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Abstract: We study the influence of a unit Killing vector field on geometry of Riemannian manifolds.
For given a unit Killing vector field w on a connected Riemannian manifold (M, g) we show that for
each non-constant smooth function f ∈ C∞(M) there exists a non-zero vector field w f associated
with f . In particular, we show that for an eigenfunction f of the Laplace operator on an n-dimensional
compact Riemannian manifold (M, g) with an appropriate lower bound on the integral of the Ricci
curvature S(w f , w f ) gives a characterization of the odd-dimensional unit sphere S2m+1. Also, we
show on an n-dimensional compact Riemannian manifold (M, g) that if there exists a positive
constant c and non-constant smooth function f that is eigenfunction of the Laplace operator with
eigenvalue nc and the unit Killing vector field w satisfying ‖∇w‖2 ≤ (n− 1)c and Ricci curvature in
the direction of the vector field ∇ f −w is bounded below by (n− 1)c is necessary and sufficient for
(M, g) to be isometric to the sphere S2m+1(c). Finally, we show that the presence of a unit Killing
vector field w on an n-dimensional Riemannian manifold (M, g) with sectional curvatures of plane
sections containing w equal to 1 forces dimension n to be odd and that the Riemannian manifold
(M, g) becomes a K-contact manifold. We also show that if in addition (M, g) is complete and the
Ricci operator satisfies Codazzi-type equation, then (M, g) is an Einstein Sasakian manifold.

Keywords: killing vector field; K-contact manifold; sasakian manifold; Einstein–Sasakian manifold

1. Introduction

Killing vector fields are known to play vital role in influencing the geometry as well
as topology of Riemannian manifolds (see [1–10]) and being incompressible fields play
important role in physics (see [11]). If we restrict the length of a Killing vector fields such
as constant length, then it severely restricts the geometry of Riemannian manifolds on
which they are set. For instance, there are no unit Killing vector fields on even-dimensional
spheres S2n(c). However, there are unit Killing vector fields on odd-dimensional spheres
S2n+1(c) as well on odd-dimensional ellipsoids (see [4,12,13]). Most importantly, on all K-
contact manifolds there is a unit Killing vector field called the Reeb vector field (see [12,13]).
There are other important structures and special vector fields, which also influence the
geometry of a Riemannian manifold (see [14]).

In this paper, we are interested in studying the impact of presence of a unit Killing
vector field w on the geometry of a connected Riemannian manifold (M, g). Our first
interesting finding is that for each smooth non-constant function f on M, there is naturally
associated a non-zero vector field w f on M that is orthogonal to w (see Proposition 1). Then
we consider the associated vector field w f corresponding to eigenfunction f of Laplace
operator on a compact Riemannian manifold (M, g) corresponding to eigenvalue dim M
and show that if the integral of Ricci curvature in the direction of w f is bounded below
by certain bound, forces dim M to be odd and thus gives a necessary and sufficient for
(M, g) to be isometric to the unit sphere S2m+1 (see Theorem 1). A similar characterization
of the sphere S2m+1(c) using the eigenfunction f on a compact n-dimensional (M, g) with
eigenvalue nc is obtained (see Theorem 2).

Mathematics 2021, 9, 259. https://doi.org/10.3390/math9030259 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3700-8164
https://orcid.org/0000-0002-1300-9587
https://doi.org/10.3390/math9030259
https://doi.org/10.3390/math9030259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9030259
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/3/259?type=check_update&version=3


Mathematics 2021, 9, 259 2 of 17

Given a unit Killing vector field w on a connected Riemannian manifold (M, g) there
is associated skew-symmetric tensor field Ψ given by the covariant derivative of w, giving a
structure (Ψ, w, α, g) on M, where α is 1-form dual to w. A natural question is under which
situation the structure (Ψ, w, α, g) becomes a K-contact structure? We answer this question
and find a necessary and sufficient condition in terms of sectional curvatures of plane
sections containing w (see Theorem 3). We also find conditions under which a Riemannian
manifold admitting a unit Killing vector field is an Einstein manifold (see Theorems 4
and 5). Finally, as a by-product of Theorem 3 with an additional condition that the Ricci
operator is Codazzi type tensor on a Riemannian manifold (M, g) that admits a unit Killing
vector field w, we show that (M, g) is an Einstein Sasakian manifold (see Corollary 2).

2. Preliminaries

Recall that a vector field w on a Riemannian manifold (M, g) is said to be a Killing
vector fields if

£wg = 0,

where £w being Lie-derivative of metric g with respect to ξ; or equivalently,

g
(
∇X1w, X2

)
= −g

(
∇X2w, X1

)
, X1, X2 ∈ X(M), (1)

where∇ is the Riemannian connection on (M, g) and X(M) is Lie-algebra of smooth vector
fields on M. Please note that a parallel vector field is a Killing vector field, we say a Killing
vector field is a non-trivial Killing vector field if it is not parallel. For the Killing vector field
w on an n-dimensional Riemannian manifold (M, g), we denote by α the smooth 1-form
dual to w, i.e., α(X) = g(w, X), X ∈ X(M). In addition, we define a skew-symmetric
(1.1)-tensor field Ψ by

g(ΨX1, X2) =
1
2

dα(X1, X2) =
1
2

g
(
∇X1w, X2

)
− 1

2
g
(
∇X2w, X1

)
, X1, X2 ∈ X(M).

Then, using Equation (1), it follows that

g
(
∇X1w, X2

)
= g(ΨX1, X2), X1, X2 ∈ X(M),

that is,
∇Xw = ΨX, X ∈ X(M). (2)

The curvature tensor field R and the Ricci tensor S of (M, g) are given by

R(X1, X2)X3 =
[
∇X1 ,∇X2

]
X3 −∇[X1,X2]

X3 (3)

and

S(X1, X2) =
n

∑
i=1

g(R(ei, X1)X2, ei),

respectively, where {e1, .., en} is a local orthonormal frame on M.
According to symmetry of the Ricci tensor S, we get a symmetric operator T called

the Ricci operator of M and defined by

g(TX1, X2) = S(X1, X2), X1, X2 ∈ X(M).

The scalar curvature τ of M is given by τ = Tr T. Please note that ∇τ—the gradient
of the scalar curvature τ—satisfies

1
2
∇τ =

n

∑
i=1

(∇T)(ei, ei), (4)
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where ∇T is the covariant derivative of T, defined by

(∇T)(X1, X2) = ∇X1 TX2 − T∇X1 X2.

Please note that if w is a Killing vector field on a Riemannian manifold (M, g), then
using Equations (2) and (3), we have

R(X1, X2)w = (∇Ψ)(X1, X2)− (∇Ψ)(X2, X1), X1, X2 ∈ X(M). (5)

From definition of Ψ, we see that the smooth 2-form g(ΨX1, X2) is closed and as a
result of using Equation (5), we make a conclusion

(∇Ψ)(X1, X2) = R(X1, w)X2, X1, X2 ∈ X(M). (6)

Observe that if w is a Killing vector field of constant length on a Riemannian manifold
(M, g), then taking the inner product with w in Equation (2), we get g(ΨX, w) = 0,
X ∈ X(M), and as Ψ is skew-symmetric, we conclude

Ψw = 0. (7)

For given a smooth function f on a Riemannian manifold the Hessian operatorH f is
defined by

H f (X) = ∇X∇ f , X ∈ X(M), (8)

which is a symmetric operator with

TrH f = ∆ f ,

where ∆ is the Laplace operator. The Hessian Hess( f ) of f is defined by

Hess( f )(X1, X2) = g
(
H f (X1), X2

)
, X1, X2 ∈ X(M).

Let w be a Killing vector field on a Riemannian manifold (M, g) and C∞(M) be the
algebra of smooth functions on M. Then, using Equation (2) and skew-symmetry of the
operator Ψ, it follows that divw = 0 and that for a smooth function f ∈ C∞(M), we have
div( f w) = w( f ). Thus, we get

Lemma 1. Let w be a unit Killing vector field on a compact Riemannian manifold (M, g). Then
for a smooth function f ∈ C∞(M) ∫

M

w( f ) = 0.

Lemma 2. Let w be a unit Killing vector field on a Riemannian manifold (M, g). Then

S(w, w) = ‖Ψ‖2.

Proof. Assume that w is a unit Killing vector field on a Riemannian manifold (M, g). Then,
using Equations (2) and (7), we have

(∇Ψ)(X, w) = −Ψ2X, X ∈ X(M). (9)

Now, using a local orthonormal frame {e1, ..., en}, n = dim M, and noting that

T(w) =
n

∑
i=1

R(w, ei)ei
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and in view of Equation (6), we conclude

T(w) = −
n

∑
i=1

(∇Ψ)(ei, ei).

Taking the inner product in above equation with w and using Equation (9), we deduce

S(w, w) =
n

∑
i=1

g
(

ei,−Ψ2ei

)
=

n

∑
i=1

g(Ψei, Ψei) = ‖Ψ‖2.

Lemma 3. Let w be a unit Killing vector field on a compact Riemannian manifold (M, g). Then
for a smooth function f ∈ C∞(M) ∫

M

S(∇ f , w) = 0.

Proof. Please note that the flow of the Killing vector field w consists of isometries of the
Riemannian manifold, therefore, we have w(τ) = 0. We use Equation (2) in computing the
divergence div(Tw) and get

div(Tw) =
n

∑
i=1

((∇T)(w, ei) + T(Ψei), ei)

= g

(
w,

n

∑
i=1

(∇T)(ei, ei)

)
+ Tr(T ◦Ψ),

where {e1, ..., en} is a local orthonormal frame, n = dim M. Owing to symmetry of T and
skew-symmetry of Ψ, it follows that Tr(T ◦Ψ) = 0 and using Equation (4), we conclude
div(Tw) = 0. Also, we have

div( f Tw) = S(∇ f , w) + f div(Tw) = S(∇ f , w).

By integrating above equation, the desired result follows.

As a consequence of Lemma 2, we conclude the following

Corollary 1. On a hyperbolic space or a Euclidean space, there does not exists a non-trivial unit
Killing vector field.

It is well known that the odd-dimensional unit sphere S2m+1 possesses a unit Killing
vector field ξ, the Reeb vector field provided by the Sasakian structure (ϕ, ξ, η, g) on S2m+1

(cf. [12]). In the rest of this section, we shall construct the unit Killing vector field on
the sphere S2m+1(c), c > 0 and on odd-dimensional ellipsoids. Treating S2m+1(c) as real
hypersurface of the complex manifold

(
Cm+1, J, 〈, 〉

)
with unit normal ζ and shape operator

A = −
√

cI, where J is the complex structure and 〈, 〉 is the Euclidean Hermitian metric
on Cm+1. We denote the Euclidean connection on Cm+1 by D and the induced metric and
induce Riemannian connection on S2m+1(c) by g and ∇, respectively. Now, define a unit
vector field w = −Jζ on the sphere S2m+1(c). Then taking covariant derivative in the
equation w = −Jζ with respect to X ∈ X(S2m+1(c)) applying Gauss–Weingarten formulas
for hypersurface, we conclude

∇Xw−
√

cg(X, w)ζ = −
√

cJX.
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Define an operator Ψ on S2m+1(c) by ΨX = −
√

c(JX)T , where (JX)T is the tangential
projection of JX on S2m+1(c). Then, it follows that Ψ is skew-symmetric operator and
above equation on equating tangential and normal components gives

∇Xw = ΨX, X ∈ X(S2m+1(c)) (10)

and it follows that w is a unit Killing vector field on the sphere S2m+1(c). Moreover, if we
take a constant unit vector

−→
b on the complex space Cm+1 and define a smooth function

f =
〈−→

b , ζ
〉

and letting u be the tangential projection of the vector
−→
b on the sphere

S2m+1(c), we get
−→
b = u + f ζ.

Taking covariant derivative in above equation with respect to X ∈ X(S2m+1(c)) and
using Gauss–Weingarten formulas for hypersurface and noting that DX

−→
b = 0, we obtain

∇Xu = −
√

c f X, ∇ f =
√

cu, X ∈ X(S2m+1(c)), (11)

that is,
∇X∇ f = −c f X, X ∈ X(S2m+1(c)), (12)

where ∇ f is the gradient of the smooth function f . We claim that f is non-constant, for if
f is constant, then Equation (10) will imply u = 0 and f = 0 and that

−→
b = 0, contrary to

the fact that
−→
b is a unit vector field. Hence, f is a non-constant function and Equation (11)

implies that
∆ f = −(2m + 1)c f , (13)

where ∆ f = div∇ f is the Laplace operator acting on f .
Consider a smooth function h : E2m+2 → R, defined by

h(u) =
m+1

∑
i=1

u2
i + a

2m+2

∑
i=m+2

u2
i − 1,

where E2m+2 is the Euclidean space and the constant a > 0,

u = (u1, ..., um+1, um+2,..., u2m+2) ∈ E2m+2.

Then M = h−1({0}) is (2m + 1)-dimensional compact hypersurface of the Euclidean
space E2m+2. Let g be the induced metric on the Ellipsoid M as hypersurface of E2m+2.
Consider the vector field w on the Euclidean space E2m+2

w =
(
−u2, u1, ...,−um+1, um,−

√
aum+3,

√
aum+2, ...,−

√
au2m+2,

√
au2m+1

)
,

it follows that w is a Killing vector field on the Euclidean space E2m+2 and its flow consists
of isometries of the Euclidean space E2m+2. Please note that length of w is non-constant
on the Euclidean space E2m+2. The function h is invariant under flow {φt} (as w(h) = 0)
of w and the ellipsoid is invariant under the flow {φt}, consequently, the vector field w is
tangent to the hypersurface M and with respect the induced metric g, we have g(w, w) = 1,
i.e., w is a unit Killing vector field on the compact Riemannian manifold (M, g).

3. Characterizations of Spheres

In this section, we use unit Killing vector fields on an n-dimensional compact Rie-
mannian manifold (M, g) in finding two characterizations of the spheres. First, given a
unit Killing vector field w on a connected Riemannian manifold (M, g), for each smooth
non-constant function f ∈ C∞(M), we define a vector field w f by

w f = ∇ f −w( f )w
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and call w f the associated vector field of f with respect to w. Please note that the associated
vector field w f is orthogonal to the unit Killing vector field w. It is interesting to note that
if w is non-trivial unit Killing vector field, then for each f ∈ C∞(M), the associated vector
field w f is non-zero as seen in the following.

Proposition 1. Let w be a unit non-trivial Killing vector field on a connected Riemannian manifold
(M, g). Then for each non-constant function f ∈ C∞(M) the associated vector field w f is non-zero.

Proof. Suppose w f = 0 for a non-constant f ∈ C∞(M). Then we have

∇ f = w( f )w

and taking covariant derivative with respect to X ∈ X(M), we get

H f (X) = X(w( f ))w + w( f )ΨX, X ∈ X(M).

As the operatorH f is symmetric and Ψ is skew-symmetric, we obtain

2w( f )g(ΨX, Y) = α(X)Y(w( f ))− α(Y)X(w( f )), X, Y ∈ X(M),

that is,
2w( f )ΨX = α(X)∇w( f )− X(w( f ))w. (14)

Taking X = w in above equation and using Equation (7), we immediately get

∇w( f ) = ww( f )w,

then
‖∇w( f )‖2 = (ww( f ))2. (15)

Now, taking a local orthonormal frame {e1, ..., en}, n = dim M on M and using it with
Equation (14), we conclude

4(w( f ))2‖Ψ‖2 =
n

∑
i=1

g(2w( f )Ψei, 2w( f )Ψei)

= 2‖∇w( f )‖2 − 2(ww( f ))2.

Using Equation (15) in above equation, we get (w( f ))2‖Ψ‖2 = 0 and as M is connected
with w non-trivial (Ψ 6= 0), we have w( f ) = 0. This proves ∇ f = 0 and we get a
contradiction to the fact that f is a non-constant function. Hence, w f 6= 0.

As seen in above Proposition, for each non-constant function f ∈ C∞(M) on an n-
dimensional connected (M, g) that admits a non-trivial unit Killing vector field w, the
associated vector field w f is non-zero vector field. In the next result, we show that if
there exists a smooth non-constant function f ∈ C∞(M) on an n-dimensional compact and
connected (M, g) that admits a non-trivial unit Killing vector field w satisfying ∆ f = −n
and the integral of the Ricci curvature S

(
w f , w f

)
has certain lower bound is necessary and

sufficient for (M, g) to be isometric to the unit sphere S2m+1, giving a characterization of
the unit sphere S2m+1.

Theorem 1. Let w be a non-trivial unit Killing vector field on an n-dimensional compact and
connected Riemannian manifold (M, g). Then there exists a non-constant function f ∈ C∞(M)
satisfying ∆ f = −n f and∫

M

S
(

w f , w f
)
≥
∫
M

(
2Hess( f )(∇w( f ), w) + n(n− 1) f 2 + (w( f ))2

(
‖Ψ‖2 − 2n

))
,
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if and only if, n is odd (n = 2m + 1)) and (M, g) is isometric to the unit sphere S2m+1.

Proof. Let w be a non-trivial unit Killing vector field and f ∈ C∞(M) be a non-constant
function such that ∆ f = −n f . Then the associated vector field w f is non-zero vector
field and

w f = ∇ f −w( f )w. (16)

Taking into account Equations (3) and (8), we have

R(X1, X2)∇ f =
(
∇H f

)
(X1, X2)−

(
∇H f

)
(X2, X1), X1, X2 ∈ X(M) (17)

and for a local orthonormal frame {e1, ..., en}, we have

∆ f =
n

∑
i=1

g
(
H f (ei), ei

)
.

Thus, on using Equation (17) and symmetry of the operatorH f , we get

X(∆ f ) =
n

∑
i=1

g
(

R(X, ei)∇ f +
(
∇H f

)
(ei, X), ei

)

= −S(X,∇ f ) + g

(
X,

n

∑
i=1

(
∇H f

)
(ei, ei)

)
, X ∈ X(M). (18)

Note that Equation (16) gives

∇Xw f = H f (X)− X(w( f ))w−w( f )ΨX. (19)

Now, using Equations (18) and (19), we proceed to find div
(
H f (w f )

)
and get

div
(
H f (w

f )
)

=
n

∑
i=1

g
(
H f (ei)− ei(w( f ))w−w( f )Ψei,H f (ei)

)
+w f (∆ f ) + S

(
w f ,∇ f

)
.

Integrating, we obtain∫
M

(∥∥∥H f

∥∥∥2
− Hess( f )(∇w( f ), w) + S

(
w f ,∇ f

)
+ w f (∆ f )

)
= 0,

where we used TrH f Ψ = 0. Using ∆ f = −n f and Equation (16), we have w f (∆ f ) =

−n
∥∥∥w f

∥∥∥2
, as w and w f are orthogonal and the above integral takes the form

∫
M

(∥∥∥H f

∥∥∥2
− Hess( f )(∇w( f ), w) + S

(
w f ,∇ f

)
− n

∥∥∥w f
∥∥∥2
)
= 0. (20)

Next, we use Equation (6) to get

n

∑
i=1

(∇Ψ)(ei, ei) = −T(w)
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and using this equation and Equation (19), in computing div
(

w( f )Ψ
(

w f
))

, we reach at

div
(

w( f )Ψ
(

w f
))

= g
(
∇w( f ), Ψ

(
w f
))

+ w( f )div
(

Ψ
(

w f
))

= g
(
∇w( f ), Ψ

(
w f
))

+ w( f )S
(

w f , w
)

−w( f )
n

∑
i=1

g
(
H f (ei)− ei(w( f ))w−w( f )Ψei, Ψei

)
.

Use of TrH f Ψ = 0, Equation (7), and outcome of Equation (16) as Ψ
(

w f
)
= Ψ(∇ f )

in above equation yields

div
(

w( f )Ψ
(

w f
))

= g(∇w( f ), Ψ(∇ f )) + w( f )S
(

w f , w
)
+ w( f )2‖Ψ‖2.

Also, we have X(w( f )) = Xg(w,∇ f ) = g(ΨX,∇ f ) + g
(

w,H f X
)

, i.e.,

Ψ(∇ f ) = H f (w)−∇w( f ).

Thus, we have
div
(

w( f )Ψ
(

w f
))

= Hess( f )(∇w( f ), w)− ‖∇w( f )‖2 + w( f )S
(

w f , w
)
+ w( f )2‖Ψ‖2

and integrating above equation, we get∫
M

(
Hess( f )(∇w( f ), w)− ‖∇w( f )‖2 + w( f )S

(
w f , w

)
+ w( f )2‖Ψ‖2

)
= 0.

Subtracting this equation from Equation (20), while noting that

S
(

w f ,∇ f
)
−w( f )S

(
w f , w

)
= S

(
w f , w f

)
,

we conclude

∫
M

(∥∥∥H f

∥∥∥2
− 2Hess( f )(∇w( f ), w)− n

∥∥∥w f
∥∥∥2

+ ‖∇w( f )‖2

+S
(

w f , w f
)
−w( f )2‖Ψ‖2

)
= 0.

On using ∆ f = −n f , and the fact that flow {φt} of w consists of isometries, we have
∆w( f ) = w(∆ f ) = −nw( f ), and above equation changes to

∫
M

(∥∥∥H f

∥∥∥2
− 2Hess( f )(∇w( f ), w)− n

∥∥∥w f
∥∥∥2

+ nw( f )2

+S
(

w f , w f
)
−w( f )2‖Ψ‖2

)
= 0.
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Now, in above equation, we use
∥∥∥w f

∥∥∥2
= ‖∇ f ‖2 −w( f )2 (Equation (16)), i.e.,

∫
M

∥∥∥w f
∥∥∥2

=
∫
M

(
‖∇ f ‖2 −w( f )2

)
=
∫
M

(
n f 2 −w( f )2

)
to conclude

∫
M

(∥∥∥H f

∥∥∥2
− 2Hess( f )(∇w( f ), w)− n2 f 2 + 2nw( f )2

+S
(

w f , w f
)
−w( f )2‖Ψ‖2

)
= 0.

Also, using 1
n (∆ f )2 = n f 2, we get

∫
M

(
1
n
(∆ f )2 −

∥∥∥H f

∥∥∥2
)
=
∫
M

S
(

w f , w f
)

−
∫
M

(
2Hess( f )(∇w( f ), w) + n(n− 1) f 2 + w( f )2

(
‖Ψ‖2 − 2n

))
and using the bound in the statement for integral of S

(
w f , w f

)
, we obtain

∫
M

(
1
n
(∆ f )2 −

∥∥∥H f

∥∥∥2
)
≥ 0.

Thus, by Schwarz’s inequality, we get

H f =
∆ f
n

I = − f I,

for non-constant function f . Hence, (M, g) is isometric to the unit sphere Sn (cf. [15,16]).
Please note that on an even-dimensional compact Riemannian manifold of positive sectional
curvature a Killing vector field must have a zero (cf. [17]). As the Killing vector field w is
unit vector field does not have a zero, we get that n is odd say 2m + 1. Hence, (M, g) is
isometric to the unit sphere S2m+1.

Conversely, there is a unit Killing vector field w on the unit sphere S2m+1 and by
Equations (12) and (13) there is a non-constant smooth function f satisfying

H f = − f I, ∆ f = −(2m + 1) f . (21)

Now,

S
(

w f , w f
)
= 2m

∥∥∥w f
∥∥∥2

= 2m‖∇ f −w( f )w‖2

= 2m
(
‖∇ f ‖2 −w( f )2

)
and

Hess( f )(∇w( f ), w) = − f g(∇w( f ), w)

= − f ww( f ) = −
(

w( f w( f ))−w( f )2
)

. (22)

Hence, we have ∫
M

S
(

w f , w f
)
= 2m

∫
M

(
‖∇ f ‖2 −w( f )2

)
(23)
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and using Lemma 1 and Equations (21), (22) and Lemma 2 as ‖Ψ‖2 = 2m, we get the inte-
gral ∫

M

(
2Hess( f )(∇w( f ), w) + 2m(2m + 1) f 2 + w( f )2

(
‖Ψ‖2 − 2(2m + 1

))
is equal to ∫

M

(
2w( f )2 + 2m‖∇ f ‖2 − (2m + 2)w( f )2

)
, (24)

where we used ∫
M

‖∇ f ‖2 = (2m + 1)
∫
M

f 2.

Thus, by Equations (21), (23) and (24) we see that all requirements of the statement
are met.

Remark 1. If the equality in the statement of Theorem 1 holds, then following the proof of the
Theorem 1, we conclude ∫

M

(
1
n
(∆ f )2 −

∥∥∥H f

∥∥∥2
)
= 0.

Using the Schwarz’s inequality in above equation, we get

H f =
∆ f
n

I = − f I

and we get the same conclusion as in Theorem 1.
We would like to point that a similar situation is considered in [18].

In the next result we show that for positive constant c, if there is a smooth function
f ∈ C∞(M) satisfying ∆ f = −nc f on an n-dimensional compact and connected (M, g)
that admits a non-trivial unit Killing vector field w with S(w, w) ≤ (n − 1)c, and the
Ricci curvature S(∇ f −w,∇ f −∇w) has certain lower bound, is necessary and sufficient
for (M, g) to be isometric to the sphere S2m+1(c), giving a characterization of the odd-
dimensional sphere S2m+1(c).

Theorem 2. Let w be a non-trivial unit Killing vector field on an n-dimensional compact and
connected Riemannian manifold (M, g). Then there exists a non-constant function f ∈ C∞(M)

satisfying ∆ f = −nc f for a constant c > 0, ‖Ψ‖2 ≤ (n − 1)c and the Ricci curvature in
the direction of the vector field ∇ f −w is bounded below by (n − 1)c, if and only if, n is odd
(n = 2m + 1)) and (M, g) is isometric to the sphere S2m+1(c).

Proof. Let w be a non-trivial unit Killing vector field on (M, g) such that ‖Ψ‖2 ≤ (n− 1)c
and f ∈ C∞(M) be a non-constant function such that ∆ f = −nc f and

S(∇ f −w,∇ f −w) ≥ (n− 1)c‖∇ f −w‖2, c > 0. (25)

We have S(∇ f −w,∇ f −w) = S(∇ f ,∇ f )− 2S(∇ f , w) + S(w, w), using Lemmas 2
and 3, we get ∫

M

S(∇ f −w,∇ f −w) =
∫
M

(
S(∇ f ,∇ f ) + ‖Ψ‖2

)
. (26)

Applying the Bochner’s formula∫
M

(
S(∇ f ,∇ f ) +

∥∥∥H f

∥∥∥2
− (∆ f )2

)
= 0
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in Equation (26), we obtain∫
M

S(∇ f −w,∇ f −w) =
∫
M

(
(∆ f )2 −

∥∥∥H f

∥∥∥2
+ ‖Ψ‖2

)
. (27)

Also, we have ‖∇ f −w‖2 = ‖∇ f ‖2 + 1− 2w( f ) and using the outcome of ∆ f = −nc f ,
namely ∫

M

‖∇ f ‖2 = nc
∫
M

f 2

and Lemma 1, we get ∫
M

‖∇ f −w‖2 =
∫
M

(
1 + nc f 2

)
.

Using above equation and Equation (27), we conclude∫
M

(
S(∇ f −w,∇ f −w)− (n− 1)c‖∇ f −w‖2

)
=
∫
M

(
(∆ f )2 −

∥∥∥H f

∥∥∥2
+ ‖Ψ‖2

)
−(n− 1)c

∫
M

(
1 + nc f 2

)
.

Using ∆ f = −nc f , we get∫
M

(
S(∇ f −w,∇ f −w)− (n− 1)c‖∇ f −w‖2

)
=
∫
M

(
1
n
(∆ f )2 −

∥∥∥H f

∥∥∥2
)

+
∫
M

(
‖Ψ‖2 − (n− 1)c

)
.

Now, using ‖Ψ‖2 ≤ (n− 1)c, we see that∫
M

(
S(∇ f −w,∇ f −w)− (n− 1)c‖∇ f −w‖2

)
≤
∫
M

(
1
n
(∆ f )2 −

∥∥∥H f

∥∥∥2
)

and using inequality (25) in above inequality, we have

0 ≤
∫
M

(
1
n
(∆ f )2 −

∥∥∥H f

∥∥∥2
)

.

Thus, in view of Schwarz’s inequality, we obtain

H f =
∆ f
n

I = −c f I,

that is, (M, g) is isometric to the sphere Sn(c). As in the proof of Theorem 1, we get that
n is odd say 2m + 1 and (M, g) is isometric to the sphere S2m+1(c). Converse trivially
follows using Equations (10)–(13), Lemma 2 and expression for Ricci tensor of the sphere
S2m+1(c).

4. Killing Vector Fields and Sasakian Manifolds

Recall that a (2m + 1)-dimensional manifold M is said to have an almost contact
metric structure (φ, ξ, η, g), if

φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, g(φX1, φX2) = g(X1, X2)− η(X1)η(X2),
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where φ is a skew-symmetric (1, 1) tensor field, ξ is a unit vector field, η is 1-form dual
to ξ and g is the Riemannian metric on M (see [12]). An almost contact metric manifold
M(φ, ξ, η, g) is said to be a contact metric manifold if

dη(X1, X2) = g(X1, φX2).

If unit vector field ξ of the contact metric manifold M(φ, ξ, η, g) is Killing, then it is
said to be a K-contact manifold. Also, a contact metric manifold M(φ, ξ, η, g) is said to be a
Sasakian manifold if

(∇φ)(X1, X2) = η(X2)X1 − g(X1, X2)ξ.

Given a unit Killing vector field w on an n-dimensional Riemannian manifold (M, g)
there is naturally associated a skew-symmetric operator φ = −Ψ on (M, g) and there is a
smooth 1-form α dual to w. A natural question is when does (φ, w, α, g) become a K-contact
structure on M? Of course, it requires n to be odd, φ should satisfy relation similar to
almost contact metric structure, namely

φ2 = −I + α⊗w, g(φX1, φX2) = g(X1, X2)− α(X1)α(X2), X1, X2 ∈ X(M)

and other requirements are automatically met by Equations (2) and (7) (cf. [12,13]). In this
section, we answer this question by showing that (φ, w, α, g) becomes a K-contact structure
on M, if and only if, the Riemannian manifold (M, g) admitting the unit Killing vector field
w with sectional curvatures of plane sections containing w are constant equal to 1. We also
find conditions under which a Riemannian manifold (M, g) admitting a unit vector field w
is an Einstein–Sasakian manifold.

Theorem 3. Let w be a unit Killing vector field on an n-dimensional connected Riemannian
manifold (M, g). Then (φ, w, α, g) is a K-contact structure, if and only if, sectional curvatures of
the plane sections containing w are constant equal to 1.

Proof. Let w be a unit Killing vector field on (M, g) and α be smooth 1-form dual to w.
Suppose the sectional curvature K(Π) = 1 for a plane section Π containing w. Then,
we have

R(X, w; w, X) = ‖X‖2 − α(X)2, X ∈ X(M), (28)

where R(X1, X2; X3, X4) = g(R(X1, X2)X3, X4). Polarizing Equation (28), we get

R(X1, w; w, X2) + R(X2, w; w, X1) = 2g(X1, X2)− 2α(X1)α(X2),

that is,
R(X1, w; w, X2) = g(X1, X2)− α(X1)α(X2).

This proves that

R(X, w)w = X− α(X)w, X ∈ X(M). (29)

Now, using Equations (6) and (7), we get

R(X, w)w = (∇Ψ)(X, w) = −Ψ2X,

and combining above equation with φ = −Ψ and Equation (29), we conclude

φ2 = −I + α⊗w.

Also, we have

g(φX1, φX2) = g(X1, X2)− α(X1)α(X2), X1, X2 ∈ X(M).
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According to (2), we have

dα(X1, X2) =
1
2
{

g
(
∇X1w, X2

)
− g
(
∇X2w, X1

)}
=

1
2
{g(ΨX1, X2)− g(ΨX2, X1)}

= −g(X1, ΨX2) = g(X1, φX2), X1, X2 ∈ X(M).

Hence, (φ, w, α, g) is a K-contact structure on M.
The converse is obvious (cf. [12,13]).

In [3], it was observed that presence of Killing vector field of constant length on
(M, g) with certain sectional curvatures positive and Ricci operator parallel implies (M, g)
is an Einstein manifold. In the next result, we find conditions under which a compact
Riemannian manifold admitting a unit Killing vector field is an Einstein manifold.

Theorem 4. Let w be a non-trivial unit Killing vector field on an n-dimensional compact and
connected Riemannian manifold (M, g), n > 2 with section curvatures of plane sections containing
w being positive. If the following conditions are satisfied

(i) (∇T)(X, w) = (∇T)(w, X), X ∈ X(M), (ii) ‖Ψ‖4 + Tr
(

T ◦Ψ2
)
≥ 0,

then (M, g) is an Einstein manifold.

Proof. Let w be a non-trivial unit Killing vector field on a compact and connected (M, g).
Suppose that K(Π) > 0 for a plane section Π containing w and the following condi-
tions hold

(∇T)(X, w) = (∇T)(w, X), X ∈ X(M), ‖Ψ‖4 + Tr
(

T ◦Ψ2
)
≥ 0. (30)

Using Lemma 2, we define a vector field u orthogonal to w by

T(w) = u + ‖Ψ‖2w. (31)

Taking covariant derivative in above equation with respect to X ∈ X(M), we get

(∇T)(X, w) + T(ΨX) = ∇Xu + X
(
‖Ψ‖2

)
w + ‖Ψ‖2ΨX. (32)

As the flow of w consists of isometries of (M, g), we have (£wT) = 0, i.e.,

(∇T)(w, X) = ΨT(X)− T(ΨX), X ∈ X(M)

and using it with the first equation in Equation (30), we have

(∇T)(X, w) = ΨT(X)− T(ΨX), X ∈ X(M). (33)

Thus, using Equation (33) in Equation (32), we conclude

∇Xu = ΨT(X)− ‖Ψ‖2ΨX− X
(
‖Ψ‖2

)
w, X ∈ X(M). (34)

Taking the inner product with w in above equation and using Equation (7) and
g(u, w) = 0, we obtain

−g(u, ΨX) = −X
(
‖Ψ‖2

)
,
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that is, the gradient ∇‖Ψ‖2 is given by

∇‖Ψ‖2 = −Ψu. (35)

Using Equation (33) and a local orthonormal frame {e1, ..., en} on M, we compute the
div(Ψu) and get the following

div(Ψu) =
n

∑
i=1

g(∇ei Ψu, ei) =
n

∑
i=1

g((∇Ψ)(ei, u) + Ψ∇ei u, ei)

and using Equations (6) and (34) and Lemma 2, we conclude

div(Ψu) = ‖u‖2 + ‖Ψ‖4 + Tr
(

T ◦Ψ2
)

.

Integrating above equation and using the inequality in Equation (30), we have u = 0
and consequently, Equation (35) implies that ‖Ψ‖2 is a constant. Hence, Equation (31) im-
plies that T(w) = cw, where c is a positive constant because w is non-trivial Killing vector
field. Taking covariant derivative in the equation T(w) = cw while using Equations (2)
and (33), we get

ΨT(X) = cΨX, X ∈ X(M),

that is,
Ψ(T(X)− cX) = 0, X ∈ X(M). (36)

Now, using Equations (6) and (7), we have R(X, w)w = (∇Ψ)(X, w) = −Ψ2X, i.e.,

R(X, w; w, X) = ‖ΨX‖2, X ∈ X(M). (37)

Please note that using T(w) = cw, we get g(T(X)− cX, w) = 0, i.e., T(X)− cX is
orthogonal to w for all X ∈ X(M). Thus, using Equations (36) and (37), we get that the
sectional curvature

R(TX− cX, w; w, TX− cZ) = 0

and the condition in the statement that K(Π) > 0 for a plane section Π containing w
implies T(X) = cX for all X ∈ X(M). Hence, (M, g) is an Einstein manifold.

We can bypass the requirements that manifold is compact and the condition (ii) in
Theorem 4 by assuming certain vector field is parallel as seen in the following:

Theorem 5. Let w be a non-trivial unit Killing vector field on an n-dimensional complete and
connected Riemannian manifold (M, g), n > 2 with section curvatures of plane sections containing
w being positive. If the vector field T(w)− ‖Ψ‖2w is parallel and the Ricci operator T satisfies

(∇T)(X, w) = (∇T)(w, X), X ∈ X(M),

then (M, g) is a compact Einstein manifold.

Proof. Follow the proof of Theorem 4 up to Equation (35) and use that the vector field
u = T(w)− ‖Ψ‖2w is parallel, in view of Equation (34), we get

Ψ
(

T(X)− ‖Ψ‖2X
)
= X

(
‖Ψ‖2

)
w, X ∈ X(M).

Taking the inner product with w in above equation and using Equation (7), we
have X

(
‖Ψ‖2

)
= 0, X ∈ X(M), and we conclude ‖Ψ‖2 is a constant c > 0 (as w is

a non-trivial Killing vector field). Then Equation (35) implies Ψ(u) = 0, which gives
R(u, w; w, u) = ‖Ψu‖2 = 0 and as the sectional curvatures of plane sections containing w
are positive, we get u = 0. Following Proof of Theorem 4, we get that (M, g) is an Einstein
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manifold. Please note that as S(X, X) = c‖X‖2 and c > 0, the Ricci curvature is strictly
positive and therefore by Myer’s Theorem (M, g) is compact.

Remark 2. We give two examples, one satisfying conditions in Theorems 4 and 5 and other does
not obeying conditions in these theorems.

Example 1. Consider the sphere S2m+1(c). We have seen in the Preliminaries that S2m+1(c)
admits a unit Killing vector field w = −Jζ, where ζ is the unit normal and J is the complex
structure on the complex space Cm+1. Moreover, we have (see Equation (10))

∇Xw = ΨX, X ∈ X(S2m+1(c)),

where ΨX = −
√

c(JX)T , where (JX)T is the tangential component of JX to S2m+1(c). The Ricci
operator T of S2m+1(c) is given by

T(X) = 2mcX, X ∈ X(S2m+1(c)),

which clearly satisfies
(∇T)(X, w) = (∇T)(w, X).

Also, on taking a local orthonormal frame {e1, ..., e2m+1} on S2m+1(c), we have

‖Ψ‖2 =
2m+1

∑
i=1

g(Ψei, Ψei) =
2m+1

∑
i=1

cg
(
(Jei)

T , (Jei)
J
)
=

c
2m+1

∑
i=1
〈Jei − 〈Jei, ζ〉ζ, Jei − 〈Jei, ζ〉ζ〉 = 2mc,

and

Tr
(

T ◦Ψ2
)
=

2m+1

∑
i=1

g
(

T
(

Ψ2ei

)
, ei

)
= 2mc

2m+1

∑
i=1

g
(

Ψ2ei, ei

)
=

−2mc‖Ψ‖2 = −4m2c2.

Consequently, we have
‖Ψ‖4 + Tr

(
T ◦Ψ2

)
= 0.

Moreover, we have T(w)− ‖Ψ‖2w = 2mcw− 2mcw = 0, i.e., T(w)− ‖Ψ‖2w is parallel.
Hence, we see that the conditions (i) and (ii) in Theorem 4, as well as both conditions in Theorem 5
hold for the Einstein manifold S2m+1(c) with unit Killing vector field w.

Example 2. Consider the 3-dimensional ellipsoid M3 defined by

M3 =
{

u ∈ E4 : u2
1 + u2

2 + au2
3 + au2

4 = 1
}

,

where constant a > 0 and u1, ..., u4 are Euclidean coordinates on E4. Then
(

M3, g
)

is a compact
3-dimensional Riemannian manifold with g the induced metric as a hypersurface of the Euclidean
space E4. As seen in the Preliminaries there is a unit Killing vector field w on

(
M3, g

)
given by

w =
(
−u2, u1,−

√
au4,
√

au3
)
.

We claim that
(

M3, g
)

is not an Einstein manifold. Suppose
(

M3, g
)

is an Einstein manifold
with Ricci tensor and Ricci operator given by

S =
τ

3
g, T =

τ

3
I.



Mathematics 2021, 9, 259 16 of 17

Please note that the curvature tensor field R of the 3-dimensional
(

M3, g
)

is given by

R(X1, X2)X3 = S(X2, X3)X1 − S(X1, X3)X2 + g(X2, X3)T(X1)− g(X1, X3)T(X2)−

τ

3
{g(X2, X3)X1 − g(X1, X3)X2},

that is,
R(X1, X2)X3 =

τ

6
{g(X2, X3)X1 − g(X1, X3)X2}.

This shows that
(

M3, g
)

is space of constant curvature τ
6 that is a contradiction. Hence,(

M3, g
)

is not an Einstein manifold.

Using Theorem 3 and the condition on Ricci operator being a Codazzi type tensor as
in Theorem 5, we get the following result, similar to Theorem 4.1 in [19].

Corollary 2. Let w be a non-trivial unit Killing vector field on an n-dimensional complete and
connected Riemannian manifold (M, g), n > 2 with section curvatures of plane sections containing
w being constant equal to 1. If the Ricci operator T satisfies

(∇T)(X, w) = (∇T)(w, X), X ∈ X(M),

then (M, g) is an Einstein Sasakian manifold.

Proof. By Theorem 3, we get that (M, g) is a K-contact manifold, n = 2m + 1 and ‖Ψ‖2 =

2m. Thus, ‖Ψ‖2 is a constant and by Equation (35), we get u = 0 and we get on similar lines
as in proof of Theorem 5 that (M, g) is an Einstein K-contact manifold with S = 2mg. Since
Ricci curvature is strictly positive we get (M, g) is compact. Hence, (M, g) is an Einstein
Sasakian manifold (cf. [13]).
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