021, 9, 270. https://doi.org/

10.3390/math9030270

Received: 4 January 2021

Accepted: 25 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Faculty of Computers and Informatics, Zagazig University,
Zagazig 44519, Egypt; mohamedbasset@zu.edu.eg (M.A.-B.); redamoh@zu.edu.eg (R.M.)

2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Computational Mathematics, Science, and Engineering (CMSE), College of Engineering,

Michigan State University, East Lansing, MI 48824, USA
4 Capability Systems Centre, School of Engineering and IT, UNSW Canberra, Campbell, ACT 2612, Australia;

r.chakrabortty@adfa.edu.au (R.K.C.); m.ryan@adfa.edu.au (M.J.R.)
* Correspondence: abouhaww@msu.edu

Abstract: In this research, a new approach for tackling the permutation flow shop scheduling
problem (PFSSP) is proposed. This algorithm is based on the steps of the elitism continuous genetic
algorithm improved by two strategies and used the largest rank value (LRV) rule to transform
the continuous values into discrete ones for enabling of solving the combinatorial PFSSP. The first
strategy is combining the arithmetic crossover with the uniform crossover to give the algorithm a
high capability on exploitation in addition to reducing stuck into local minima. The second one is
re-initializing an individual selected randomly from the population to increase the exploration for
avoiding stuck into local minima. Afterward, those two strategies are combined with the proposed
algorithm to produce an improved one known as the improved efficient genetic algorithm (IEGA).
To increase the exploitation capability of the IEGA, it is hybridized a local search strategy in a version
abbreviated as HIEGA. HIEGA and IEGA are validated on three common benchmarks and compared
with a number of well-known robust evolutionary and meta-heuristic algorithms to check their
efficacy. The experimental results show that HIEGA and IEGA are competitive with others for the
datasets incorporated in the comparison, such as Carlier, Reeves, and Heller.

Keywords: combinatorial PFSSP; flow shop scheduling; largest rank value; makespan; meta-heuristic
algorithms

1. Introduction

Recently, the flow shop scheduling problem (FSSP) has attracted the attention of the
researchers for overcoming it due to its importance in industries, such as transportation, pro-
curement, computing designs, information processing, and communication. Because this
problem is NP-hard, which finding a solution in polynomial time is to hard, many algo-
rithms in the literature were proposed to overcome this problem. Some of which will be
reviewed within the next subsections. Johnson [1] in 1954 introduced and formulated FSSP
for the first time. Using a limited range up to a 3-machine problem, Johnson was able
to overcome this problem for a restricted case. Afterward, Nawaz et al. [2] proposed a
meta-heuristic approach known as Nawaz-Enscore-Ham (NEH) algorithm for tacking this
problem with m-machine and n-job.

Due to succeeding achieved by the NEH algorithm, the researchers have been work
on improving its performance or integrating it with other optimization algorithms for
overcoming this problem [3,4]. Before speaking of the optimization algorithms, we start
reviewing the literature which is devoted to the improvement of the standard NEH-
heuristic method. Kalczynski [5] improved the performance of the NEH algorithm by

Mathematics 2021, 9, 270. https://doi.org/10.3390/math9030270 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2846-4707
https://orcid.org/0000-0002-7373-0149
https://doi.org/10.3390/math9030270
https://doi.org/10.3390/math9030270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9030270
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/3/270?type=check_update&version=2


Mathematics 2021, 9, 270 2 of 23

using a new priority order integrated with a simple tie-breaking method that proved its
superiority over all the problem sizes. Additionally, Dong [6] proposed an improvement on
the standard NEH heuristic to minimize the makespan. This improvement is summarized
as follows: (1) using the priority rule, which integrates the average processing time of
jobs and their standard deviations to replace the one in the standard NEH, and (2) using
the new tie-breaking strategy to significantly improve the performance of the standard
one. Furthermore, Sauvey, and Sauer [3] proposed an improvement on the standard NEH
algorithm using two strategies: (1) the first one used the factorial basis decomposition
method to ensure testing all the possible orders for the small-scale instances, and allow to
randomly choose a particular order of all the possible orders, and (2) the second strategy
was based on keeping a list of the best partial sequences, rather than just one.

The evolutionary and meta-heuristic algorithms play a crucial role in solving several
problems. According to the significant success achieved by those algorithms, they are
extensively used in tackling the FSSP. Zhang et al. [7], presented an improved discrete
migrating birds optimization for overcoming the no-wait FSSP (NWFSSP) using the make-
span criterion. A decision tree in Govindan et al. [8] is further combined with scatter search
(SS) algorithms for solving the permutation FSSP (PFSSP) by reducing the make-span.
Furthermore, Liu [9] proposed an efficient hybrid differential evolution with Greedy-based
local search and the individual improved scheme for overcoming the permutation PFSSP.
In Ding et al. [10], the simulated annealing algorithm was embedded with a block-shifting
operation for overcoming NWFSP to reduce the makespan. Sanjeev Kumar [11] proposed
an algorithm for overcoming the permutation FSSP based on minimizing the makespan
and total flowtime using the modified gravitational emulation local search algorithm.
Finally, Reeves [12], proposed a genetic algorithm (GA) for overcoming the FSSP.

Moreover, in Liu et al. [13] the particle swarm optimization (PSO) which rely on the
memetic algorithm was suggested for tackling the PFSSP for minimizing the makespan.
In [14], the teaching-learning based optimization algorithm integrated with a variable
neighborhood search (VNS) for fast solution improvement was suggested for tackling
the PFSSP. Zhao et al. [15] developed the discrete water wave optimization algorithm for
tackling the NWFSP with respect to maximizing the makespan. A new cuckoo search
(CS) [4] combined with the NEH and the smallest position rule(SPR) was proposed for
overcoming FSSP. For the open shop scheduling problem, a bat algorithm (BA) [16] im-
proved using ColReuse, and substitution meta-heuristic functions have been proposed.
Li [17] proposed a hybrid approach based on PSO for tackling the multi-objective PFSSP.
It uses several local search methods to improve the exploitation capability of the algorithm
for reaching better outcomes. In [18], a multi-objective approach based on the genetic algo-
rithm and Pareto optimality has been proposed for overcoming the PFSSP. Additionally,
Pang et al. [19] solved the PFSSP and the hybrid FSSP using the fireworks algorithm em-
ploying three strategies: (1) using a nonlinear radius, in addition to checking the minimum
explosion amplitude to avoid the waste of the optimal fireworks, (2) integrating the Cauchy
distribution and the Gaussian distribution to replace the original Gaussian distribution for
improving the search process, and (3) using the elite group selection strategy to decrease
the computing costs. The improved fireworks algorithm (IFWA) was compared with the
standard fireworks algorithm and validated on two instances from the PFSSP and the
hybrid FSSP. Mishra [20] proposed a discrete version of the Jaya algorithm for tackling the
PFSSP with the objective of optimizing the makespan based on two strategies: (1) allocating
a random priority to each job in a permutation sequence, and (2) the random priority vector
was mapped to job permutation vector using the largest order value (LOV).

In the last few years, quite strong techniques for PFSSP have been proposed, but
those techniques still suffer from numerous problems: local minima as a result of lack
the solutions diversity, and convergence speed toward the near-optimal solution in less
number of function evaluations. Those drawbacks motivate us to propose this work.

The evolutionary algorithms are considered one of the best choice for tackling a
combinatorial problem due to its ability on checking several permutations that may con-



Mathematics 2021, 9, 270 3 of 23

tain the best permutation for this combinatorial problem. Although of the high ability
of the evolutionary algorithm for solving this type of problems, the need for operators
in genetic algorithms to help in improving their performance is still open even today.
Therefore, within our research, we study the performance of the elitism based-GA (EGA)
when integrating the Arithmetic crossover with the uniform crossover for tackling the
PFSSP. Since the arithmetic crossover operator generates continuous values and PFSSP
is discrete in nature, the LRV rule will be applied to transform those continuous values
into discrete ones. In addition, to increase the exploration rate of EGA and an individ-
ual selected randomly form, the population will be re-initialized randomly within the
search space of the problem. The incorporation between the uniform crossover and Arith-
metic crossover in addition to the re-initialization process is integrated with the EGA
to improve its performance when tackling the PFSSP in a version abbreviated as IEGA.
Additionally, to improve dramatically the performance of IEGA when tackling PFSSP,
it was hybridized with a local search strategy (LSS). In our work, we used a number of
well-established optimization algorithms such as slap swarm algorithm (SSA) [21], whale
optimization algorithm (WOA) [22], and sine cosine algorithm (SCA) [23] due to their
significant success for solving several optimization problems [23–29]. Additionally, the
hybrid whale algorithm (HWA) [30] as the most competitive algorithm for solving the
permutation flow shop scheduling are used in our comparison with the proposed to see its
strength to tackle this problem as an alternative to the strong existing algorithm. Further-
more, a genetic algorithm based on the uniform crossover (GA), elitism genetic algorithm
based on the uniform crossover (EGA), and genetic algorithm based on the order-based
crossover (OEGA) are additionally used to see the efficacy of the proposed over some the
evolutionary algorithms.

Generally, our contributions within this paper are summarized in the following points:

• Using the continuous values in the approach instead of discrete values, by employing
LRV to convert those continuous values into discrete, for tackling PFSSP.

• Combining the uniform crossover and the arithmetic crossover (UAC) to help in
increasing the exploitation capability in addition to reducing stuck into local minima.

• Proposing a version of the efficient GA, abbreviated as IEGA, improved by dynamic
mutation and crossover probability (DMCP) and UAC for tacking the PFSSP.

• Additionally, IEGA is enhanced by integrating with a LSS and insert-reversed block
(IRB) operator for tackling the PFSSP, in a version abbreviated as HIEGA.

• IEGA and HIEGA were tested on the benchmarks Reeves, Carlier, and Heller to check
their performance.

The remainder of this paper is structured as: Section 2 illustrates the permutation
flow shop scheduling problem; Section 3, introduces the proposed algorithms (IEGA, and
HIEGA) and, in particular, Section 3.7 exposes the experiments outcomes, discussion, and
comparison between results. Finally, Section 4 shows the conclusions about our proposed
work in addition to our future work.

2. The Permutation Flow Shop Scheduling Problem

The permutation FSSP indicates employment n jobs over m machines consecutively
and on the same permutation under the criterion of decreasing the make-span.
Generally, this problem could be summarized in the following points:

• Each job jb could be run only one time on each machine. b = 1, 2, 3, . . . , n
• Each machine iz could address only a job at a time, z = 1, 2, 3, . . . , m
• Each machine will address a job in a time known as the processing time and abbrevi-

ated as PT.
• A completion time c is a time needed by each job jb on a machine iz and symbolized

as c(jb, iz).
• The processing time of each job is a phrase about the running time added with the

set-up time of the machine.
• At the start, each job takes time of 0.



Mathematics 2021, 9, 270 4 of 23

• PFSSP is solved with the objective of finding the best permutation that will minimize
the makespan c∗ that is known as the maximum completion time or until the last job
on the final machine was completed.

Mathematically, PFSSP could be modeled as follows:

c(j1, i1) = PT(j1,i1), b = 1, z = 1, (1)

c(jb, i1) = c(jb−1, i1) + PT(jb ,i1), b = 2, 3, . . . , n. (2)

c(jb, iz) = c(j1, iz−1) + PT(j1,iz), z = 2, 3, . . . , m. (3)

c(jb, iz) = max(c(jb−1, iz), c(jb, iz−1)) + PT(jb ,iz), (4)

b = 2, 3, . . . , n, z = 2, 3, . . . , m.

The permutation refers to the different sequences of the jobs on the machine. The ob-
jective of FSSP is finding the best permutation that will minimize the maximum completion
time (makespan) and defined as follows:

c∗ = c(jb, iz) (5)

Equation (5) is considered the objective function that will be used to be minimized by
our proposed algorithm until the best job permutation is found.

3. The Proposed Algorithm

In this section, the main steps of the proposed algorithm will be discussed in detail.
GA is an approach inspired by the Darwinian theory of natural evolutionary [31–33].
In GA, a set consisting of N solutions, each one known as individual, will be initialized
within the search space of the problem. After distribution, the fitness value for each
individual will be calculated and a number of the best individuals will be selected to
generate better individuals within the next generation. Specifically, the genetic algorithm
depends on three basic operators: selection, crossover, and mutation operators.

3.1. Initialization

At the start, a population consisting of N individuals is generated with n dimension
for each job and initialized with distinct random numbers to generate a permutation of
the job sequence. After generating the random numbers within each individual, those
numbers must be checked to prevent duplication of any number within the same individual.
Since the random number generated within the individual is continuous, the need for a
method to convert them into a job sequence permutation is necessary. According to the
study performed by Li and Yin [34], LRV could effectively map the continuous values into
job permutation. In LRV, the continuous value is ranked in decreasing order. Until LRV
could generate the job permutation without any mistake, duplication of any value within
each individual must be removed. For instance, Figure 1a present a solution with duplicated
values, hence, this duplication need to be removed until the LRV could be used to estimate
the job permutation. Therefore, this duplication is removed by inserting other values not
found in this solution. Finally, this solution is mapped into job permutation by sorting
in descending order as shown in Figure 1c; the index of the largest value in the unsorted
solution is selected in the first position of the mapped solution, the position of second largest
one is inserted into the second position of the mapped solution, and so on. After generating
and checking the duplication in each solution, the algorithm must be evaluated to extract
its makespan using Equation (5) to measure its quality in solving PFSSP in comparison
with the others.



Mathematics 2021, 9, 270 5 of 23

(a) a real-value solution with duplication

(b) a real-value solution without duplication

(c) a job sequence permutation extracted based on solution in Figure 1b

Figure 1. Illustration for a real-value solution.

3.2. Selection Operator

The selection operator specifies the way of selecting the parents that will be used to
generate the offspring in the next generation. Recently, many selection operators have been
proposed, but within our research, we will use a selection operator known as tournament
selection mechanism [35]. In this mechanism, a number K, known as tournament size,
will be chosen and the solution with the best fitness will be taken as a parent for the next
generation. After selecting the parents using the tournament section operator, the second
operator known as the crossover operator will be used to generate the offspring within the
next generation.

3.3. Crossover Operator

This operator works on generating the individuals within the next generation un-
der the supervision of the best individual, selected according to the selection operator.
Among all the available crossover operators, within our experiment, we selected Uniform
crossover [36] and the arithmetic crossover. In the uniform crossover, a binary vector with
a length equal to the size of the individuals will be created and initialized by generating a
random number within the range 0 and 1 and if this number is smaller than the crossover
rate (CR), the current position in this vector is assigned a value of 1. Otherwise, it will take
a value of 0. Note that, 0 indicates that the current position of the offspring will be taken
from the first parent, while 1 indicates the second individual, and this binary vector, called
mask, will be used to generate the first individual. For the second individual, the values
within this mask will be flipped to convert 0 into 1 and 1 into 0. Then the second one will
be generated. Figure 2a illustrates two offspring, O1 and O2, using two parents, P1 and P2,
using uniform crossover. In this figure, at the start, the mask M1 will be initialized with 0
and 1 and its flipping is shown in M2. After that, O1 will be generated according to M1,
and M2 will be used to generate O2.



Mathematics 2021, 9, 270 6 of 23

(a) Uniform crossover (b) Whole Arithmetic crossover

(c) Mutation operator

Figure 2. Different genetic operators.

Regarding the Arithmetic crossover, in this operator, the two parents are used to
generate two offspring under the following formula:

O1 = σ ∗ P1 + (1 − σ) ∗ P2. (6)

O2 = σ ∗ P2 + (1 − σ) ∗ P1. (7)

For example, Figure 2b shows the outcomes of the generated two offspring, O1, and
O2, using two parents, P1 and P2, under this crossover operator, assuming σ = 0.2.

3.4. Mutation Operator

In the end, the mutation operator based on a certain probability, known as mutation
probability (MR), will be applied to each offspring as an attempt to generate a better
solution and preventing stuck into local minima problems. MR is used until the GA is not
converted into a primitive random search. Figure 2c shows the influence before using the
mutation and after applying mutation.

3.5. Combination of Uniform Crossover and Arithmetic Crossover (UAC)

In this part, we will combine both uniform crossover and the Arithmetic crossover with
each other according to the CRU, to recombine the two individuals together. The formula
of this combination is as follows:

O = ν ∗ P + r ∗ M, (8)

where O is the generated offspring, P is the first parent selected using tournament selection,
M is the second selected parent, r is a random number created to determine the weight of
the second in relative to the generated offspring, and ν is used to determine the weight of
P, we recommend 0.8 as discussed later. In the end, Algorithm 1 shows the steps of the
combination of uniform crossover and the arithmetic crossover.



Mathematics 2021, 9, 270 7 of 23

Algorithm 1 Uniform Arithmetic crossover (UAC)

1: P // is the first parent selected using tournament selection.
2:
3: M // is the second parent selected using tournament selection.
4:
5: O ; // indicates the offspring.
6:
7: i=0;
8:
9: while i < n do

10:
11: r1 : isanumberassignedrandomlybetween0and1
12:
13: if r1 ≤ CRU then
14:
15: Oi = ν ∗ Pi + r ∗ Mi;//(Equation (8))
16:
17: else
18:
19: Oi = Mi
20:
21: end if
22:
23: i ++
24:
25: end while
26:
27: Return O
28:

3.6. Local Search Strategy (LSS)

LSS works on exploring the solutions around the best-so-far solution to find a better
one. Each job in the best-so-far individual will be tried in all the positions within this best
based on a certain a probability known as LSP (LSP = 0.01 as recommended in [30]) and
the permutation that will reduce the makespan in comparison to the original will be taken
as the best-so-far one as illustrated in Algorithm 2.

Finally, the UAC with re-initializing selected an individual randomly from the pop-
ulation. This selection promotes the exploration capability for avoiding stuck into local
minima, which improves the performance of the EGA to produce a version abbreviated
as IEGA. After that, IEGA is integrated with LSS as shown in Algorithm 3 to increase the
exploitation capability of the algorithm.

Algorithm 2 LSS

1: X∗: The best so-far solution
2:
3: for i = 1 to n do
4:
5: X = X∗

6:
7: for j = 1 to n do
8:
9: r: random number between 0 and 1

10:



Mathematics 2021, 9, 270 8 of 23

Algorithm 2 Cont.

11: if r < LSP then
12:
13: Xj = X∗

i
14:
15: Applying LRV on X
16:
17: Calculate the fitness of X.
18:
19: Update X∗ if X is better.
20:
21: end if
22:
23: end for
24:
25: end for
26:
27: Return X∗

28:

Algorithm 3 HIEGA

1: [Initialization] create a population xi of N individuals, i = 1, 2, 3, . . . , N.
2:
3: [Fitness] evaluate each xi .
4:
5: t = 0// current iteration.
6:
7: tmax//the maximum iteration.
8:
9: MR// mutation rate

10:
11: CR// crossover rate.
12:
13: X∗: The best-so-far solution.
14:
15: nxi is a new population.
16:
17: while (t < tmax) do
18:
19: Re-initialize an individual selected randomly from the population.
20:
21: //Elitism operation
22:
23: if elitism then
24:
25: nx0: the best-so-far solution, X∗
26:
27: end if
28:
29: ///crossover operation
30:
31: for eachi ≥ 1inxi do
32:
33: nxi= generate a new individual using Algorithm 2
34:
35: end for
36:
37: ///mutation operation.
38:
39: for eachi ≥ 1toN do
40:
41: for j = 1 to n do
42:
43: r2: Create a random number between 0 and 1.
44:



Mathematics 2021, 9, 270 9 of 23

Algorithm 3 Cont.

45: if r2 ≤ MRU then
46:
47: r3: Create a random number between 0 and 1.
48:
49: nxi,j+ = r3
50:
51: end if
52:
53: end for
54:
55: end for
56:
57: for eachi ≥ 1toN do
58:
59: xi = nxi
60:
61: Applying LRV on each individual, xi
62:
63: Calculate the fitness of each individual xi.
64:
65: Update X∗ if there is better.
66:
67: Applying Algorithm 2 on xi if it was better than X∗.
68:
69: end for
70:
71: t ++
72:
73: end while
74:
75: Return: X∗

76:

3.7. Time Complexity

In this subsection, the time complexity of the HIEGA as the proposed algorithm in
big-O will be computed to find its speedup for solving the PFSSP. First, lets show the
components that will affect the speedup of the algorithm for one generation:

• The first one is the generating process of offspring that need time complexity of
O(nN).

• The second one is LRV which will need time complexity of O(n log n) [37] for the
Quicksort algorithm. And totally for all population, the time complexity with LRV
will be O(Nn log n).

• The last one is the LSS that need O(n2) for single individual. For all individual, the
time complexity is as O(Nn2).

Finally, after summing the time complexity of the previous three components as
shown in Equation (9), it is concluded that the time complexity of the proposed algorithm
is O(Nn2)

T(HIEGA) = O(nN) + O(Nn log n) + O(Nn2) (9)

In this section, three different widely-used well-known datasets will be tested to justify
the effectiveness of our proposed approach. Those datasets are: (1) the Carlier dataset [38]
with eight instances, (2) the second one was introduced by Reeves [12] and contains 21
instances, only 14 instances of this datasets will be used within our experiments, and (3)
the last one is created by Heller [39] and consist of two instances. The data sets used, can



Mathematics 2021, 9, 270 10 of 23

be found in http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt, and their
descriptions are shown in Table 1 that shows the optimal known makespan symbolized
as Z∗. According to researches in the literature [30,34,40], the best-known value for each
instance is used in our work to be compared with the proposed algorithm outcomes to see
its efficacy. Also, in [30,40], the authors could reach less value than the best-known value
for Hel1 as mentioned in [34]. Therefore, in our proposed work, we set the value of Hel1 as
mentioned in most literature and show to the readers that the proposed could reach less
value than the best-known ones.

The algorithms used in our experiments within this section are coded using java
programming language on a device with 32GB of RAM, and Intel(R) Core(TM) i7-4700MQ
CPU @2.40 GHz. Our proposed approach is experimentally compared with a number of
the meta-heuristic and evolutionary algorithms, such as slap swarm algorithm (SSA) [21],
whale optimization algorithm (WOA) [22], sine cosine algorithm (SCA) [23], hybrid whale
algorithm (HWA) [30], a genetic algorithm dependent on the uniform crossover (GA),
elitism GA based on the uniform crossover (EGA), and genetic algorithm based on the order-
based crossover (OEGA). The genetic algorithms (GA) have two important parameters:
CR and MR that significantly affect their performance. For getting the optimal values
for those two parameters, Figure 3b,c are introduced to tell that the best values for them
are 0.8 and 0.02, respectively. Regarding IEGA, there is another parameter: P that must
be accurately picked until getting to the optimality in its performance. After conducting
several experiments with different values for P that are shown in Figure 3a, we found that
the best value was 0.8. Regarding the parameters of SCA, SSA, and WOA, they are equal to
the ones used in the cited papers. Table 2 introduces the parameters of the other compared
algorithms. The maximum iteration and N are set to 100 and 20, respectively, to ensure a
fair comparison with the other algorithms. The block size (BS) of the insert-reversed block
operation is assigned to 5 as recommended in [30]. All the algorithms were running 30
independent times.

(a) Tuning of P parameter. (b) Tuning of MR parameter.

(c) Tuning of CR parameter.

Figure 3. The sensitivity analysis for the genetic parameters introduced.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt


Mathematics 2021, 9, 270 11 of 23

Table 1. The dataset descriptions.

Carlier, Heller, Reeves Benchmarks

Name n m Z∗ Name n m Z∗

Car01 11 5 7038 Rec05 20 5 1242

Car02 13 4 7166 Rec07 20 10 1566

Car03 12 5 7312 Rec09 20 10 1537

Car04 14 4 8003 Rec11 20 10 1431

Car05 10 6 7720 Rec13 20 15 1930

Car06 8 9 8505 Rec15 20 15 1950

Car07 7 7 6590 Rec17 20 15 1902

Car08 8 8 8366 Rec19 30 10 2017

Hel1 20 10 516 Rec21 30 10 2011

Hel2 100 10 136 Rec37 75 20 4951

Rec01 20 5 1247 Rec39 75 20 5087

Rec03 20 5 1109 Rec41 75 20 4960

Table 2. The parameters of the algorithms.

GA, EGA, IEGA,OEGA and IEGA HWA, HIEGA

CR 0.8 LSP 0.01

MR 0.02 BS
P

5
0.8

3.8. Performance Metric

In our experiments, three performance metrics are used to observe the performance
of the compared algorithms: Worst Relative Error (WRE), Average Relative Error (ARE),
and Best Relative Error (BRE). Each one of which could be mathematically formulated
as follows:

WRE =
Z∗ − Zw

Z∗ (10)

ARE =
Z∗ − ZAvg

Z∗ (11)

BRE =
Z∗ − ZB

Z∗ (12)

Z∗ indicates the best-known result, Zw is the worst value obtained within the inde-
pendent runs, ZAvg is the average of the values obtained within 30 independent runs, and
ZB is the best value obtained within the independent runs.

3.9. Comparison under Carlier

In this experiment, our proposed algorithm is compared with eight algorithms on
benchmark Car to check its superiority. In the following figures, 0 values mean that the
algorithms could come true to the optimal value. Figure 4a is introduced to sum the
average of BRE obtained by each algorithm on each instance within 30 independent runs
with each other to see the best one that could come true to the lowest BRE value. This figure
shows that HIEGA and HWA could outperform all the other and come true values of 0 for
BRE as the lowest possible value which algorithm could reach. For the average of ARE on
all the Car instances, Figure 4b is introduced to show that our proposed algorithm could



Mathematics 2021, 9, 270 12 of 23

outperform all the other algorithm with a value of 0.001 and come in the first rank, and
IEGA comes as the third-best one after HIEGA with a value of 0.012, while HWA occupies
the second rank with a value of 0.002 and SCA come in the last rank with a value of 0.091.
Concerning the mean of WRE on all the Car instances, Figure 4c is introduced to expose
the superiority of IEGA with a value of 0.01 on the others with the exception of HWA that
could get to the same value.

(a) Comparison under the average of BRE on all the
Car instances.

(b) Comparison under the average of ARE on all the
Car instances.

(c) Comparison under the average of WRE on all the Car
instances.

Figure 4. Comparison among algorithms on the car instances.

Furthermore, Tables 3 and 4 show the BRE, ARE, WRE, ZAvg, and standard devi-
ation (SD) obtained by each algorithm on each Car instance. According to these tables,
HIEGA could outperform the others for Car03, Car05, Car06, and Car07 instances in terms
of the ARE, WRE, ZAvg, and SD, while was competitive with the others for the rest of
the instances.

Table 3. Outcomes of different performance metrics on the Car instances (Car01–Car06).

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0 0 7038 0
IEGA 0 0 0 7038 0
HWA 0 0 0 7038 0
SCA 0 0.171213 0.088562 7661.3 305.406849
SSA 0 0.122336 0.064303 7490.566667 226.370593
GA 0 0 0 7038 0
EGA 0 0.002699 0.000090 7038.633333 3.410604
OEGA 0 0 0 7038 0

Car01

WOA

7038

0 0.042484 0.004244 7067.866667 66.693195



Mathematics 2021, 9, 270 13 of 23

Table 3. Cont.

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0 0 7166 0
IEGA 0 0.029305 0.018504 7298.6 94.769756
HWA 0 0 0 7166 0
SCA 0.084706 0.171365 0.130398 8100.433333 158.832130
SSA 0.056377 0.143734 0.099660 7880.166667 139.553116
GA 0.007257 0.055679 0.031352 7390.666667 62.308016
EGA 0 0.094334 0.037957 7438 118.735279
OEGA 0 0.059029 0.033078 7403.033333 94.837223

Car02

WOA

7166

0 0.063634 0.037687 7436.066667 119.013146

HIEGA 0 0.011898 0.003597 7338.3 28.709058
IEGA 0.007385 0.049644 0.027922 7516.166667 85.491942
HWA 0 0.011898 0.006524 7359.7 34.085334
SCA 0.056483 0.184628 0.127010 8240.7 268.999771
SSA 0.035968 0.111324 0.076067 7868.2 170.196044
GA 0.011898 0.054431 0.028679 7521.7 87.041044
EGA 0.011898 0.044037 0.026044 7502.433333 72.344861
OEGA 0.006018 0.054431 0.032891 7552.5 65.858308

Car03

WOA

7312

0.011898 0.056483 0.035161 7569.1 73.710402

HIEGA 0 0 0 8003 0
IEGA 0 0.011746 0.001141 8012.133333 22.399008
HWA 0 0 0 8003 0
SCA 0.052480 0.148819 0.091095 8732.033333 218.220146
SSA 0.018618 0.134699 0.070865 8570.133333 200.441468
GA 0 0.025366 0.004823 8041.6 56.202372
EGA 0 0.016244 0.006702 8056.633333 58.819772
OEGA 0 0.028239 0.012475 8102.833333 67.356803

Car04

WOA

8003

0.000625 0.052480 0.015965 8130.766667 77.604847

HIEGA 0 0.013083 0.002988 7743.066667 33.402528
IEGA 0 0.034845 0.010734 7802.866667 49.143147
HWA 0 0.013083 0.003105 7743.966667 31.594813
SCA 0.038472 0.118005 0.078001 8322.166667 164.803536
SSA 0.002332 0.118912 0.024188 7906.733333 207.587079
GA 0 0.019819 0.010289 7799.433333 40.596948
EGA 0.003886 0.017358 0.010406 7800.333333 29.777322
OEGA 0 0.013989 0.006503 7770.2 29.221453

Car05

WOA

7720

0.001554 0.018782 0.010622 7802 43.109937

HIEGA 0 0.007643 0.002802 8528.833333 31.3231366
IEGA 0 0.061023 0.021105 8684.5 147.216337
HWA 0 0.007643 0.003821 8537.5 32.5
SCA 0.054321 0.144386 0.088309 9256.066667 184.081311
SSA 0.007643 0.123691 0.044158 8880.566667 251.156483
GA 0 0.058554 0.016477 8645.133333 127.213923
EGA 0 0.051382 0.019075 8667.233333 131.723115
OEGA 0 0.041152 0.016899 8648.733333 105.884507

Car06

WOA

8505

0 0.029277 0.011515 8602.933333 96.881004
Bold values indicate the best outcomes.



Mathematics 2021, 9, 270 14 of 23

Table 4. Outcomes of different performance metrics on the Car instances (Car07–Car08).

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0.008043 0 6591.766667 0

IEGA 0 0.008043 0.001877 6602.366667 22.416487

HWA 0 0.008043 0.001340 6598.833333 19.751934

SCA 0.014416 0.130197 0.071259 7059.6 195.841024

SSA 0 0.145827 0.035225 6822.133333 230.693842

GA 0 0.025797 0.002155 6604.2 36.750873

EGA 0 0.025797 0.002403 6605.833333 37.018989

Car07

OEGA 0 0.008346 0.002155 6604.2 23.550513

WOA

6590

0 0.008346 0.001897 6602.5 22.662377

HIEGA 0 0.008346 0.001897 6602.5 22.662377

IEGA 0 0 0 8366 0

HWA 0 0.035620 0.008179 8434.433333 64.081554

SCA 0 0 0 8366 0

SSA 0.010877 0.093593 0.059527 8864 169.176239

GA 0.005139 0.071002 0.025922 8582.866667 127.503656

EGA 0 0.031198 0.011017 8458.166667 65.852909

OEGA 0 0.030002 0.010774 8456.133333 53.485658

Car08

WOA

8366

0 0.012789 0.005610 8412.933333 35.052278

Bold values indicate the best outcomes.

3.10. Comparison of Reeves

After proving the superiority of HIEGA and IEGA on the other genetic algorithms
under the benchmark car in the previous experiment, through this part, they will be
compared with the other entire algorithm on the benchmark Reeve to observe its superiority.
To measure the performance of the algorithms, each algorithm is executed 30 independent
runs on each Reeve instance, and then the different performance metrics: BRE, WRE, ARE,
ZAvg, and SD though those runs are introduced in Tables 5–8 for all Reeves instances.
For both ARE and ZAvg, HIEGA could outperform the others in 16 out of 21, while equal
with HWA in another and loser in others. Likewise, for WRE, the proposed could be
superior to the others for 11 instances and equal in three others, unfortunately could
not outperform the HWA for 7 others. For BRE, HIEGA could come true the best for 10
instances, and equal with the HWA for 7 instances.

Table 5. Outcomes of different performance metrics on the Reeve instances (Rec01–Rec11).

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0.019246 0.002834 1250.533333 4.828618

IEGA 0.052125 0.106656 0.070783 1335.266667 14.534862

HWA 0.001604 0.051323 0.006977 1255.7 14.744829

SCA 0.109864 0.198075 0.157017 1442.8 20.972045

SSA 0.086608 0.178027 0.137423 1418.366667 25.921013

GA 0.063352 0.100241 0.082625 1350.033333 13.816616

EGA 0.063352 0.109864 0.082304 1349.633333 13.352861

OEGA 0.058541 0.103448 0.081476 1348.6 15.098786

Rec01

WOA

1247

0.074579 0.120289 0.092515 1362.366667 14.155054



Mathematics 2021, 9, 270 15 of 23

Table 5. Cont.

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0.021641 0.002164 1111.4 4.644710

IEGA 0.007214 0.061317 0.040517 1153.933333 13.921047

HWA 0 0.021641 0.002946 1112.266667 6.065934

SCA 0.102795 0.210099 0.152901 1278.566667 32.871146

SSA 0.078449 0.167719 0.119748 1241.8 31.186963

GA 0.030658 0.067629 0.052329 1167.033333 11.223438

EGA 0.029757 0.089269 0.056748 1171.933333 14.449759

OEGA 0.032462 0.069432 0.052059 1166.733333 9.688252

Rec03

WOA

1109

0.038774 0.099189 0.073129 1190.1 14.839924

HIEGA 0.002416 0.018519 0.006871 1250.533333 5.481687

IEGA 0.012077 0.056361 0.034568 1284.933333 11.744313

HWA 0.002416 0.011272 0.004938 1248.133333 4.177187

SCA 0.042673 0.153784 0.115996 1386.066667 26.293134

SSA 0.045894 0.134461 0.097236 1362.766667 26.297888

GA 0.024959 0.060387 0.043156 1295.6 9.704295

EGA 0.017713 0.070048 0.043774 1296.366667 14.969933

OEGA 0.026570 0.058776 0.042002 1294.166667 9.757333

Rec05

WOA

1242

0.029791 0.060387 0.048282 1301.966667 9.809802

HIEGA 0 0.011494 0.007663 1578 8.485281

IEGA 0.035759 0.087484 0.056939 1655.166667 20.448445

HWA 0 0.011494 0.007791 1578.2 8.268011

SCA 0.093231 0.188378 0.147829 1797.5 33.795217

SSA 0.082376 0.173052 0.120945 1755.4 39.244193

GA 0.042146 0.100894 0.069199 1674.366667 18.948146

EGA 0.045338 0.101533 0.073159 1680.566667 22.496938

OEGA 0.044699 0.084929 0.067497 1671.7 14.512409

Rec07

WOA

1566

0.051086 0.096424 0.077203 1686.9 15.712734

HIEGA 0 0.063761 0.014769 1559.7 21.506820

IEGA 0.051399 0.116461 0.089091 1673.933333 22.152401

HWA 0 0.042290 0.017393 1563.733333 16.958643

SCA 0.130124 0.202342 0.164867 1790.4 28.841637

SSA 0.068315 0.162004 0.118174 1718.633333 35.250989

GA 0.074171 0.117111 0.094860 1682.8 19.482299

EGA 0.062459 0.121015 0.097636 1687.066667 20.602481

OEGA 0.065712 0.113208 0.095316 1683.5 17.659275

Rec09

WOA

1537

0.060508 0.124268 0.099349 1689.7 22.564205

HIEGA 0 0.0433263 0.014256 1451.4 17.779388

IEGA 0.093640 0.141858 0.117027 1598.466667 18.990758

HWA 0 0.040531 0.017353 1455.833333 17.384060

SCA 0.149545 0.220824 0.194805 1709.766667 27.304069

SSA 0.095737 0.198462 0.156836 1655.433333 30.650376

GA 0.096436 0.145352 0.122362 1606.1 16.213882

EGA 0.082459 0.150943 0.123526 1607.766667 19.653130

OEGA 0.100628 0.139063 0.119613 1602.166667 14.973495

Rec11

WOA

1431

0.088050 0.136268 0.118518 1600.6 15.632444

Bold values indicate the best outcomes.



Mathematics 2021, 9, 270 16 of 23

Table 6. Outcomes of different performance metrics on the Reeve instances (Rec13–Rec25).

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0.038342 0.015664 1960.233333 15.683714
IEGA 0.046632 0.118134 0.076131 2076.933333 29.532957
HWA 0.002072 0.044559 0.019153 1966.966667 16.592133
SCA 0.122797 0.214507 0.164162 2246.833333 35.753865
SSA 0.109844 0.182383 0.135716 2191.933333 32.857199
GA 0.078238 0.121761 0.096269 2115.8 22.456476
EGA 0.069948 0.130569 0.094801 2112.966667 29.238654
OEGA 0.088082 0.119171 0.100690 2124.333333 17.376868

Rec13

WOA

1930

0.096373 0.127979 0.109706 2141.733333 14.042633
HIEGA 0.004615 0.098974 0.024290 1997.366667 35.095567
IEGA 0.047692 0.098974 0.068974 2084.5 19.416058
HWA 0.005128 0.042564 0.018461 1986 21.594752
SCA 0.090769 0.168205 0.141538 2226 34.466408
SSA 0.070256 0.131794 0.108085 2160.766667 30.206713
GA 0.063589 0.106666 0.084700 2115.166667 22.764128
EGA 0.061538 0.101025 0.083641 2113.1 18.758731
OEGA 0.06 0.097948 0.080700 2107.366667 19.027144

Rec15

WOA

1950

0.055384 0.092307 0.081982 2109.866667 14.548157
HIEGA 0.017350 0.082544 0.035173 1968.9 25.981211
IEGA 0.067297 0.114090 0.093305 2079.466667 24.349857
HWA 0 0.058359 0.027024 1953.4 20.878378
SCA 0.127760 0.206624 0.170347 2226 32.794308
SSA 0.107781 0.179285 0.135278 2159.3 32.444979
GA 0.074658 0.121976 0.106151 2103.9 20.932192
EGA 0.088853 0.137224 0.108307 2108 19.832633
OEGA 0.090431 0.128811 0.114335 2119.466667 16.995555

Rec17

WOA

1902

0.097791 0.136172 0.114879 2120.5 18.067927
HIEGA 0.044124 0.187902 0.058139 2134.266667 49.683621
IEGA 0.123946 0.163113 0.144752 2308.966667 21.393898
HWA 0.042141 0.069410 0.055197 2128.333333 11.950825
SCA 0.176995 0.258800 0.230325 2481.566667 36.693944
SSA 0.153197 0.238968 0.205982 2432.466667 35.916322
GA 0.143777 0.179970 0.163427 2346.633333 19.460187
EGA 0.136836 0.184928 0.163609 2347 21.776133
OEGA 0.143777 0.174020 0.160337 2340.4 18.045498

Rec19

WOA

2017

0.134358 0.195835 0.175260 2370.5 26.722961
HIEGA 0.013426 0.019393 0.018680 2048.566667 2.603629
IEGA 0.074589 0.138736 0.108238 2228.666667 28.311756
HWA 0.009945 0.019393 0.018680 2048.566667 3.630273
SCA 0.165092 0.228741 0.196784 2406.733333 33.423478
SSA 0.128294 0.203381 0.168788 2350.433333 34.844113
GA 0.087021 0.150174 0.126255 2264.9 24.064288
EGA 0.104922 0.148185 0.127697 2267.8 21.487050
OEGA 0.108403 0.152163 0.129355 2271.133333 20.170495

Rec21

WOA

2011

0.109895 0.148185 0.133731 2279.933333 19.177996
HIEGA 0.004972 0.034808 0.017918 2047.033333 14.855937
IEGA 0.085529 0.141223 0.110923 2234.066667 27.282391
HWA 0.004972 0.036300 0.016194 2043.566667 14.247066
SCA 0.137245 0.220288 0.186507 2386.066667 39.107487
SSA 0.139234 0.206365 0.165108 2343.033333 32.162590
GA 0.110890 0.158130 0.129587 2271.6 19.491194
EGA 0.104425 0.151665 0.128244 2268.9 20.799599
OEGA 0.116360 0.146195 0.131990 2276.433333 15.329021

Rec23

WOA

2011

0.112879 0.151168 0.131659 2275.766667 18.322451



Mathematics 2021, 9, 270 17 of 23

Table 6. Cont.

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0.007958 0.044966 0.026754 2580.233333 19.095694
IEGA 0.082371 0.121368 0.106685 2781.1 22.530497
HWA 0.014325 0.045364 0.027616 2582.4 16.987446
SCA 0.155590 0.204934 0.176588 2956.766667 36.271828
SSA 0.108635 0.188221 0.150245 2890.566667 41.364786
GA 0.102268 0.139673 0.122735 2821.433333 20.817754
EGA 0.092319 0.147632 0.127749 2834.033333 25.235534
OEGA 0.097493 0.136490 0.122708 2821.366667 19.693456

Rec25

WOA

2513

0.107043 0.149224 0.127152 2832.533333 24.555696
Bold values indicate the best outcomes.

Table 7. Outcomes of different performance metrics on the Reeve instances (Rec27–Rec37).

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0.008006 0.036662 0.019272 2418.733333 16.641180
IEGA 0.096923 0.147071 0.119047 2655.5 30.93945
HWA 0.010535 0.032027 0.019525 2419.333333 13.842767
SCA 0.170670 0.235988 0.202612 2853.8 46.058947
SSA 0.139907 0.209860 0.179898 2799.9 40.539980
GA 0.102823 0.160977 0.136311 2696.466667 36.165115
EGA 0.115887 0.153813 0.137772 2699.933333 20.720253
OEGA 0.088074 0.160556 0.139120 2703.133333 34.369301

Rec27

WOA

2373

0.112937 0.156342 0.137435 2699.133333 26.572834
HIEGA 0.006121 0.042850 0.023597 2340.966667 22.394170
IEGA 0.101442 0.174901 0.142661 2613.266667 37.883974
HWA 0.007870 0.050284 0.027969 2350.966667 24.183304
SCA 0.195452 0.254044 0.225200 2802.033333 37.867737
SSA 0.157848 0.239178 0.192042 2726.2 43.699275
GA 0.140358 0.188019 0.162789 2659.3 27.098770
EGA 0.137297 0.191954 0.162075 2657.666667 25.819028
OEGA 0.132488 0.177962 0.159860 2652.6 25.210579

Rec29

WOA

2287

0.144731 0.186270 0.165573 2665.666667 25.373652
HIEGA 0.002627 0.027586 0.016934 3096.566667 22.008609
IEGA 0.104433 0.146798 0.125473 3427.066667 39.693772
HWA 0.008867 0.037766 0.022375 3113.133333 20.418510
SCA 0.154351 0.210837 0.186097 3611.666667 34.852387
SSA 0.134318 0.198358 0.177329 3584.966667 42.869167
GA 0.127422 0.157635 0.140634 3473.233333 23.531090
EGA 0.122824 0.162233 0.142200 3478 23.359509
OEGA 0.122495 0.159277 0.143940 3483.3 27.282656

Rec31

WOA

3045

0.131362 0.159277 0.147071 3492.833333 25.139720
HIEGA 0.001284 0.020231 0.008188 3139.5 10.883473
IEGA 0.074181 0.115606 0.098126 3419.566667 29.809040
HWA 0.001284 0.010276 0.008295 3139.833333 4.305681
SCA 0.150610 0.198137 0.173560 3654.466667 36.446063
SSA 0.121066 0.193962 0.162952 3621.433333 49.127509
GA 0.102761 0.136159 0.115403 3473.366667 22.817366
EGA 0.094091 0.137443 0.113690 3468.033333 33.271091
OEGA 0.107899 0.128131 0.118946 3484.4 18.307739

Rec33

WOA

3114

0.106294 0.140976 0.123389 3498.233333 27.813286



Mathematics 2021, 9, 270 18 of 23

Table 7. Cont.

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0 0 0 3277 0
IEGA 0.044552 0.083918 0.063452 3484.933333 29.017159
HWA 0 0.000915 0.000030 3277.1 0.538516
SCA 0.105584 0.158986 0.132478 3711.133333 42.568950
SSA 0.089105 0.145865 0.120587 3672.166667 44.570605
GA 0.064693 0.092767 0.080327 3540.233333 25.608180
EGA 0.057064 0.101617 0.083084 3549.266667 34.247076
OEGA 0.065913 0.091852 0.083653 3551.133333 19.057340

Rec35

WOA

3277

0.046689 0.098870 0.085433 3556.966667 33.488787
HIEGA 0.032922 0.056756 0.042227 5160.066667 27.546243
IEGA 0.146435 0.182791 0.167528 5780.433333 40.535320
HWA 0.023833 0.058372 0.044206 5169.866667 38.933904
SCA 0.185215 0.235710 0.216064 6020.733333 62.100957
SSA 0.184407 0.213492 0.198215 5932.366667 35.673971
GA 0.157140 0.188850 0.175708 5820.933333 35.789135
EGA 0.166229 0.191072 0.176395 5824.333333 31.882422
OEGA 0.154918 0.188244 0.176806 5826.366667 39.860994

Rec37

WOA

4951

0.153706 0.186225 0.176408 5824.4 31.813623
Bold values indicate the best outcomes.

Table 8. Outcomes of different performance metrics on the Reeve instances (Rec39–Rec41).

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA 0.013564 0.034598 0.022980 5203.9 27.544327

IEGA 0.113033 0.168665 0.145888 5829.133333 71.492066

HWA 0.011401 0.039512 0.025273 5215.566667 31.597134

SCA 0.179083 0.222528 0.198853 6098.566667 53.726271

SSA 0.159622 0.206211 0.182412 6014.933333 57.731524

GA 0.145862 0.170434 0.15824 5891.966667 33.412057

EGA 0.141930 0.175152 0.159229 5897 47.012055

OEGA 0.140554 0.167682 0.155527 5878.166667 35.096137

Rec39

WOA

5087

0.148810 0.177118 0.164635 5924.5 28.965209

HIEGA 0.025637 0.050806 0.039227 5154.566667 28.312168

IEGA 0.146572 0.194354 0.169731 5801.866667 44.835055

HWA 0.028830 0.059072 0.043131 5173.933333 33.260520

SCA 0.197782 0.246774 0.227210 6086.966667 54.319108

SSA 0.194354 0.237903 0.213608 6019.5 52.392588

GA 0.170161 0.208467 0.187332 5889.166667 45.649449

EGA 0.171371 0.205040 0.187022 5887.633333 36.043014

OEGA 0.169758 0.198790 0.186444 5884.766667 30.707961

Rec41

WOA

4960

0.178225 0.201612 0.190732 5906.033333 29.825585

Bold values indicate the best outcomes.

Regarding ARE, the average of each algorithm on all the Reeves instances is introduced
in Figure 5. Inspecting this figure we can draws the superiority of our proposed algorithm
under the average of the ARE on the entire Reeves instance, where it could win with a value
of 0.102 as the best one and IEGA come in the third rank after HIEGA and HWA, while
SCA comes in the last rank with a value of 0.179. After completing this experiment, it is
concluded that the proposed algorithm is competitive with the HWA as a robust algorithm
suggested recently for this problem, and subsequently it is considered a strong alternative
to this algorithm for tackling the PFSSP.



Mathematics 2021, 9, 270 19 of 23

Figure 5. Comparison under the average of ARE on all the Reeve instances.

3.11. Comparison of Heller

This dataset was created by Heller and consist of two instances. In this part, we
compare the proposed algorithms with the other algorithms under this dataset. For doing
that, Figure 6a–c are presented to illustrate the average of BRE, to see the summation
of the ratio of the error between the best value obtained by each algorithm within the
independent runs and the best-known value on each instance, the average of ARE, and the
average of the WRE, respectively. According to those figures, our proposed algorithm is the
best in comparison with the other algorithms in terms of the ARE, and WRE, meanwhile
competitive with HIEGA in terms of the BRE. Moreover, Table 9 is introduced to show the
outcomes of BRE, WRE, ARE, ZAvg and SD obtained by each algorithm on the two Heller
instances that confirms our suppositions to the superiority of the proposed algorithm over
the others for the five performance metrics used.

Table 9. Outcomes of the performance metrics on the Heller instances.

Instances Algorithm Z∗ BRE WRE ARE ZAvg SD

HIEGA −0.001938 0.001938 0.000129 516.066666 0.442216

IEGA 0.042635 0.081395 0.067441 550.8 4.460194

HWA −0.001938 0.007751 0.000710 516.366666 1.079609

SCA 0.089147 0.141472 0.116085 575.9 4.928488

SSA 0.094961 0.122093 0.109043 572.266666 3.687215

GA 0.065891 0.094961 0.079715 557.133333 3.621540

EGA 0.065891 0.091085 0.079328 556.933333 3.511251

OEGA 0.071705 0.089147 0.080943 557.766666 2.499111

Hel1

WOA

516

0.063953 0.094961 0.086627 560.7 2.876919

HIEGA 0 0.029411 0.006372 136.866666 0.718022

IEGA 0.029411 0.080882 0.056372 143.666666 1.776388

HWA 0 0.036764 0.007107 136.966666 0.982626

SCA 0.117647 0.183823 0.155882 157.2 2.150968

SSA 0.073529 0.161764 0.121813 152.566666 2.679344

GA 0.058823 0.095588 0.074019 146.066666 1.364632

EGA 0.044117 0.110294 0.077941 146.6 2.154065

Hel3

OEGA

136

0.066176 0.095588 0.083823 147.4 1.113552

Bold values indicate the best outcomes.



Mathematics 2021, 9, 270 20 of 23

(a) Comparison among the algorithms based
on the average of (BRE) on all the Heller

instances.

(b) Comparison under the average of (ARE) on
all the Heller instances within the independent

runs.

(c) Comparison under the average of (WRE) on all the
Heller instances.

Figure 6. Comparison among algorithms on the Heller instances.

3.12. Comparison under CPU Time and BoxPLot

For knowing the speedup of each algorithm, we calculate the average of the CPU
time needed by each algorithm until finishing implementing the instances of the Carlier
and Heller, and this average value is introduced in Figure 7a. This figure told us that our
proposed algorithm outperforms HWA, IEGA, GA, EGA, and OEGA and wins the first
rank with a value of 2.59 after SSA, SCA, and WOA. When comparing HIEGA with SSA,
SCA, and WOA in terms of CPU time and MS, our proposed algorithm could significantly
come true better outcomes at a reasonable time. In Figure 7b,c we compare the algorithms
under the Boxplot for the values obtained by each one within 30 independent runs on Hel1
and Hel2, respectively. Inspecting this figure shows that IEGA could outperform all the
algorithms except HIEGA and HWA. Also from this figure, we found that HIEGA could
overcome HWA under the boxplot of Hel1 and Hel2. Generally, our proposed algorithms,
IEGA and HIEGA, are competitive in comparison with the others.



Mathematics 2021, 9, 270 21 of 23

(a) Comparison under the average of the Time for the MS on all the
Heller instances.

(b) Box Plot of Hel1. (c) Box Plot of Hel2.

Figure 7. Comparison among algorithms under CPU time and Box-plot for the makespan on the
Heller instances.

4. Conclusions

This work presents the integration between the uniform crossover and the arithmetic
crossover (UAC) to enhance the exploitation capability and alleviate stuck into local minima
problems. After that, the UAC with re-initializing an individual selected randomly from
the population through each iteration are combined in the EGA, to enhance its performance
when tackling the PFSSP, which is a well-known scheduling problem applied in several
industrial applications in a version, abbreviated as IEGA. Additionally, we integrate a
LSS with the IEGA for strength its performance toward solving PFSSP; this version is
abbreviated as HIEGA. HIEGA and IEGA are experimentally validated on three well-
known benchmarks: Reeves, Heller, and Carlier, and compared with a number of the
robust evolutionary and meta-heuristic algorithms. On the car instances, the proposed
algorithm could reach a value of 0.001 for ARE; while for the Heller instances, it reaches a
value of 0.003 for the same metric mentioned before; ultimately for the Reeve instances, a
value of 0.020 for ARE is obtained by the proposed. The experimental outcomes show that
IEGA and HIEGA is competitive with those algorithms.

Unfortunately, the computational cost of the proposed algorithm is slightly higher
than some of the others used in comparison as our main limitation. Therefore, in our future
work, we will work on overcoming the time complexity of those proposed by integrating
them with some of the strategies like levy flight, and opposition theory until accelerating
the convergence toward the best solution in less number of iterations. Additionally, we
will incorporate extending our proposed algorithms to solve the open shop.

Author Contributions: Conceptualization, M.A.-B., R.M. and M.A.; methodology, M.A.-B., R.M.,
M.A.; software, M.A.-B., R.M.; validation, M.A., R.K.C. and M.J.R.; formal analysis, M.A.-B., R.M.
and M.A.; investigation, R.K.C. and M.J.R.; resources, M.A.-B. and R.M.; data curation, M.A.-B.,
R.M. and M.A.; writing—original draft preparation, M.A.-B., R.M. and M.A.; writing—review and
editing, R.K.C. and M.J.R.; visualization, M.A.-B. and R.M.; supervision, M.A. and M.J.R.; project



Mathematics 2021, 9, 270 22 of 23

administration, M.A.-B., R.M. and M.A.; funding acquisition, R.K.C. and M.J.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study did not involve humans or animals.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: We refer to data in the paper as following “The data sets used,
canbe found in Available online: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt”
Brunel University London Subject: flowshop1.txt This file contains a set of 31 FSP test instances.
These instances were contributed to OR-Library by Dirk C. Mattfeld (email dirk@uni-bremen.de)
and Rob J.M. Vaessens (email robv@win.tue.nl). people.brunel.ac.uk.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Johnson, S.M. Optimal two-and three-stage production schedules with setup times included. Naval Res. Logist. Q. 1954, 1, 61–68.

[CrossRef]
2. Gao, J.; Chen, R. An NEH-based heuristic algorithm for distributed permutation flowshop scheduling problems. Sci. Res. Essays

2011, 6, 3094–3100.
3. Sauvey, C.; Sauer, N. Two NEH Heuristic Improvements for Flowshop Scheduling Problem with Makespan Criterion. Algorithms

2020, 13, 112. [CrossRef]
4. Wang, H.; Wang, W.; Sun, H.; Cui, Z.; Rahnamayan, S.; Zeng, S. A new cuckoo search algorithm with hybrid strategies for flow

shop scheduling problems. Soft Comput. 2017, 21, 4297–4307. [CrossRef]
5. Kalczynski, P.J.; Kamburowski, J. An improved NEH heuristic to minimize makespan in permutation flow shops. Comput. Operat.

Res. 2008, 35, 3001–3008.
6. Dong, X.; Huang, H.; Chen, P. An improved NEH-based heuristic for the permutation flowshop problem. Comput. Operat. Res.

2008, 35, 3962–3968. [CrossRef]
7. Zhang, S.J.; Gu, X.S.; Zhou, F.N. An improved discrete migrating birds optimization algorithm for the no-wait flow shop

scheduling problem. IEEE Access 2020, 8, 99380–99392.
8. Govindan, K.; Balasundaram, R.; Baskar, N.; Asokan, P. A hybrid approach for minimizing makespan in permutation flowshop

scheduling. J. Syst. Sci. Syst. Eng. 2017, 26, 50–76. [CrossRef]
9. Liu, Y.; Yin, M.; Gu, W. An effective differential evolution algorithm for permutation flow shop scheduling problem. Appl. Math.

Comput. 2014, 248, 143–159. [CrossRef]
10. Ding, J.Y.; Song, S.; Zhang, R.; Zhou, S.; Wu, C. A novel block-shifting simulated annealing algorithm for the no-wait flowshop

scheduling problem. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), IEEE, Sendai, Japan, 25–28
May 2015; pp. 2768–2774.

11. Sanjeev Kumar, R.; Padmanaban, K.; Rajkumar, M. Minimizing makespan and total flow time in permutation flow shop
scheduling problems using modified gravitational emulation local search algorithm. Proc. Instit. Mech. Eng. Part B J. Eng.
Manufac. 2018, 232, 534–545. [CrossRef]

12. Reeves, C.R. A genetic algorithm for flowshop sequencing. Comput. Operat. Res. 1995, 22, 5–13. [CrossRef]
13. Liu, B.; Wang, L.; Jin, Y.H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern.

Part B 2007, 37, 18–27. [CrossRef] [PubMed]
14. Xie, Z.; Zhang, C.; Shao, X.; Lin, W.; Zhu, H. An effective hybrid teaching–learning-based optimization algorithm for permutation

flow shop scheduling problem. Adv. Eng. Softw. 2014, 77, 35–47. [CrossRef]
15. Zhao, F.; Liu, H.; Zhang, Y.; Ma, W.; Zhang, C. A discrete water wave optimization algorithm for no-wait flow shop scheduling

problem. Expert Syst. Appl. 2018, 91, 347–363. [CrossRef]
16. Shareh, M.B.; Bargh, S.H.; Hosseinabadi, A.A.R.; Slowik, A. An improved bat optimization algorithm to solve the tasks scheduling

problem in open shop. Neur. Comput. Appl. 2020, 1–15. [CrossRef]
17. Li, B.B.; Wang, L.; Liu, B. An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling. IEEE

Trans. Syst. Man Cybern. Part A Syst. Hum. 2008, 38, 818–831. [CrossRef]
18. Priya, A.; Sahana, S.K. Multiprocessor scheduling based on evolutionary technique for solving permutation flow shop problem.

IEEE Access 2020, 8, 53151–53161. [CrossRef]
19. Pang, X.; Xue, H.; Tseng, M.L.; Lim, M.K.; Liu, K. Hybrid Flow Shop Scheduling Problems Using Improved Fireworks Algorithm

for Permutation. Appl. Sci. 2020, 10, 1174.
20. Mishra, A.; Shrivastava, D. A discrete Jaya algorithm for permutation flow-shop scheduling problem. Int. J. Ind. Eng. Comput.

2020, 11, 415–428. [CrossRef]
21. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt
http://doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.3390/a13050112
http://dx.doi.org/10.1007/s00500-016-2062-9
http://dx.doi.org/10.1016/j.cor.2007.05.005
http://dx.doi.org/10.1007/s11518-016-5297-1
http://dx.doi.org/10.1016/j.amc.2014.09.010
http://dx.doi.org/10.1177/0954405416645775
http://dx.doi.org/10.1016/0305-0548(93)E0014-K
http://dx.doi.org/10.1109/TSMCB.2006.883272
http://www.ncbi.nlm.nih.gov/pubmed/17278555
http://dx.doi.org/10.1016/j.advengsoft.2014.07.006
http://dx.doi.org/10.1016/j.eswa.2017.09.028
http://dx.doi.org/10.1007/s00521-020-05055-7
http://dx.doi.org/10.1109/TSMCA.2008.923086
http://dx.doi.org/10.1109/ACCESS.2020.2973575
http://dx.doi.org/10.5267/j.ijiec.2019.12.001
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002


Mathematics 2021, 9, 270 23 of 23

22. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
23. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Syst. 2016, 96, 120–133. [CrossRef]
24. Abdel-Basset, M.; Mohamed, R.; Mirjalili, S. A novel Whale Optimization Algorithm integrated with Nelder–Mead simplex for

multi-objective optimization problems. Knowl. Based Syst. 2020, 212, 106619. [CrossRef]
25. Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl.

2019, 1–21. [CrossRef]
26. Abdel-Basset, M.; El-Shahat, D.; Deb, K.; Abouhawwash, M. Energy-aware whale optimization algorithm for real-time task

scheduling in multiprocessor systems. Appl. Soft Comput. 2020, 93, 106349. [CrossRef]
27. Zhang, X.; Guo, P.; Zhang, H.; Yao, J. Hybrid Particle Swarm Optimization Algorithm for Process Planning. Mathematics

2020, 8, 1745. [CrossRef]
28. Ren, T.; Zhang, Y.; Cheng, S.R.; Wu, C.C.; Zhang, M.; Chang, B.Y.; Wang, X.Y.; Zhao, P. Effective Heuristic Algorithms Solving the

Jobshop Scheduling Problem with Release Dates. Mathematics 2020, 8, 1221. [CrossRef]
29. Cosma, O.; Pop, P.C.; Sabo, C. An Efficient Hybrid Genetic Approach for Solving the Two-Stage Supply Chain Network Design

Problem with Fixed Costs. Mathematics 2020, 8, 712. [CrossRef]
30. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based on local search strategy

for the permutation flow shop scheduling problem. Future Gener. Comput. Syst. 2018, 85, 129–145. [CrossRef]
31. Goldberg, D.E.; Holland, J.H. Genetic Algorithms. Mach. Learn. 1988, 3, 95–99. [CrossRef]
32. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
33. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M. Balanced multi-objective optimization algorithm using improvement based

reference points approach. Swarm Evol. Comput. 2020, 60, 100791. [CrossRef]
34. Li, X.; Yin, M. An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity

measure. Adv. Eng. Softw. 2013, 55, 10–31. [CrossRef]
35. Blickle, T.; Thiele, L. A Mathematical Analysis of Tournament Selection; ICGA Citeseer; Morgan Kaufmann: San Francisco, CA, USA,

1995; Volume 95, pp. 9–15.
36. Semenkin, E.; Semenkina, M. Self-configuring genetic algorithm with modified uniform crossover operator. In Proceedings

of the International Conference in Swarm Intelligence, Brussels, Belgium, 12–14 September 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 414–421.

37. Xiang, W. Analysis of the time complexity of quick sort algorithm. In Proceedings of the 2011 International Conference on
Information Management, Innovation Management and Industrial Engineering, IEEE, Shenzhen, China, 26–27 November 2011;
Volume 1, pp. 408–410.

38. Carlier, J. Ordonnancements a contraintes disjonctives. RAIRO-Operat. Res. 1978, 12, 333–350. [CrossRef]
39. Heller, J. Some numerical experiments for an M× J flow shop and its decision-theoretical aspects. Operat. Res. 1960, 8, 178–184.

[CrossRef]
40. Ancău, M. On solving flowshop scheduling problems. Proc. Roman. Acad. Ser. A 2012, 13, 71–79.

http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.knosys.2020.106619
http://dx.doi.org/10.1007/s00521-019-04629-4
http://dx.doi.org/10.1016/j.asoc.2020.106349
http://dx.doi.org/10.3390/math8101745
http://dx.doi.org/10.3390/math8081221
http://dx.doi.org/10.3390/math8050712
http://dx.doi.org/10.1016/j.future.2018.03.020
http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1016/j.swevo.2020.100791
http://dx.doi.org/10.1016/j.advengsoft.2012.09.003
http://dx.doi.org/10.1051/ro/1978120403331
http://dx.doi.org/10.1287/opre.8.2.178

	Introduction
	The Permutation Flow Shop Scheduling Problem
	The Proposed Algorithm
	Initialization
	Selection Operator
	Crossover Operator
	Mutation Operator
	Combination of Uniform Crossover and Arithmetic Crossover (UAC)
	Local Search Strategy (LSS)
	Time Complexity
	Performance Metric
	Comparison under Carlier
	Comparison of Reeves
	Comparison of Heller
	Comparison under CPU Time and BoxPLot

	Conclusions
	References

