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Abstract: The aim of this paper is to present a new method and the tool to validate the numerical
results of the Volterra integral equation with discontinuous kernels in linear and non-linear forms
obtained from the Adomian decomposition method. Because of disadvantages of the traditional
absolute error to show the accuracy of the mathematical methods which is based on the floating
point arithmetic, we apply the stochastic arithmetic and new condition to study the efficiency of
the method which is based on two successive approximations. Thus the CESTAC method (Controle
et Estimation Stochastique des Arrondis de Calculs) and the CADNA (Control of Accuracy and
Debugging for Numerical Applications) library are employed. Finding the optimal iteration of the
method, optimal approximation and the optimal error are some of advantages of the stochastic
arithmetic, the CESTAC method and the CADNA library in comparison with the floating point
arithmetic and usual packages. The theorems are proved to show the convergence analysis of the
Adomian decomposition method for solving the mentioned problem. Also, the main theorem of the
CESTAC method is presented which shows the equality between the number of common significant
digits between exact and approximate solutions and two successive approximations.This makes in
possible to apply the new termination criterion instead of absolute error. Several examples in both
linear and nonlinear cases are solved and the numerical results for the stochastic arithmetic and the
floating-point arithmetic are compared to demonstrate the accuracy of the novel method.

Keywords: volterra integral equation; discontinuous kernel; Adomian decomposition method;
CESTAC method; CADNA library; floating-point arithmetic; stochastic arithmetic

1. Introduction

There are many phenomena in the world that can be modelized in the form of math-
ematical problems such as HIV infection [1,2], smoking habit [3], computer viruses [4],
energy supply-demand model [5] and others [6,7]. They can help us to analyse and pre-
dict the phenomena using the mathematical methods, deep learning and big data. Such
Volterra models that contain past information are called hereditary systems. There are
various applications in economics (Solow models of capital growth of global economy,
optimal renovation), many examples from biology (Lotka–Volterra predator-prey, spread
of epidemics, e.g., COVID epidemic), and from engineering (mechanical and electrical en-
gineering, material sciences, and other application). Recently, many authors modelized the
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load leveling problem arising in the energy storages of the powering systems in the form of
the linear and non-linear Volterra integral equation (VIE) with discontinuous kernel. They
have been focused on solving this problem by numerical and semi-analytical methods. For
introduction to the theory of the VIE of the first kind with discontinuous kernals readers
may refer to the monograph [8]. Such models belongs to the class of ill-posed problems.
The discontinuous kernels introduce fundamental difficulties in the theory of nonlinear
Volterra equations of the first kind: there is a loss of uniqueness of solutions, solutions may
blow-up or branching phenomena may occur (see ch. 5 in [9,10]). The existence of a contin-
uous solution depending on free parameters and sufficient conditions for the existence of a
unique continuous solution of the systems VIE of the first kind with discontinuous kernels
were derived in [11]. In [12] the energy storages with renewable and diesel generation was
analysed based on the VIEs. The system of VIEs with piecewise smooth kernels in linear
and nonlinear cases was studied in [13,14] and the first kind VIE with discontinuous kernel
was illustrated in [15]. Also, in [16], the VIE was applied to modelize the load forecast in
EPS with renewable generation. The Taylor-collocation method and the homotopy pertur-
bation method were applied for solving this problem in [17,18] and the validated numerical
results were used to forecast the load leveling problem in [19].The theory of Volterra opera-
tor equations of the first kind with piecewise continuous kernels is introduced in [20]. The
solvability of this problem was discussed in [21] and the existence of a unique continuous
solution of the system of VIEs with discontinuous kernels was illustrated in [11]. In [22],
the application of the VIE with Abel’s kernel was discussed on the infrared tomography
and in [23] the convex majorants method was applied for solving nonlinear VIEs. Also,
in [24,25] the weakly singular nonlinear VIE of the second kind was discussed numerically.
The Volterra convolution integral equations of the first kind with general discontinuous
kernels readers were attacked in [26] using cubic “convolution spline” method. For the
theory of linear and nonlinear ill-posed problems and their regularization readers may
refer to the seminal monographs by A.N. Tikhonov et al. [27,28].

The Adomian decomposition method (ADM) is one of iterative and applicable meth-
ods for solving various problems such as the Klein-Gordon equation [29], Triki-Biswas
equation [30], the problem of boundary layer convective heat transfer [31], integral equa-
tions (IEs) of the first and second kinds with hypersingular kernels [32,33], the Volterra in-
tegral form of the Lane-Emden equations with initial values and boundary conditions [34],
Cauchy IEs of the first kind [35], linear and nonlinear IEs [36] and partial differential
equations [37].

We know that these methods and many other methods for solving the VIEs are based
on the floating-point arithmetic (FPA). Thus in order to show the accuracy of the numerical
results the authors apply the absolute error as follows

|y(t)− yn(t)| < ε, (1)

where y(t) and yn(t) are the exact and approximate solutions. But we have some disad-
vantages. Condition (1) depends on the value ε and also the exact solution. But we do
not know the optimal value of ε and in many cases we do not have the exact solution to
compare the results. If we choose the small values of ε we will have extra iterations and if
we have the large values then the numerical process will be stopped very soon and we will
not be able to produce the accurate results.

Thus, in order to show the efficiency od the numerical procedures instead of
condition (1) we apply the following termination criterion

|yn(t)− yn+1(t)| = @.0, (2)

which depends on two successive approximations yn(t) and yn+1(t) and in the right hand
side we have the informatical zero @.0. It shows that the NCSDs between two successive
approximations is zero.
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Because of these problems, we introduce the stochastic arithmetic (SA) instead of
the FPA. In the SA, we apply the CESTAC method and instead of the absolute error we
use the termination criterion based on two successive approximations. So we do not
need to have the exact solution. Also, in the right hand side we have the informatical
zero @.0 instead of ε. The numerical algorithm will be stopped when the number of
common significant digits(NCSDs) of two successive approximations equals zero. Also,
the CESTAC method can be implemented on the CADNA library using LINUX operating
system that its codes must be written by ADA, FORTRAN or C/C++ codes [38]. Using the
CESTAC method and the CADNA library we can find the optimal approximation, error and
iteration of the numerical procedure [39,40]. The CESTAC method was studied by Laporet
and Vignes for the first time and after that some researchers from LIP6, the computer
science laboratory in Sorbonne University in Paris, France (https://www-pequan.lip6.fr/)
extended this method by producing the CADNA library [41–44]. Also, recently this method
has been applied to validate the results of the Newton–Cotes integration rule [45], Gaussian
integration rule [46], collocation method for solving Fredholm IEs [47], finding the optimal
convergence control parameter of the homotopy analysis method [48], solving fuzzy IEs by
Sinc-collocation method [49], solving fuzzy numerical integrals [50], finding the optimal
regularization parameter for solving first kind IEs [51], solving osmosis model [52,53],
solving load leveling problem and solving the VIEs with discontinuous kernel using the
homotopy perturbation method and the Taylor-collocation method [17–19].

This study applies the ADM for solving the linear and non-linear VIE with discon-
tinuous kernel and validates the numerical results using the CESTAC method and the
CADNA library. So we will be able to find the optimal approximation, the optimal error
and the optimal iteration of the ADM for solving Equation (4). The uniqueness theorem,
the error theorem and the convergence theorem of the ADM are proved. Also, the main
theorem of the CESTAC method is discussed. Based on this theorem, we can apply the new
termination criterion instead of the absolute error. Several examples are solved and the
CESTAC method is applied to validate the results and finding the optimal results of the
ADM for solving the mentioned problem.

2. Stochastic Arithmetic and the CESTAC Method

The CESTAC method is based on a probabilistic approach of the round-off error
propagation which can help us to replace the FPA by a random arithmetic. The parallel
implementation is one of the good aspect of this method. Applying this method, k runs
of the computer program can be done in parallel. Thus, a new arithmetic that we call the
SA is defined. For definitions and properties of the SA please see [54]. In order to apply
the CESTAC method, we should substitute the SA instead of the FPA. Thus we will be
able to run each arithmetical operation k times synchronously before running the next
operation. All of this process should be done using the CADNA library. During the run,
the CADNA library can be found the NCSDs of each results and if the result is zero then
the CADNA library will be stopped by showing the informatical zero @.0. Thus each result
can be appeared as a random variable.

If we produce the representable values by computer and collect them in B, then S∗ ∈ B
can be written for s∗ ∈ R with α mantissa bits of the binary FPA as

S∗ = s∗ − ρ2E−αφ, (3)

where ρ, 2−αφ and E are sign, missing segment of the mantissa and the binary exponent
of the result, respectively. Also, we know that for α = 24, 53, the numerical results can be
produced in single and double precisions [39,40]. By assuming φ as a casual variable that
uniformly distributed on [−1, 1], we will be able to make perturbation on last mantissa bit
of s∗. Then the mean (µ) and the standard deviation (σ) values can be produced for results
of S∗ which have important role to identify the precision of S∗. If we repeat the process for
k times, we will have the quasi Gaussian distribution on S∗i , i = 1, · · · , k and we will have
equality between µ and the exact s∗.

https://www-pequan.lip6.fr/
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Algorithm 1, shows the process step by step, where τδ is the value of T distribution as
the confidence interval is 1− δ, with k− 1 freedom degree [40,42–44].

Algorithm 1: Algorithm of the CESTAC method.

Step 1- Produce k samples of S∗ in the form of Φ =
{

S∗1 , S∗2 , ..., S∗k
}

by
making perturbation on the last bit of mantissa.

Step 2- Calculate S̃∗ =
∑k

i=1 S∗i
k

.

Step 3- Find σ2 =
∑k

i=1(S
∗
i − S̃∗)2

k− 1
.

Step 4- Apply CS̃∗ ,S∗ = log10

√
k
∣∣S̃∗∣∣

τδσ
to find the NCSDs between S∗ and

S̃∗.
Step 5- Show S∗ = @.0 if S̃∗ = 0, or CS̃∗ ,S∗ ≤ 0.

In order to apply the CESTAC method we do not need to apply the mentioned
algorithm directly by the usual softwares such as MATLAB, Mathematica, Maple and
others. This method can be implemented using the CADNA library that we need to write
the CADNA codes using C, C++, FORTRAN or ADA codes [38], then the CESTAC method
can be done automatically on the numerical procedures.

Applying the CESTAC method and the CADNA library we have the following advan-
tages than the mathematical methods based on the FPA:

• Generally, the FPA depends the absolute error that we need to have the exact solution
but in the CESTAC method we do not need to the exact solution.

• In some cases, the absolute error depends on the positive small value ε that we do not
know its optimal value. In the CESTAC method we do not need to have this value.

• In the CESTAC method the algorithm will be stopped in the optimal iteration but
in the FPA, the extra iterations can be produced without improving the accuracy
of results.

• In the FPA, the numerical algorithm can be stopped very soon before producing the
accurate results.

• In the CESTAC method, we will be able to identify the optimal values such as optimal
iteration, approximation and error but in the FPA we can not do it.

The following codes are the sample codes of the CADNA library:

# include <cadna.h>
cadna−init(-1);
main()
{
double−st Parameter;
do
{
Write the main program here;
printf(“ %s ”,strp(Parameter));
}
while(u[n]-u[n-1]!=0);
cadna−end();
}

3. Main Idea

Consider the following second kind nonlinear VIE with discontinuous kernel

y(t) = x(t) +
m′

∑
j=1

∫ β j(t)

β j−1(t)
k j(t, τ)F(y(τ))dτ, (4)
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where
0 =: β0(t) < β1(t) < ... < βm′−1(t) < βm′(t) := t, f or t ∈ (0, T),

and β j(0) = 0 [15,20]. Also, ∀t ∈ J = [0, T] we assume that x(t) is bounded and k j(t, τ)
is discontinuous along continuous curves β j(t), j = 0, 1, · · · , m′ such that |k j(t, τ)| <
Mj, ∀0 ≤ τ ≤ t ≤ T and the nonlinear term F(y) satisfies in the Lipschitz continuous such
that |F(y)− F(z)| ≤ L|y− z|.

The ADM assumes that the unknown function y(t) can be constructed by an infinite
series of the form

y(t) =
∞

∑
i=0

yi(t), (5)

and the Adomian polynomials [55] can be obtained in the following form:

An = F(Pn)−
n−1

∑
j=0

Aj, (6)

where Pn = ∑n
i=0 yi(t) shows the partial sum. Then we have

y0(t) = x(t),

yi(t) =
m′

∑
j=1

∫ β j(t)

β j−1(t)
k j(t, τ)Ai−1dτ, i ≥ 1.

(7)

Also, the nonlinear term F(y) can be decomposed by an infinite series of polynomials
given by

F(y) =
∞

∑
n=0

An, (8)

where

An =

(
1
n!

)(
dn

dλn

)[
F

(
∞

∑
i=0

λiyi

)]
λ=0

, (9)

which is called the Adomian polynomials.
The following theorems show the uniqueness, convergence and error of the method.

The well known contraction mapping principle is applied to prove them.

Lemma 1. If we apply the ADM for solving Equation (4), the obtained solution will be unique
whenever 0 < η < 1, where η = L ∑m′

j=1 Mj(β j − β j−1).

Proof. See [55].

Theorem 1. The series solution (5) for solving Equation (4) using the ADM converges if 0 < η < 1
and |y1| < ∞.

Proof. Let (C[J], ‖.‖) be the Banach space of all continuous functions on J such that
‖ f (t)‖ = max∀t∈J | f (t)|. Let {Pn} be the sequence of partial sums where Pn and Pm
are arbitrary partial sums with n ≥ m. We should prove that {Pn} is a Cauchy sequence in
the Banach space:
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‖Pn − Pm‖ = max
∀∈J
|Pn − Pm| = max

∀∈J

∣∣∣∣∣ n

∑
i=m+1

yi(t)

∣∣∣∣∣
= max
∀∈J

∣∣∣∣∣ n

∑
i=m+1

m′

∑
j=1

∫ β j(t)

β j−1(t)
k j(t, τ)Ai−1dτ

∣∣∣∣∣
= max
∀∈J

∣∣∣∣∣ m′

∑
j=1

∫ β j(t)

β j−1(t)
k j(t, τ)

n−1

∑
i=m

Aidτ

∣∣∣∣∣.
Using Equation (6), we can write ∑n−1

i=m Ai = F(Pn−1)− F(Pm−1) and then

‖Pn − Pm‖ = max
∀∈J

∣∣∣∣∣ m′

∑
j=1

∫ β j(t)

β j−1(t)
k j(t, τ)[F(Pn−1)− F(Pm−1)]dτ

∣∣∣∣∣
≤max
∀∈J

m′

∑
j=1

∫ β j(t)

β j−1(t)
|k j(t, τ)||F(Pn−1)− F(Pm−1)|dτ

= η‖Pn−1 − Pm−1‖,

and for n = m + 1 we have

‖Pm+1 − Pm‖ ≤ η‖Pm − Pm−1‖ ≤ η2‖Pm−1 − Pm−2‖ ≤ · · · ≤ ηm‖P1 − P0‖.

Applying the triangle inequality we have

‖Pn − Pm‖ ≤ ‖Pm+1 − Pm‖+ ‖Pm+2 − Pm+1‖+ · · ·+ ‖Pn − Pn−1‖

≤ [ηm + ηm+1 + · · ·+ ηn−1]‖P1 − P0‖

≤ ηm(
1− ηn−m

1− η
)‖y1(t)‖.

Since 0 < η < 1 we can write 1− ηn−m < 1 and we have

‖Pn − Pm‖ ≤
ηm

1− η
max
∀t∈J
|y1(t)|. (10)

We know that x(t) is bounded and |y1| < ∞. So, ‖Pn − Pm‖ converges to zero,
as m approaches infinity. It can shows that Pn is a Cauchy sequence in C[J] and the
series converges.

Theorem 2. If we apply the series solution (5) for solving Equation (4), the maximum absolute
error truncation can be obtained as follows

max

∣∣∣∣∣y(t)− m

∑
i=0

yi(t)

∣∣∣∣∣ ≤ kηm+1

L(1− η)
,

where k = max∀t∈J |F(x(t))|.

Proof. Applying inequality (10) and Theorem 1 lead to

‖Pn − Pm‖ ≤
ηm

1− η
max
∀t∈J
|y1(t)|.
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If n approaches ∞ then sn will approach to y(t) and

|y1(t)| ≤
m′

∑
j=1

Mj(β j − β j−1)max |F(y0)|,

and

‖y(t)− Pm‖ ≤
ηm+1

L(1− η)
max
∀t∈J
|F(x(t))|.

Finally, the maximum error on J can be obtained as

max
∀t∈J
|y(t)−

m

∑
i=0

yi(t)| ≤
kηm+1

L(1− η)
.

Remark 1. Introducing an auxiliary parameter and differentiating with respect to it for calculating
the initial approximations was effectively employed and in other nonlinear problems. Here readers
may refer to [56].

Definition 1 ([40]). The NCSDs for two real numbers r1, r2 can be obtained as follows
(1) for r1 6= r2,

Cr1,r2 = log10

∣∣∣∣ r1 + r2

2(r1 − r2)

∣∣∣∣ = log10

∣∣∣∣ r1

r1 − r2
− 1

2

∣∣∣∣, (11)

(2) for all real numbers r1, Cr1,r1 = +∞.

Theorem 3. Let y(t) and yn(t) be the exact and numerical solutions of problem (4) which yn(t) is
obtained by using the ADM. We have

Cyn(t),yn+1(t) ' Cyn(t),y(t), (12)

where Cyn(t),y(t) shows the NCSDs of yn(t), w(t) and Cyn(t),yn+1(t) is the NCSDs of two successive
iterations yn(t), yn+1(t).

Proof. Using Definition 1 we get

Cyn(t),yn+1(t) = log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

− 1
2

∣∣∣∣
= log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

∣∣∣∣+ log10

∣∣∣∣1− 1
2yn(t)

(yn(t)− yn+1(t))
∣∣∣∣

= log10

∣∣∣∣ yn(t)
yn(t)− yn+1(t)

∣∣∣∣+O(yn(t)− yn+1(t)
)

= log10

∣∣∣∣ yn(t)
(yn(t)− y(t))− (yn+1(t)− y(t))

∣∣∣∣+O[(yn(t)− y(t))− (yn+1(t)− y(t))
]

= log10

∣∣∣∣∣∣ yn(t)

(yn(t)− y(t))
[
1− yn+1(t)−y(t)

yn(t)−y(t)

]
∣∣∣∣∣∣+O(En) +O(En+1)

= log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣− log10

∣∣∣∣1− yn+1(t)− y(t)
yn(t)− y(t)

∣∣∣∣+O( ηn+1

1− η

)

= log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣− log10

∣∣∣∣1− yn+1(t)− y(t)
yn(t)− y(t)

∣∣∣∣+O( ηn+1

1− η

)
.

(13)



Mathematics 2021, 9, 260 8 of 15

Also,

Cyn(t),y(t) = log10

∣∣∣∣ yn(t)
yn(t)− y(t)

− 1
2

∣∣∣∣
= log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣+O(yn(t)− y(t))

= log10

∣∣∣∣ yn(t)
yn(t)− y(t)

∣∣∣∣+O( ηn+1

1− η

)
.

(14)

Applying Equations (13) and (14) we have

Cyn(t),yn+1(t) = Cyn(t),y(t) − log10

∣∣∣∣1− yn+1(t)− y(t)
yn(t)− y(t)

∣∣∣∣+O( ηn+1

1− η

)
.

From Theorem 2 we can write yn+1(t)−y(t)
yn(t)−y(t) =

O
(

ηn+2
1−η

)
O
(

ηn+1
1−η

) = O(η). Thus for n enough

large we get
Cyn(t),yn+1(t) ' Cyn(t),y(t).

Theorem 3 shows that when n increases, the NCSDs between two sequential results
obtained from the algorithm is almost equal to the NCSDs of the n-th iteration and the
exact solution at the given point t which means that for an optimal index like n = no pt,
when yn(t)− yn+1(t) = @.0 then yn(t)− y(t) = @.0.

4. Numerical Results

In this section, we apply the ADM for solving the mentioned examples. The numerical
results are obtained based on the FPA and the SA. In the FPA, the numerical algorithm
depend on the value ε. Also, the number of iterations for different values of ε are obtained.
It is obvious that for small values of ε the algorithm can not be stopped and we will have
many iterations without improving the accuracy of the results. Also, for large values of
ε, the algorithm will be stopped very soon without providing the accurate results. In the
SA and applying the CESTAC method and the CADNA library we can find the optimal
results and the optimal iteration and error of the ADM for solving the VIEs in linear and
nonlinear forms with discontinuous kernels. Clearly, we can see that applying the CESTAC
method, CADNA library and the novel termination criterion (2) is better and applicable
than the FPA and the stopping condition (1).

Example 1. Consider the following linear VIE with discontinuous kernel

y(t) = x(t) +
∫ t

8

0
2ty(τ)dτ +

∫ 3t
8

t
8

(t− τ)y(τ)dτ +
∫ t

3t
8

y(τ)dτ,

where

x(t) = − cos(
3t
8
) + 2 cos(t)− 2t

(
1− cos(

t
8
) + sin(

t
8
)

)

+
1
8
(−(8 + 7t) cos(

t
8
) + (8 + 5t) cos(

3t
8
)

−2
(
−t + (−8 + 5t) cos(

t
4
)

)
sin(

t
8
)) + sin(

3t
8
),

and the exact solution is y(t) = sin t + cos t.
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In Table 1 the numerical results are obtained using the ADM based on the FPA for ε = 10−5

and the algorithm is stopped at n = 6. Also, in Table 2, the number of iterations for various ε
are shown. It is obvious that for large and small values of ε the accurate results can not be found.
But in Table 3, the results are obtained based on the SA using the CESTAC method and the CADNA
library. We do not have ε in this table. The algorithm is stopped at nopt = 7 and it shows the
optimal iteration of the ADM for solving this problem. Also, the optimal error is 0.1× 10−4 and
the optimal approximation is ynopt = 1.25085.

Table 1. The numerical results of Example 1 for ε = 10−5 based on the FPA.

n yn+1(t) |yn+1(t)− y(t)|
1 0.98828512430191040039 0.26257163286209106445
2 1.21838188171386718750 0.03247487545013427734
3 1.24792301654815673828 0.00293374061584472656
4 1.25064921379089355469 0.00020754337310791016
5 1.25084471702575683594 0.00001204013824462891
6 1.25085616111755371094 0.00000059604644775391

Table 2. The number of iterations for different values of ε based on the FPA.

ε Small Values ε = 10−5 ε = 10−3 ε = 10−1 ε = 0.5 Large Values

n >> 6 6 4 2 1 1

Table 3. The numerical results of Example 1 based on the CESTAC method.

n yn+1(t) |yn+1(t)− yn(t)| |yn+1(t)− y(t)|
1 0.988285 0.988285 0.262571
2 1.21838 0.230096 0.32474 × 10−1

3 1.24792 0.2954 × 10−1 0.293 × 10−2

4 1.25064 0.272 × 10−2 0.20 × 10−3

5 1.25084 0.195 × 10−3 0.1 × 10−4

6 1.25085 0.1 × 10−4 @.0
7 1.25085 @.0 @.0

Example 2. Consider the following linear VIE with discontinuous kernel

y(t) = x(t)+
∫ t

9

0
(1+ t− τ)y(τ)dτ+

∫ 2t
9

t
9

y(τ)dτ+ 2
∫ 4t

9

2t
9

y(τ)dτ+
∫ t

4t
7

(t− 1)(τ+ t)y(τ)dτ,

where

x(t) = 2 + exp(
4t
9
)− exp(

t
9
)(−1 + exp(

t
9
))− 2 exp(

2t
9
)(−1 + exp(

2t
9
))− exp(

t
9
)(2 +

8t
9
) + t,

and the exact solution is y(t) = exp t.
The numerical results are obtained based on the FPA for ε = 10−5 and demonstrated in Table 4.

Also, the number of iterations for different values of ε are presented in Table 5. The numerical results
based on the SA are demonstrated in Table 6. Using this table, the optimal iteration, the optimal
approximation and the optimal error can be found that they are nopt = 6, ynopt = 1.10516 and
Enopt = 0.8× 10−6.
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Table 4. The numerical results of Example 2 for ε = 10−5 based on the FPA.

n yn+1(t) |yn+1(t)− y(t)|
1 0.97596895694732666016 0.12920200824737548828
2 1.09789884090423583984 0.00727212429046630859
3 1.10491240024566650391 0.00025856494903564453
4 1.10516428947448730469 0.00000667572021484375

Table 5. The number of iterations for different values of ε based on the FPA.

ε Small Values ε = 10−5 ε = 10−3 ε = 10−1 ε = 0.5 Large Values

n >> 4 4 3 1 1 1

Table 6. The numerical results based on the SA for Example 2.

n yn+1(t) |yn+1(t)− yn(t)| |yn+1(t)− y(t)|
1 0.9759688 0.9759688 0.129202
2 1.09789 0.12192 0.7272× 10−2

3 1.10491 0.7013× 10−2 0.259× 10−3

4 1.105163 0.251× 10−3 0.7× 10−5

5 1.105170 0.6× 10−5 0.8× 10−6

6 1.10516 @.0 @.0

Example 3. Consider the following nonlinear VIE with non-smooth kernel

y(t) = x(t) +
∫ t

2

0
(t− τ)y2(τ)dτ + 2

∫ t

t
2

y2(τ)dτ,

where

x(t) = sin(t) +
1

16
(2− 3t2 − 2 cos(t) + 2t sin(t)) +

1
2
(−t− sin(t) + 2 cos(t) sin(t)),

and the exact solution is y(t) = sin t. In Table 7, the numerical results are obtained from the
CESTAC method and the CADNA library. We can find that the optima iteration for solving
this example using the ADM is nopt = 6, the optimal approximation is ynopt = 0.198821 and
the optimal error is 0.15 × 10−4. The informatical zero @.0, shows that the NCSDs between
yn+1(t), yn(t) are almost equal to the NCSDs between yn+1(t) and y(t). In Table 8, the number
of iterations for different values of ε are obtained based on the FPA. We can find that for small values
of ε we have large number of iterations and for large values of ε we do not have enough iterations
and it is one of the main problems of the FPA in comparison with the SA.

Table 7. The numerical results using the CESTAC method and the CADNA library.

n yn+1(t) |yn+1(t)− yn(t)| |yn+1(t)− y(t)|
1 0.194002 0.194002 0.46670 × 10−2

2 0.198526 0.45239 × 10−2 0.143 × 10−3

3 0.198798 0.272 × 10−3 0.129 × 10−3

4 0.198819 0.20 × 10−4 0.150 × 10−3

5 0.198821 0.1 × 10−5 0.15 × 10−4

6 0.198821 @.0 @.0
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Table 8. The number of iterations for different values of ε based on the FPA.

ε Small Values ε = 10−5 ε = 10−3 ε = 10−1 ε = 0.5 Large Values

n >> 8 8 2 1 1 1

Example 4. Consider the following nonlinear VIE

y(t) = x(t) +
∫ t

7

0
tτy3(τ)dτ +

∫ 2t
7

t
7

(t− 1)y3(τ)dτ + 3
∫ 4t

7

2t
7

y3(τ)dτ +
∫ t

4t
7

(t− 1)(τ + t)y3(τ)dτ,

where

x(t) = t2 − 48641
5764801

t7 − 12157553
46118408

t8 − t9

46118408
,

and the exact solution is y(t) = t2. The numerical results of the CESTAC method are presented
in Table 9. For finding these results we applied the termination criterion (2) which depends on
two successive approximations. We should note that the third column in this table is only for
comparison between results and generally we do not need to have the exact solution in the CESTAC
method. Based on this table we can find the optimal iteration nopt = 3, the optimal approximation
ynopt = 0.16 and the optimal error Enopt = 0.1× 10−5. In Table 10, we can find the number of
iterations of the ADM for solving this example based on the FPA.

Table 9. The numerical results of the Example 4 based on the SA.

n yn+1(t) |yn+1(t)− yn(t)| |yn+1(t)− y(t)|
1 0.159813 0.159813 0.186 × 10−3

2 0.160000 0.187 × 10−3 0.6 × 10−6

3 0.160000 @.0 0.1 × 10−5

Table 10. The number of iterations for different values of ε based on the FPA.

ε Small Values ε = 10−6 ε = 10−3 ε = 10−1 ε = 0.5 Large Values

n >> 2 2 1 1 1 1

Example 5. (direct and inverse problems) This example is presented to study the sensitivity of x(t)
for solving VIEs with discontinuous kernels. Consider the following nonlinear VIE

y(t)−
∫ t

a
K(t, τ) y2(τ) dτ = x(t), a ≤ t ≤ b, (15)

where the exact solution is
y(t) = et[cos(et)− et sin(et)], (16)

(solution with fluctuations), and the discontinuous kernel is

K(t, τ) =

{
1− (t− τ) e2t, a ≤ τ ≤ t/2,

p, otherwise,
(17)

where p is a parameter.
The direct problem (calculating x(t)):

Nonuniform grid of nodes, identical to t and τ, is given by

t1 = τ1 = a < t2 = τ2 < . . . < ti = τi < . . . < tN = τN = b, (18)

where N is the number of nodes. The right hand-side x(t) is calculated numerically using the
trapezoidal formula on grids (18) according to Algorithm 2.
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Algorithm 2: Algorithm of calculating x(t).
p=0.5+1e-10; x(1)=ye(1); %ye is the exact solution (16)
for i=2:N
int=0;
for j=2:i
int=int+(t(j)-t(j-1))/2*(K(i,j-1)*ye(j-1)^2+K(i,j)*ye(j)^2);

end %j
x(i)=ye(i)-int;

end %i

In Example 5, the grid of nodes is

t = 0(0.1)1.2, 1.25(0.05)1.9, 1.92(0.02)2.3, 2.31(0.01)2.5, (19)

i.e., a = 0, b = 2.5, N = 67.

The inverse problem (solving y(t) of VIE):

Algorithm 3: Algorithm of the recurrent solution.
p=0.5; y1=x1; h2=t2-t1; h22=h2/2;
y2-h22*(K21*y1^2+K22*y2^2)=x2;
h22*K22*y2^2-y2+x2+h22*K21*y1^2=0; %quadratic equation for y2
y2=(1-\sqrt(1-2*h2*K22*(x2+h22*K21*y1^2)))/(h2*K22); %solution of QE
for i=3:N
yi-\sum_{j=2}^i hj/2*(K(i,j-1)*y(j-1)^2+Kij*yj^2)=xi;
hi2=hi/2; int=xi+hi2*K(i,i-1)*y(i-1)^2;
for j=2:i-1
int=int+hj/2*(K(i,j-1)*y(j-1)^2+Kij*yj^2);

end %j
hi2*Kii*yi^2-yi+int=0; %quadratic equation for yi
yi=(1-\sqrt(1-2*hi*Kii*int))/(hi*Kii); %solution of QE

end %i

The recurrent solution is obtained based on Algorithm 3. Figure 1 shows the right hand-side
x(t), exact solution y(t) and obtained solution yn(x) ([57], pp. 41–43). Moreover, the parameter p
of the kernel K(t, τ) in the direct and inverse problems has slightly different values. As a result,
the solution at t ≈ 2.5 (with large fluctuation) differs markedly from the exact solution. Further,
regularization should be applied to increase the stability of the solution.
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Figure 1. Source function x(t), exact solution y(t) and numerical solution yn(t).

5. Conclusions

The CESTAC method is among applicable and important methods to validate the
numerical results based on the SA. For this aim, instead of usual applications such as
Mathematica, Maple and Matlab the CADNA library should be run. Using this method
and the CADNA library we can find the optimal iteration, the optimal approximation and
the optimal error of numerical procedures. We introduced the stopping condition based
on this method that it is independent from the exact solution. Also, using this condition
we do not have the disadvantages of the traditional absolute error. Several theorems were
proved to show the convergence of the ADM for solving linear and nonlinear VIE with
discontinuous kernel. The main theorem of the CESTAC method was presented. Based on
theorem we can apply the termination criterion (2) instead of (1). Several examples were
solved by the ADM and the numerical results were validated using the CESTAC method.
Also, we compared the results with numerical results obtained from the FPA.
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